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Abstract: In rooms with underfloor heating (UFH), local on–off controllers most often regulate the air
temperature with poor accuracy and energy penalties. It is known that proportional–integral (PI)
controllers can regulate most processes more precisely. However, hydronic UFH systems have long
time constants, especially in low-energy buildings, and PI parameters are not easy to set manually.
In this work, several potential PI parameter estimation methods were applied, including optimizing
the parameters in GenOpt, calculating the parameters based on simplified models, and tuning the
parameters automatically in Matlab. For all found parameter combinations, the energy consumption
and control precision were evaluated. Simpler methods were compared to the optimal solutions to
find similar parameters. Compared with an on–off controller with a 0.5 K dead-band, the best PI
parameter combination found was with a proportional gain of 18 and an integration time of 2300 s,
which could decrease the energy consumption for heating by 9% and by 5% compared with default
PI parameters. Moreover, while GenOpt was the best method to find the optimal parameters, it
was also possible with a simple automatic test and calculation within a weekend. The test can be,
for example, 6-h setbacks applied during the nights or weekend-long pseudo-random changes in the
setpoint signal. The parameters can be calculated based on the simplified model from these tests
using any well-known simple method. Results revealed that the UFH PI controller with the correct
parameters started to work in a predictive fashion and the resulting room temperature curves were
practically ideal.

Keywords: IDA ICE; building simulation; intermittent heating; model predictive control (MPC); heat
pumps; proportional–integral–derivative (PID) control; thermostats

1. Introduction

The change towards nearly zero-energy buildings (nZEBs) and renewable energy sources influences
the technologies used for heating and its control [1,2]. The intermittent production of renewable
electricity calls for flexibility in all consumers, including buildings [3]. Space heating is responsible for
up to 70% of the final energy demand in residential buildings [4]. Therefore, it has a high potential
for flexibility. In modern buildings, the use of heat pumps has intensified [5]. Only electricity-based
heating is relevant to the power grid, therefore, heat pumps are a clear target.

To be exploited when the grid needs it, heat pumps should use an electricity price or other signal
for optimizing their performance. Some of the heat pumps already optimize their behaviour according
to the price. As one solution to improve the flexibility, model predictive control (MPC) can be used [6,7].
It enables the use of historic and forecasted data to predict the most optimal course of action. At the
occurrence of renewed data, the optimization can be corrected. For an MPC for a single-family house,
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the input signal is, for example, the electricity price or other signal from the grid and the output of the
optimization are the air temperature setpoints of the rooms [3].

The setpoints in rooms have to be tracked by room-based controllers, such as thermostats or
proportional–integral–derivative (PID) controllers, as the supervisory control can deal with optimization
but not with the local fast changes [8]. PID is commonly known to be one of the best and easiest
feedback controllers for any process. For buildings, as a relatively slow system, the derivative part
is usually dropped and PI controllers are used instead. However, choosing improper PID gains
(parameters) could result in making the whole system unstable. Therefore, designers and researchers
often turn to optimal or predictive solutions [9].

However, advanced solutions are not easy to implement and the need for robust and reliable
solutions with minimal human interaction is evident. [10,11]. To simplify or avoid technicians’ inputs
to the systems, the control algorithms can be tested in realistic environments [12]. Also, building
blocks have been developed to be compatible with detailed modelling so that engineers can do the
tuning. However, the process is still not fully automated [13]. Auto-tuning of PID controllers for
heating, cooling, and ventilation plants have been described both several decades ago [14–16] and
more recently [17]. If there is enough computational power, artificial neural network models could
theoretically tune their PID parameters [18].

Self-learning PI controllers are already commonly available for radiators in new buildings.
As radiators are also installed in public and commercial buildings, there is a lot of interest and
financial capability to develop better-performing solutions for these environments. In homes, hydronic
underfloor heating (UFH) has become more popular, being a low-temperature solution that matches
with heat pumps in nZEBs. For hydronic underfloor heating, even in modern buildings, only simple
thermostats with a dead-band of at least 0.5 K are often used. However, using UFH with a thermostat,
the air temperatures fluctuates significantly and, therefore, the users can easily raise the setpoints to
avoid lower levels and to meet their comfort limits. This ends up in a higher energy consumption.

