
energies

Article

Minimizing Power Consumption of an Experimental
HVAC System Based on Parallel Grid Searching

Wangqi Xiong 1,2 and Jiandong Wang 1,*
1 College of Electrical Engineering and Automation, Shandong University of Science and Technology,

Qingdao 266590, China; xiongwanqi@pku.edu.cn
2 College of Engineering, Peking University, Beijing 100871, China
* Correspondence: jiandong@sdust.edu.cn; Tel.: +86-(532)-8605-8103

Received: 19 February 2020; Accepted: 9 April 2020; Published: 21 April 2020
����������
�������

Abstract: This paper proposes a parallel grid search algorithm to find an optimal operating point
for minimizing the power consumption of an experimental heating, ventilating and air conditioning
(HVAC) system. First, a multidimensional, nonlinear and non-convex optimization problem subject to
constraints is formulated based on a semi-physical model of the experimental HVAC system. Second,
the optimization problem is parallelized based on Graphics Processing Units to simultaneously
compute optimization loss functions for different solutions in a searching grid, and to find the optimal
solution as the one having the minimum loss function. The proposed algorithm has an advantage
that the optimal solution is known with evidence as to the best one subject to current resolutions of
the searching grid. Experimental studies are provided to support the proposed algorithm.
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1. Introduction

Heating, ventilation, and air conditioning (HVAC) systems are usually comprised of the heating,
air conditioning, and ventilation systems in residential or commercial buildings, to provide thermal
comfort and air quality in indoor spaces [1,2]. The power consumption of HVAC systems is often more
than half of total building power consumption [3]; however, many HVAC systems in practice have
been running in a full load mode without considering the power consumption efficiency. Thus, it is
important to find optimal operating points of HVAC systems in order to avoid unnecessary power
consumption. The power consumption optimization is usually composed by two steps: (i) an analytical
or numerical model is built to describe the relationship between the input and output variables of the
HVAC system; (ii) an optimal operating point of the HVAC system is found to achieve the minimum
power consumption subject to some constraints. The subject of this paper is on the second step.

Many optimization methods have been proposed to minimize the HVAC energy consumption
in the literature, as summarized here in Table 1. Vakiloroaya et al. [4] reviewed different HVAC
energy-saving strategies in the way of combining air conditioning technologies or changing the HVAC
configurations. Lu et al. [5,6] presented a modified genetic algorithm (GA) for minimizing power
consumption of HVAC systems, based on mathematical models of major components and their heat
exchangers. Asiedu et al. [7], Chow et al. [8], Ullah et al. [9] and Kampelis et al. [10] also used the GA
for the HVAC power optimization. Fong et al. [11] exploited the simulation tool TRNSYS [12] and TESS
Libraries [13] to model the overall HVAC system for a local subway station, and took the robust
evolutionary algorithm (REA) to optimize the energy consumption of the HVAC simulation models.
Wemhoff et al. [14,15] proposed Lumped-HVAC (L-HVAC) method to build the HVAC model based on
the coupled water balance and energy exchange calculations, and the Master Controller (MC) method
to minimize energy for a system while meeting conditioning requirements. Zakula et al. [16] took the
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adaptive grid search technique to map the optimal heat pump performance as a function of the capacity,
indoor and outdoor temperatures. Kim et al. [17] developed an energy performance prediction and
optimization software to predict and optimize the energy consumption of a chiller system using a
machine learning algorithm based on artificial neural network (ANN) models. Kusiak et al. [18]
adopted the multi-layer perception (MLP) algorithm to construct energy consumption predictive
models of an air handling unit, and the dynamic penalty-based electromagnetism-like algorithm
(DPEM) to minimize the overall energy consumption. Wei et al. [19] constructed a quad-objective
optimization problem to balance the energy consumption and the indoor air quality, and a modified
particle swarm optimization algorithm (PSO) to minimize the total energy consumption of a dynamic
overall HVAC systems. Kim et al. [20] developed an integrated meta-model for a lighting, heating,
ventilating, and air conditioning system, and the GA algorithm for the minimum energy consumption
with the constraints on both thermal and visual comfort. Aframa et al. [21] designed a supervisory
model predictive controller (MPC) based on ANN models for minimizing the total cost of operating
the HVAC system. Alibabaei et al. [22] discussed the development of three different strategic planning
models including Smart Dual Fuel Switching System (SDFSS), Load Shifting (LSH), and LSH-SDFSS,
and developed a novel smart dual fuel switching system for minimizing the energy cost of a residential
HVAC system. Ghahramani et al. [23] introduced an adaptive hybrid algorithm to learn optimal HVAC
settings with no prior historical data.