Control of underfloor heating as a slow system with a high thermal mass is a debated question,
where good solutions have not been found yet. Some manufactures offer sophisticated self-learning
controls, while on–off is likely the most common implementation in practice, and in some studies,
self-regulating properties (no-control) have shown similar performance with more sophisticated control
solutions [19]. The long time constant of UFH is even increased by a low supply temperature from
heat pumps and this is due to the small losses in well-insulated nZEBs with heat recovery ventilation.
This means that setting PI parameters manually by trial and error, which is the common practice for PI
tuning, would take a lot of time. For self-tuning controllers, simple tests would be needed but also
these can be too time-consuming.

When the gains are optimized, PID control can save energy in UFH control compared with the
standard on–off control [20]. However, the optimal parameter values are usually not revealed. There
is almost no previous published data on PI parameter values for UFH, with rare exceptions [21].
Furthermore, the effect of different parameters has not been analyzed for UFHs. However, the effects
of PI parameters have been analyzed for radiators, as the heating circuits are, in reality, often not tuned
and there is a lot of potential for energy saving [22]. Tuning radiator PID parameters with machine
learning has shown a 32% reduction in heating energy consumption compared with Ziegler–Nichols
tuning [23]. The current situation shows that while PID and on–off control waste energy, more
advanced solutions on the market do not ensure comfort [24]. With quality tuning, PID could both
reduce wasting energy and ensure comfort. The parameter optimization for UFH has been performed
in extensive simulations [20], but it remains unknown whether it is possible to obtain the optimal
parameters with shorter tests.

Therefore, the aim of this work is two-fold. Firstly, to determine how UFH control can be improved
by the application of PI parameters specifically derived for underfloor heating in nZEB with various
tests and methods. Secondly, to find whether it is possible to determine the PI parameters which
perform close to optimal, when using short tests and simple methods. This work estimates the PI
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parameters for UFH in nZEB and analyzes their effect on the energy performance and indoor air
temperature of the building. PI performance is compared with a traditional thermostat’s performance
in the same situation. Both an accurate temperature tracking performance and a considerable energy
saving compared with conventional control are expected. The results may be utilized in the design
of UFH systems with accurate temperature control and energy savings compared with conventional
UFH systems.

2. Materials and Methods

2.1. The Building

The work is based on a test building at TalTech University campus, which is described in detail in
several previous publications [25–27]. Two almost identical rooms with a floor area of 10.4 m2 were
analyzed, except that one of them (Room 6 or R6) has two 4 m2 windows facing south and west, while
the windows of the other (Room 5 or R5) face north and west. The floor plan of the building is shown
in Figure 1 with the two test rooms highlighted with red rectangles. Previously, the test house model in
IDA ICE 4.8 software [28] was calibrated against measured air temperatures in the test room R5 during
temperature setback cycles with varying durations [27]. As a result, the heat losses and thermal mass
of the room structures are adequately defined in the model. This model was used for the simulations in
the current work. In the simulations, all of the other rooms were heated constantly with ideal heaters
to the setpoint of 21 ◦C.
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Figure 1. Layout of the test building; the two test rooms are shown in red rectangles.

The building has wooden-frame walls, a wooden-frame roof, and concrete floors with a crawl
space below. The total heat-up time constant for the rooms is around 85 h and the effective time
constant for temporary setbacks is around 12 h [27]. The absolute cool-down time constant of one test
room is around 24 h when the other rooms are heated constantly. The time constant for the whole
building cool-down is ca. 100 h. The time constants are long mainly due to the concrete floor and
highly insulated building envelope. The values were confirmed by the experimental data presented
in [27].

2.2. Outline of the Work

The PI parameters were estimated for the two test rooms in several different ways. Firstly, they
were optimized in GenOpt with the aim of minimal setpoint tracking errors both for the constant
and variable setpoints (Section 2.5). Secondly, they were calculated and estimated using simplified
models. The data used for the model fitting are described in Section 2.3 and the model fitting process
is described in Section 2.4. The models were used to either autotune the parameters in Matlab or to
calculate the parameters using well-known methods such as AMIGO, SIMC, and Cohen–Coon. Both
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of these approaches are also clarified in Section 2.5. The performance of all the gained parameters
was cross-checked in both rooms over the whole heating period. The analysis is described in detail in
Section 2.6.

2.3. Input Data

All the data used for the PI parameter calculations are summarized in Table 1. In this section, only
the grey area is described, the rest is tackled in the following sections. Here, the data from [27] were
used, where the authors performed temperature setbacks with different lengths in the test building.
The air temperature during setbacks with durations of 2 days and 3 days was measured in room 5,
where the temperature setpoint was normally kept at 21 ◦C and during the setbacks was lowered
to 18 ◦C. In the calibrated IDA ICE model, shorter setbacks of 1, 3, 6, 12, and 24 h were simulated
using a constant outdoor temperature of 0 ◦C, with no solar and internal gains. Between the setbacks,
the initial temperature of 21 ◦C was stabilized. Without solar gains, the two test rooms are equivalent
and therefore, the PI parameters estimation is based on only one of them.

Table 1. Overview of the input data for the model calculation (grey area) and optimization as well as
the methods for getting the proportional–integral (PI) parameters.

Climate Setpoint Room Source Estimation
Basis Method

Actual 2-3-day (long)
setbacks R5 Measured Simplified

model
Calculation methods +

tuning in Matlab

Constant Shorter
setbacks R5/R6 (equal) Simulated Simplified

model
Calculation methods +

tuning in Matlab

Constant Infinite/ideal
step R5/R6 (equal) Simulated Simplified

model
Calculation methods +

tuning in Matlab

Estonian TRY PRBS R5 and R6 Simulated Simplified
model Calculation methods

Estonian TRY Constant R5 and R6 Simulated Optimization GenOpt

Estonian TRY Variable
(price-based) R5 and R6 Simulated Optimization GenOpt

In addition, an ideal-like step test was simulated with the same constant outdoor conditions. A
step from no heating to full power heating was performed. The simulation period was prolonged for
so long that the stability of the indoor air temperature was achieved both before and after the step.
This meant two months in simulation to stabilize at the balance temperature, and one month after the
step for reaching a steady state.

Additionally, simulations with Estonian test reference year (TRY) [29] and pseudo-random binary
signal (PRBS) as setpoints were used. For the PRBS temperature setpoint, the zero level was set on
18 ◦C and the maximum level on 24 ◦C. The simulations were done for two separate weeks, one in
March and one in February:

• A sunny week with moderate temperature (19–25.03);
• A cold week with almost no sun (29.01–04.02).

The model fitting was done both on the entire weeks and only on the weekends of these weeks
(12 p.m. Friday to 12 p.m. Sunday).

For the optimization (the last two rows in Table 1), the same two weeks of Estonian TRY were
used as well as the whole heating period from 1 October to 30 April. The setpoints for the optimization
cases are the same as used for the evaluation and are described in Section 2.6.
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2.4. Model Fitting

A simplified process model of the system is needed to use most of the PI parameter calculation
methods. Based on the generated input data, a first order process model with a time delay was fitted.
Therefore, the temperature response of an input step change is

θ(t) = Kp

(
1− e−

t−L
T

)
+ θ(0)e−

t−L
T (1)

where θ(t) is room air temperature in ◦C at time t seconds after the step, θ(0) is the initial temperature
before the step, Kp is the process gain (unitless), T is the time constant, and L is the time delay, both in
seconds. The model fitting was performed in Matlab using System Identification Toolbox [30].