Table 1. Summary of the methods of modeling the heating, ventilation and air conditioning
(HVAC) system.

References System to be Optimized Optimization Variables Cost Function Optimization Algorithm

[5,6] Static overall HVAC system

Number of operating chillers chilled
water pumps, cooling coils,
condenser water pumps and cooling
tower fans, temperatures of chilled
water supply and condenser water
supply, air flow rate of supply
air and cooling tower fun,
chilled and condenser water flow
rate of pumps

Total energy consumption Modified GA

[10] Dynamic overall HVAC system hourly HVAC temperature set points cost of energy GA

[11] Static overall HVAC system
Set point of chilled water
supply temperature of chiller and
supply air temperature of AHU

Monthly energy consumption REA

[14,15] Static two-room system
Fan rotation speed, actuating damper,
pump rotation speed, chiller work input Energy consumption MC

[16] Static heat pump
Evaporator and condenser airflow rate,
condenser area fraction devoted
to subcooling

Total power consumption Adaptive grid search

[17] Static chiller

chilled water flow rate
cooling water temperature
outside dry-bulb temperature
outside wet-bulb temperature
dew-point temperature
outside relative humidity
hour, type of day

total Power consumption ANN

[18] Dynamic AHU

Chilled water flow rate,
supply fan VFD speed,
chilled water coil valve position,
chilled water coil supply temperature

Total energy consumption DPEM

[19] Dynamic overall HVAC system
Supply air temperature and
static pressure setpoint Total energy consumption Modified PSO

[20] Dynamic overall HVAC system

Venetian blind slat angle,
AHU supply air setpoint temperature,
AHU operation status,
Relative water flow rate of FCU,
Outdoor-air mixing ratio

Total power consumption GA

[21] Dynamic overall HVAC system
Control signal of AHU,
RFH, GSHP and RFH

Total cost of operating
the HVAC system MPC

[22] House energy system Not mention * HVAC system energy cost SDFSS, LSH, LSH-SDFSS

[23] Overall HVAC system Not mention * Energy consumption Adaptive hybrid metaheuristic

* The authors did not mention the optimization variables of the established model.

According to the above review of HVAC energy optimization strategies, there are two groups
of optimization algorithms: the local optimization algorithm based on the gradient information
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and the global optimization algorithm based on heuristic searching techniques. The optimization
problem for HVAC systems is in the multidimensional, nonlinear and non-convex nature. As a result,
both algorithms have some limitations in finding a good solution. The former depends heavily on
the given initial solution so that it is easy to yield a local optimum as the solution. The latter usually
takes a high computational cost by using random initial solutions in many attempts; even so, it is not
unclear whether the obtained optimal solution can be improved further.

This paper proposes a parallel grid search algorithm to find a global solution for the power
consumption optimization problem of an experimental HVAC system. First, a multidimensional,
nonlinear and non-convex optimization problem subject to constraint is formulated based on a
semi-physical model of the experimental HVAC system. Second, the optimization problem is
parallelized in order to simultaneously compute the optimization loss functions for different solutions
in a searching grid, and to find the optimal solution as the one having the minimum loss function.
The proposed algorithm is implemented in the Graphics Processing Unit (GPU), which has tens
of thousands of computing cores for parallel computations. The main advantage of the proposed
algorithm is that it does not suffer the above-mentioned limitations of the existing optimization
algorithms. In particular, the proposed algorithm is exhaustive in terms of computing the loss function
values of all feasible points in the searching grid, from which the optimal solution is obtained. Hence,
it is confident that the obtained optimal solution is the best one subject to current resolutions of the
searching grid.

The rest of the paper is organized as follows. Section 2 describes the problem to be solved.
Section 3 presents the HVAC model and the proposed algorithm. Section 4 validates the proposed
algorithm via experimental studies. Section 5 makes some concluding remarks.