2.5. Estimating PI Parameters

The PI parameters K and Ti were estimated, where K is the proportional factor and Ti is the
integration time of the integral part of the PI in its ideal form:

u(t) = K
(
E +

1
Ti

∫
Edt

)
(2)

where u is the control signal (unitless) and E is the difference between the setpoint and measured air
temperature in ◦C that is feedback to the control. For all the cases in Table 1, the PI parameters were
estimated by one or more of the following methods:

1. Optimized using GenOpt;
2. Tuned in Matlab/Simulink;
3. Calculated from an applicable simple method.

In the optimization method, the PI parameters were optimized in GenOpt using a hybrid GPS
algorithm [31]. The optimization was carried out for the three different periods described previously
and two different setpoint profiles, which are also used for the evaluation and are described below in
Section 2.6. The objective of the optimization was to minimize the average absolute difference between
the setpoint temperature and the simulated temperature.

In the second method, the PI parameters were auto-tuned in Matlab®/Simulink for the previously
fitted simplified models (described in Section 2.4). The tuning was performed aiming for a short rise
time (speed) and overshoot of no more than 5% of the desired temperature increase.

In the third method, all the models that had been fitted based on the different input data were
used to calculate the PI parameters. Three widely known methods—Cohen–Coon, Skogestad IMC
(SIMC), and AMIGO—were used for that. The PI parameters K and Ti are calculated according to these
methods as follows [32]:

Cohen–Coon (CC): K = 0.9·
(
1 + 0.092· τ1−τ

)
/ (3) Ti = 3.3−3τ

1+1.2τL (4)
Skogestad IMC (SIMC): K = T /

(
2KpL

)
(5) Ti = min(T; 8L) (6)

AMIGO: K = 0.15
Kp

+
(
0.35− L·T

(L+T)2

)
·

T
KpL (7)

Ti = 0.35L +
13LT2

T2+12LT+7L2
(8)

where Kp, L and T are the parameters from the fitted models with the general representation in
Equation (1). The parameters a and τ are unitless parameters:

a =
(
KpL

)
/T (9)

τ = L/(L + T) (10)
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2.6. The Evaluation Tests

All the estimated PI parameter combinations were tested in simulations in both test rooms.
The accuracy of the setpoint tracking was assessed on both the constant and variable setpoints.
The constant setpoint was chosen to be 21 ◦C and the variable setpoint was calculated from price
data 2017–2018 [33], based on the simple algorithm given in [34] that does not perform the best for
their purpose of load shifting but gives us an hourly changing setpoint profile. In the price-based
control, the air temperature setpoint is changed hourly between 20, 21, and 24 °C. The lower two
levels are meant for comfort and have to be met at all times, the highest level is implemented for load
shifting and does not need to be tracked. All evaluations were done for the whole heating period (01
October–30 April). All combinations of PI parameters, both rooms, and both setpoint profiles were
evaluated based on:

• The average absolute error (AAE) of the air temperature from the setpoint;
• The heating energy consumption per square meter of the floor area.

For the energy consumption comparison, it is important that no parameter combinations would
result in temperatures lower than the given comfort setpoints. In most cases, this was not achieved
and, therefore, the setpoints had to be shifted. The goal was to achieve temperatures equal or above
the setpoint for at least 97% of the time, as suggested in the thermal comfort standard EN 16798-2 [35].
Based on the initial simulations, cumulative temperature graphs were generated. In the constant
setpoint case, the setpoint was shifted exactly as much as the cumulative graph was, below the setpoint
at 3% of the time. For the variable setpoints, shifts for both the two 20 ◦C and 21 ◦C setpoints were
calculated. The 3% of the 20 ◦C was at 1.3% of the total time and for the 21 ◦C setpoint at 45.2% of the
total heating period length. The maximum of the shifts calculated for these two points was applied to
the whole profile.