2. Problem Description

HVAC systems are usually composed by cooling coils, chillers, cooling towers, pumps, fans and
rooms [1]; in terms of transferring energies, there are five loops being involved, namely, the indoor
air loop, chilled water loop, refrigerant loop, cooling water loop and outdoor air loop as shown in
Figure 1. For an experimental HVAC system in this paper, its input variables are the rotating speed
RSA of a cooling coil fan, the rotating speed RCW of a cooling water pump, the rotating speed RCHW of
a chilled water pump, the outdoor temperature Tout and humidity Dout, i.e.,

x :=
[

RSA RCW RCHW Tout Dout

]T
. (1)

o
u
td

o
o
r

en
v
ir

o
n
m

en
t

o
u
td

o
o
r

en
v
ir

o
n
m

en
t

chillers

(black box 

process)

cooling

towers

variable-

frequency

tower fans

variable-

frequency

pumps

cooling

water outdoor

air

variable-

frequency

pumps

chilled

water

cooling

coils

variable-

frequency

coil fans

rooms

indoor

air

Figure 1. The schematic diagram of an experimental HVAC system.
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Here RSA, RCW and RCHW are controllable variables, while Tout and Dout are uncontrollable
variables being determined by environmental conditions. The output variables are the power
consumptions of the cooling coil fan, cooling water pump, chilled water pump and chiller,
respectively denoted by PSA, PCW , PCHW and PChiller, as well as the indoor temperature Tin, i.e.,

y :=
[

PSA PCW PCHW Pchiller Tin

]T
. (2)

The objective is to minimize the total power consumption of the experimental HVAC system
subject to some requirements on the comfortable temperature in rooms, by finding the optimal values
of controllable variables in x. Thus, the optimization loss function is

Ptotal = Pchiller + PCHW + PCW + 2PSA. (3)

The last item on the right side of Equation (3) means that there are two cooling coil fans to
respectively supply and return air in the HVAC system. Meanwhile, there is a constraint that the
indoor temperature Tin is maintained in a required range, namely,

Tin,lb ≤ Tin ≤ Tin,ub, (4)

where Tin,lb and Tin,ub are the upper and lower bounds of Tin, respectively. Besides, it is assumed that
the outdoor temperature Tout and humidity Dout are constant, because Tout and Dout are approximately
unchanged during the time that Tin is changed by varying RSA, RCW and RCHW . In summary, the power
consumption optimization problem for the HVAC system can be formulated as[

R̂CHW , R̂CW , R̂SA
]
= arg min

RCHW , RCW , RSA

Ptotal , (5)

subject to the constraint in (4).

3. The Proposed Algorithm

This section proposes a parallel grid search algorithm to find an optimal operating point for
minimizing the power consumption of the experimental HVAC system.

First, a mathematical model of the experimental HVAC system is needed. The model is obtained
by integrating the sub-models of major components of the experimental HVAC system in three parts:
the cooling coil and room, the chiller and the cooling tower. Details in establishing the sub-models are
irrelevant for the optimization problem and are reported elsewhere in our earlier work [24]. For the
purpose of minimizing power consumption, the output variable vector y in (2) needs to be calculated
for given values of the input variable vector x in (1). All major components of the experimental HVAC
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system are closely coupled via four intermediate variables z :=
[

TCHWR TCHWS TCWS TCWS

]T
.

The HVAC model is

f (x, y, z; a, b, c, d) =

f1




RCHW
RSA

TCHWS
Tout

Dout

 ; a

−
(

TCHWR
Tin

)

f2




TCHWR
TCWR
RCHW
RCW

 ; w1, b1, w2, b2

−
 TCHWS

TCWS
Pchiller



f3


 TCWS

RCW
Tout

 ; c

− TCWR

f4


 RCWS

RCW
RSA

 ; d

−
 PCWS

PCW
PSA





= 0
. (6)

Equation (6) is schematically shown as an Matlab simulink diagram in Figure 2, where f1, f2 and f3

are represented by three square frames, and f4 is decomposed as three subparts with the cubic function
u3 and model coefficients d1, d2 and d3. The function f1 is the model for the cooling coil and room,

f1 =

 Tout − a1RSA
RSA+a4

1−e
− a3

RSA

(
1− a2RSA

RCHW

)

1− a2RSA
RCHW

e
− a3

RSA

(
1− a2RSA

RCHW

) (Tout − TCHWS) +
a5

RSA+a4

a6TCHWS + a7
RSA

RCHW
( fH (Tout, Dout)− fH (Tin, Din)) + a8

 ,

where a = [a1, · · · , a8]
T is the vector of model coefficients to be determined from experimental

data. Since there is no humidifier, the indoor and outdoor humidities are assumed to be the same,
i.e., Dout = Din. The function fH calculates the air enthalpy being associated with temperature T and
humidity D [25],

H = fH (T; D) = 1.01T + 0.001D (2005 + 1.84T) .

Figure 2. A schematic diagram of the HVAC model (Din is connected to Dout since Din = Dout).
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The function f2 represents the chiller model being described by a two-layer feed-forward network
as shown in Figure 3,

u = ϕ1 (w1x + b1) , y = ϕ2 (w2u + b2) .

Here x and y are the input and output of the system respectively;In this sub-model, the input
variables are TCWS, RCW and Tout, and the output variable is TCWR. Symbol u is the output of the
hidden layer; w1 and w2 are the weight matrices of hidden and output layers respectively; b1 and b2

are their bias vectors; ϕ1 (·) and ϕ2 (·) are their activation functions, which are usually given as

ϕ1 (x) =
[

ϕ1,1 (x1) ... ϕ1,n (xn)
]T

, ϕ1,i (xi) =
1−e−xi

1+e−xi
, i = 1, ..., n

ϕ2 = Identity Matrix.

Here n is the number of input variables of the chiller model. The function f3 is the cooling tower model,

f3 = 1

fHb(TCWR)−
(

fH(Ts ;Dout)+
2c2RCW

fK(TCHWR)
(TCWS−TCWR)

)
+ 4

fHb((TCWR+TCWS)/2)−
(

fH(Ts ;Dout)+
c2RCW

fK(TCHWR)
(TCWS−TCWR)

)
+ 1

fHb(TCWS)− fH(Ts ;Dout)
− c1 fK(TCWR)

RCW (TCWR−TCWS)

.

Here the function fHb calculates the enthalpy of saturated air and its wet bulb temperature T [25],

fHb(T) = α0 + α1T + α2T2 + α3T3.

The function fK is given by [25]

K = fK(TCWR) = −0.00175TCWR + 1.

c = [c1, c2]
T is the vector of model coefficients. The function f4 includes the models for the cooling and

chilled water pumps as well as the cooling coil fan,

f4 =

 d1R3
CHW

d2R3
CW

d3R3
SA

 .

Here d = [d1, d2, d3]
T is the vector of model coefficients. In this sub-model, the input variables are

RCHW , RCW and RSA, and the output variable is PCHW , PCW and PSA.

Inputs

Hidden layer

Outputs

Output layer

w1 w2

b1 b2
1 2

Figure 3. A two-layer feed-forward network as the chiller model.

Second, the main idea of the proposed algorithm is introduced [26]. In general, a grid search
algorithm is an exhaustive searching algorithm, which can easily adapt to nonlinear, non-differentiable
or even disconnected optimization problems. It selects a few values of each input variable,
and formulates all possible combinations of the input variable values. The loss function of an
optimization problem is calculated for all possible combinations to formulate a searching grid.
The feasible solutions are found as the points in the searching grid satisfying the required constraints
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for the optimization problem. The optimal solution is the feasible point having the smallest loss
function value. In the experimental HVAC system, the same type of rotating speed sensors are used
to obtain the measurements of the three controllable variables RSA, RCW and RCHW ; in addition,
the variational ranges of RSA, RCW and RCHW are normalized to be the same. Thus, it is reasonable to
choose the same resolution r for the three variables. By separating the variational range with a uniform
distance r, the number of different values for RSA is

N1 = (RSA,u − RSA,l) /r, (7)

where RSA,u and RSA,l indicate the upper and lower limits of the variational range of RSA. Similarly,
the numbers of different values for RCW and RCHW are

N2 = (RCW,u − RCW,l) /r
N3 = (RCHW,u − RCHW,l) /r

. (8)

The number of grid points to be searched is N1 × N2 × N3. The grid point is denoted by

x (i, j, k) =

 (RSA,u − RSA,l)× i/N1+RSA,l
(RCW,u − RCW,l)× j

/
N2+RCW,l

(RCHW,u − RCHW,l)× k
/

N3+RCHW,l

 , (9)

where i, j and k with 1 ≤ i ≤ N1, 1 ≤ j ≤ N2 and 1 ≤ k ≤ N3 are the grid point indices. With the
HVAC model in (6), values of y and z can be calculated for given values of the controllable variables
RSA, RCW and RCHW in x (i, j, k) and the constant values of the uncontrollable variables Tout and Dout,
based on the estimated coefficients â, ŵ1, ŵ2, b̂1, b̂2, ĉ, and d̂. The power consumption for each grid
point is obtained as P (i, j, k). After the power consumption is calculated for all grid points, the feasible
grid points are determined as the ones satisfying the constraint in (4),{

i ∈ I, j ∈ J, k ∈ K | Tin,lb ≤ Tin (i, j, k) ≤ Tin,ub
}

,

where Tin (i, j, k) is the indoor temperature associated with x (i, j, k). The optimal solution is the feasible
point with the smallest power consumption, i.e.,

x (i0, j0, k0) = arg min
i∈I,j∈J,k∈K

{P (i, j, k)} . (10)

Third, owing to a fact that the calculations of P (i, j, k) for all grid points are independent of each
other, the grid search algorithm is very suitable for parallel computations. Theoretically, if there are
enough computing nodes, then these independent calculations can be performed simultaneously in
a non-sequential manner, without communication among all the computing nodes. Thus, a parallel
algorithm is designed by taking the advantage of a GPU’s Single-Instruction Multiple-Data (SIMD)
property and a stream processing technique [27]. In the parallel algorithm, the calculation of P (i, j, k)
is done by the GPU as a computation device. A Central Processing Unit (CPU) as the host is responsible
for initializing the parameters of the HVAC model and managing the final result transmission with
the GPU.

The general large-scale numerical computing technology developed on GPU by NVIDIA has
shown evident advantages in floating-point operations and memory bandwidth [28]. With the
potential of a GPU being exploited, one single computer has an entry-level super-computing power.
The Compute Unified Device Architecture (CUDA) platform is a new software framework for the GPU
parallel computing. It provides a programming model based on a three-level (Grid-Block-Thread)
thread management structure as shown in Figure 4. In this model, the CPU serves as the host, which is
responsible for logical transaction processing and serial computing, and the GPU serves as the device
(or coprocessor) to execute instructions, which can be highly threaded in a so-call kernel function [28].
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(a) (b)

Figure 4. Compute Unified Device Architecture (CUDA) parallel computing: (a) its execution model.
(b) memory hierarchy [28].

For the power consumption optimization of the HVAC system, the outdoor temperature Tout and
humidity Dout are fixed and there are three optimization variables, namely, RSA, RCW and RCHW . It is
known that each grid in the CUDA architecture has multiple two-dimensional blocks, and each block
has multiple two-dimensional threads. Only three of these dimensions are required here. The grid
point indices in (9) can be directly represented as

i = block.x, j = thread.x, k = thread.y, (11)

where block.x, thread.x and thread.y are the in-built variables in CUDA for the indices of thread and
block, respectively. The algorithm starts with the formulation of the entire searching grid composed by
N1 × N2 × N3 points. Then, the global memory of GPU is allocated for the input and output variables,
and the inputs of all the searching grids using (9) are transferred from the host memory to the global
memory. Since the HVAC model coefficients, the outdoor temperature and humidity are commonly
used in all threads, they are initialized in the common memory of GPU, which greatly improves
the computing efficiency. Next, grid parameters (blockDim and threadDim in Algorithm 1) are set
and the kernel function is launched. In the kernel function, after the computational tasks of all the
threads are finished, the results are copied from the global memory back to the host memory. Finally,
their power consumption values are compared to obtain the optimal grid point with the smallest
power consumption.

Algorithm 1 Detailed algorithm for power consumption optimization.
1. Divide the entire searching grid by N1 × N2 × N3 and allocate the global memory
2. Formulate points of the searching grid for (RSA, RCW , RCHW) using (9)
3. Initialize the HVAC model coefficients and Tout and Dout
4. Set the searching grid parameters and launch the kernels:
optimizationKernel <<< blockDim, threadDim >>> (inputs, Ptotal)
{

__shared__ EveryBlockPtotal [threadDim] ;
i = block.x, j = thread.x, k = thread.y;
EveryBlockPtotal [j, k] is obtained from (3) by solving (6) for a given input [i, j, k] ;
__syncthreads();
Ptotal [i] = min(EveryBlockPtotal);
}

5. Transfer all values of Ptotal back to the host memory
6. Compare the values of Ptotal to obtain the optimal solution x (i0, j0, k0) in (10)
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Algorithm 1 gives the proposed algorithm in detail. The symbol optimizationKernel stands
for a kernel function, blockDim is the number of blocks and threadDim is the number of threads
per block. They are determined by the shared memory size configuration and registers per thread.
Generally, threadDim is usually a multiple of 64 [28]. It should be noted that their improper selection
will lead to lower GPU occupancy. The symbol __shared__ is a keyword to mean that this variable
(EveryBlockPtotal) is a shared variable. All the threads in a block can share memories, synchronize and
communicate by using shared variables. min(·) is a function to find the minimum of a data set.
The symbol __syncthreads() guarantees that every thread in the block has completed instructions
before the function min(·) is executed [27].

4. Experimental Studies

In this section, the HVAC model coefficients are estimated from experimental data, and the
proposed algorithm is compared with the two other algorithms.

4.1. Model Coefficient Estimation

Real-time experiments are implemented in the experimental HVAC system, whose major
components are shown in Figure 5. The experiments are implemented for 15 h, where the manipulated
input variables are changed in turns from one constant value to another every 1000 s. It is observed that
the HVAC system reaches a steady-state in the last 100 seconds of each 1000-s change. Thus, the data
samples in the last 100 s of all 1000-s changes are extracted and merged together. Figures 6 and 7
present the measured input and output variables, respectively. The sample period is 1 s. The HVAC
model coefficients in (6) are estimated by minimizing the weighted summation of squared errors
between measured and estimated outputs,

â = [ 0.66338 −0.73100 2.69039× 10−6 0.37201
5.93943 1.70985 1.02587 −22.41896 ]T .

(12)

ŵ1 =



−12.648 −6.3743 −0.2266 −1.1952
−1.4889 −0.3175 0.3964 0.2549
−2.631 3.5674 −1.2782 −5.7468
−1.2873 −3.6111 −4.1862 −0.8867
−0.2039 1.5532 −0.8243 0.2415
−0.9726 1.2795 1.3493 0.6608

3.236 1.7607 −3.2609 −2.2888


, b̂1 =



1.578177
−0.78776
3.870033
−2.14653
−0.16762
0.039405
−2.94454


,

ŵ2 =

 −0.0811 2.2966 −0.219 −1.3604 2.5573 −3.274 0.3694
0.0408 2.0244 0.0305 −0.8858 2.8196 −2.4118 0.2564

0.087 2.2905 −0.0438 −1.0062 3.0133 −2.6992 0.3101

 ,

b̂2 =

 1.4322
1.2673
1.4859



(13)

ĉ =
[
−9.325530 0.710525

]T
, (14)

and
[d̂1, d̂2, d̂3] =

[
0.0079793 0.0067859 0.013137

]T
. (15)
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(a)

(b)

Figure 5. The major components of an experimental HVAC system: (a) the cooling coil and room,
(b) the chiller and cooling tower.
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Figure 6. The measured input variables for estimating model coefficients: (a) RSA, (b) RCW , (c) RCHW ,
(d) Tout and (e) Dout.
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Figure 7. The measureds (blue dot) and estimated (red solid) output variables for coefficient estimation:
(a) PSA, (b) PCW , (c) PCHW , (d) Pchiller and (e) Tin.

The measured and estimated outputs are compared in Figure 7. The corresponding coefficients of
variation (CVs) are given Table 2 as a qualitative measure of model quality. The CV for a variable X
and its estimate X̂ is defined as

cv,X =
σX−X̂
µX−X̂

,

where µX−X̂ and σX−X̂ are the sample mean and standard deviation of the error variable X − X̂,
respectively. It can be seen that the estimated outputs are in line with the measured outputs, and the
CVs are quite small.

Table 2. The coefficients of variation (CVs) of output variables.

Output
variables PSA/kW PCW/kW PCHW/kW

Pchiller
/kW

Tinside
/K

Coefficient of
variations 2.91% 1.95% 0.59% 0.84% 0.075%

4.2. Performance Comparison of Optimization Algorithms

This subsection compares the proposed algorithm with the interior-reflective Newton algorithm
as a typical local optimization algorithm, and the genetic algorithm (GA) as a representative global
optimization algorithm.

For the experimental HVAC system, the rotational speed of pumps and fans must be in a moderate
range. In particular, the rotational speed of the chilled water pump should be larger than that of the
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cooling water pump. Thus, the value ranges of input variables RSA, RCW and RCHW are restricted to
the interval in Equation (16),

20% ≤ RSA ≤ 60%
40% ≤ RCW ≤ 80%
10% ≤ RCHW ≤ 60%

. (16)

The rotational speeds are controlled by voltage signals in the experiment, so that the unit is the
duty cycle with 0% and 100% for the minimum and maximum speeds respectively. A preliminary
experiment is carried out to determine the feasible ranges of input variables in Equation (16) in order to
meet with the required indoor temperature. The outdoor temperature is fixed to 30◦C. For maintaining
a desirable internal atmospheric environment, the indoor temperatures is constrained as

25◦C ≤ Tinside ≤ 27◦C . (17)

The hardware configuration for the optimization algorithms is shown in Table 3. Tesla K80
of NVIDIA with a total of 4992 cores is selected as the device to be used in the parallel grid
search algorithm.

Table 3. Hardware specifications.

Component Type Component Performance

CPU Intel Xeon E5-4640 v4, 2.1 GHz, 12 cores
GPU Tesla K80, 562 MHz, 4992 CUDA cores

CPU memory 64 GB
GPU memory 24 GB

GPU peak floating-point
performance with double precision 2.91 Teraflops *

GPU compiler NVCC 8.0 **

* Teraflops mean that the trillion (1012) of floating point operations per second. ** nvcc is a compiler driver that simplifies
the process of compiling C code.

The results of the three algorithms are obtained as Table 4. First, for the interior-reflective Newton
algorithm, the initial point must be given and it is generated by a random function within the interval
in (16). It is concluded from Table 4 that different initial points lead to entirely different optimization
results from the interior-reflective Newton algorithm. Second, the GA algorithm takes the default setup
parameters in the MATLAB optimization toolbox, with the population size 100, the tolerance value
0.1, and a randomly-generated initial population. It is observed from Table 4 that the GA algorithm
yields similar optimization results where values of Ptotal are quite close in three trials. However, it is
hard to know whether a smaller value of Ptotal can be achieved by introducing more trials. Third,
for the proposed algorithm, the numbers in (7) and (8) are selected as N1 = N2 = 40/0.1 = 400,
N3 = 50/0.1 = 500, because the resolution of the experimental devices for measuring rotational speeds
is about 0.1. The optimal result is associated with Ptotal = 2374.10, which is much smaller than the
counterparts from the interior-reflective Newton algorithm, and is slightly smaller than the best one.

Ptotal = 2374.21 from the GA algorithm. Moreover, the propose algorithm is able to give the
distribution of Ptotal in Figure 8 for all points satisfying the indoor temperature constraint in (17).
In order to observe the interior of Figure 8a, the 3D cloud image in Figure 8a is unfolded along the z
axis (RCHW), and twenty 2D cloud images are obtained as shown in Figure 9. For the i-th sub-figure
(i = 1,2, ..., 20), the value of RCHW is given by RCHW(i) = 40× i/20 + 10, while the horizontal and
longitudinal coordinate variables are RSA and RCW respectively. The irregular shapes imply the
presence of a non-convex optimization problem. The optimal point [33.0, 60.3, 14.2] in Table 4 is the
darkest blue point (red asterisk) in the third column of the first row in Figure 9. It is worthy to note that
there are several deep blue points in the cloud chart, such as the two black dots in Figure 9. The values
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of points nearby are listed in Table 5. Clearly, there are many locally optimal solutions, so that
the optimization problem is clearly non-convex and nonlinear, which demonstrates the necessity of
applying the proposed algorithm to solve the optimization problem. The proposed algorithm provides
the entire solution space containing all values of the loss function corresponding to all operating points
in the searching grid; thus, the best operating point is ready to be found. However, the GA algorithm
only gives the solution path to the optimal operating point, which is difficult to be trusted without a
comparison to other operating points in the entire solution space. Hence, unlike the GA algorithm, it is
very confident that the proposed algorithm can find the best operating point for the given resolution
of the searching grid.

Table 4. Comparison of optimization algorithms.

Algorithm Optimization Result Ptotal Computing Time/s

Interior-reflective Newton
initial point: [58.3 78.3 34.2]

[52.0 45.7 31.1]
[36.3 56.7 13.4]

[58.82, 78.28, 34.27]
[56.33, 51.80, 33.91]
[36.31, 56.62, 14.74]

2629.76
2988.22
2413.10

23.53
26.87
13.56

parallel GA
initial point: random

random
random

[33.13 60.12 14.14]
[30.91 62.58 16.35]
[31.79 61.76 15.59]

2374.21
2390.33
2387.21

1238.83
1159.34
1108.72

Parallel grid search [33.0, 60.3, 14.2] 2374.10 685.71
Serial grid search ≈891000

Table 5. Points near the local and global optimal points.

Global Minimum Local Minimum 1 Local Minimum 2

center 2374.10 2393.18 2406.30

Up 2430.08 2444.28 2442.10

Down NaN * NaN NaN

right 2406.57 2409.71 2424.8

Left NaN NaN NaN

Forward 2425.04 2425.33 2441.43

backward NaN NaN NaN

* NaN means this point does not satisfy the indoor temperature constraint.

(a) (b)

Figure 8. Distributions of the total power consumption from two angles: (a) the distributions satisfying
the constraint of indoor temperatures (b) all the distributions.
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Figure 9. Distributions of the total power consumption for twenty values along z axis.

Finally, the computation time is compared in Table 4. As expected, the interior-reflective Newton
algorithm is the quickest, but its local optimal result is not acceptable. The proposed algorithm
takes about the half computing time of the GA algorithm. As a comparison, the serial grid search
algorithm takes 891,000 s (each grid search spends about 0.0139 s), which is more than 1300 times
of the proposed algorithm. Thus, it is very necessary to do the grid search in a parallel manner.
In summary, the proposed algorithm is able to guarantee a good optimization solution within an
acceptable computing time.

4.3. Optimization Result Validation

This subsection provides experiments to validate the optimization results achieving the minimal
power consumption.

Real-time experiments are implemented under the same experimental conditions as the ones for
estimating HVAC model coefficients. Figure 10 shows the input variables in x of the experimental
HVAC system. Multiple operating points are testified for the comparison purpose. The last constant
parts of x in Figure 10 are associated with the optimal operating point from the proposed algorithm in
Table 4. Measured output variables are compared with estimated counterparts from the HVAC model
using model coefficients in (12)–(15). The consistency between the measured and estimated output
variables in Figure 11 says that the estimated HVAC model is accurate. As expected, Ptotal achieves
the smallest value at the last part in Figure 11f. The actual value of Ptotal is equal to 2509, with a small
deviation ((2509–2374.1)/2374.1 = 5.7 %) from the expected value 2374.10 in Table 4. This is due to a
fact that the experimental conditions cannot be controlled the same as the assumed ones; in particular,
the outdoor temperature Tout fluctuates around 30◦. Despite such a small deviation, the experiments
clearly support the validity of the proposed algorithm in terms of finding an optimal operating point
to achieve the minimal power consumption.
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Figure 10. The measured input variables for validating optimization results: (a) RSA, (b) RCW ,
(c) RCHW , (d) Tout and (e) Dout.
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Figure 11. The measured (blue dash) and estimated (red solid) output variables for validating
optimization results: (a) PSA, (b) PCW , (c) PCHW , (d) Pchiller and (e) Tinp, as well as the total power
consumption (f) Ptotal = Pchiller + PCHW + PCW + 2PSA.
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5. Conclusions

This paper presented a parallel grid search algorithm to find an operating point achieving the
minimal power consumption for experimental HVAC systems. A multidimensional, nonlinear and
non-convex optimization problem subject to constraints was formulated based on a mathematical
model of the experimental HVAC system. By exploiting Graphics Processing Units, the optimization
problem was parallelized to simultaneously compute optimization loss functions for different solutions
in a searching grid. The proposed algorithm provided the entire solution space containing all values of
the loss functions corresponding to all operating points in the searching grid. The optimal solution
was obtained as the one having the minimum loss function and satisfying the required constraints.
Thus, the main advantage of the proposed algorithm was that the obtained optimal solution was
known with evidence to be the best one subjected to current resolutions of the searching grid.
The proposed algorithm was validated in experimental studies and compared with two existing
algorithms. In particular, the small deviation between the experimental and estimated results
demonstrated that the proposed algorithm indeed found the optimal operating point to achieve
the minimal power consumption.

As one future work, it is necessary to consider a non-constant outdoor temperature Tout.
The HVAC model in (6) has considered Tout in the components f1 and f3. The computational time
of the proposed algorithm is about 11 minutes as given in Table 4. Hence, if Tout is changing not too
quickly, then it is ready to implement the proposed algorithm for different values of Tout. The selection
of sampling periods is another future work. A higher sample period reduces the computational
time because fewer data samples are involved in optimization. However, it may deteriorate the
optimization accuracy, because noises are omnipresent in the collected data samples, and the negative
noise effects will be larger by exploiting fewer data samples in estimating the HVAC model parameters
and calculating the optimal operating point.
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Abbreviations

The following abbreviations are used in this manuscript:

RCHW chilled water pump speed
RCW cooling water pump speed
RSA cooling coil fan speed
TCHWS chilled water supply temperature
TCHWR chilled water return temperature
TCWS cooling water supply temperature
TCWR cooling water return temperature
TSA supplied air temperature through the cooling coil
Tin indoor temperature
Tout outdoor temperature
Din indoor humidity
Dout outdoor humidity
Pchiller power consumption of the chiller
PCHW power consumption of the chilled water pump
PCW power consumption of the cooling water pump
PSA power consumption of the cooling coil fan
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