2.7. Benchmarks

The simulation software IDA ICE’s default PI parameter values K = 0.3 and Ti = 300 s were used
for the benchmark simulations. Furthermore, on–off controls with four different dead-band widths
were evaluated for the comparison. A modern one with a dead-band of 0.5 ◦C was used, but also
close to ideal versions, with dead-bands of 0.16 ◦C and 0.05 ◦C and a conservative one with a 1 ◦C
dead-band, were used as well.

2.8. PI Implementation in IDA ICE and PI Mechanics

As the PI controller can be implemented in various formats, the implementation in IDA ICE is
shown in Figure 2. The example code in Figure 2A is modified for the case where error filtering is
turned off, the mode is heating, and the conversion unit equals 1. The parameter tt, the tracking time,
is set to 30 s.

The hilimit and lolimit are the limits for the PI output signal. In this work, the PI output signal is
the fraction of the nominal mass flow to the UFH and is, therefore, limited from 0 to 1. In Figure 2B,
an increase in the sample air temperature over the setpoint, i.e., due to solar gains, can be observed.
In Figure 2C,D, the calculation of the script can be followed. The lines are colored according to the
variable text colors in the script.

In Figure 2C, it can be observed that, even though the temperature is over the setpoint between
3 a.m. and 5 a.m. (Figure 2B), the PI signal is not zero. It only gets to zero when the integral part also
decreases so much so that the sum of the integral and error parts is less or equal to zero. Although the
OutSignal is limited, the negative values of OutSignalTemp are still used for the calculation. This enables
the effect, which looks like prediction in some cases. This effect is further discussed in Section 3.3.



Energies 2020, 13, 2068 7 of 20

Energies 2020, 13, x FOR PEER REVIEW 6 of 21 

 

and does not need to be tracked. All evaluations were done for the whole heating period (01 October–
30 April). All combinations of PI parameters, both rooms, and both setpoint profiles were evaluated 
based on:  

• The average absolute error (AAE) of the air temperature from the setpoint;  
• The heating energy consumption per square meter of the floor area. 

For the energy consumption comparison, it is important that no parameter combinations would 
result in temperatures lower than the given comfort setpoints. In most cases, this was not achieved 
and, therefore, the setpoints had to be shifted. The goal was to achieve temperatures equal or above 
the setpoint for at least 97% of the time, as suggested in the thermal comfort standard EN 16798-2 
[35]. Based on the initial simulations, cumulative temperature graphs were generated. In the constant 
setpoint case, the setpoint was shifted exactly as much as the cumulative graph was, below the 
setpoint at 3% of the time. For the variable setpoints, shifts for both the two 20 ℃ and 21 ℃ setpoints 
were calculated. The 3% of the 20 ℃ was at 1.3% of the total time and for the 21 ℃ setpoint at 45.2% 
of the total heating period length. The maximum of the shifts calculated for these two points was 
applied to the whole profile. 

2.7. Benchmarks 

The simulation software IDA ICE’s default PI parameter values K = 0.3 and Ti = 300 s were used 
for the benchmark simulations. Furthermore, on–off controls with four different dead-band widths 
were evaluated for the comparison. A modern one with a dead-band of 0.5 ℃ was used, but also close 
to ideal versions, with dead-bands of 0.16 ℃ and 0.05 ℃ and a conservative one with a 1 ℃ dead-
band, were used as well. 

2.8. PI Implementation in IDA ICE and PI Mechanics 

As the PI controller can be implemented in various formats, the implementation in IDA ICE is 
shown in Figure 2. The example code in Figure 2A is modified for the case where error filtering is 
turned off, the mode is heating, and the conversion unit equals 1. The parameter tt, the tracking time, 
is set to 30 s. 

A. 

 
Energies 2020, 13, x FOR PEER REVIEW 7 of 21 

 

B. 
 
 
 
 
 

C. 
 
 
 
 

D. 
 

 

Figure 2. PI implementation in IDA ICE and example signals. In A, variables in the script are colored 
after each line it is referred where the example signals are visualized. Lines in B, C, and D graphs use 
the same color-coding. 

The hilimit and lolimit are the limits for the PI output signal. In this work, the PI output signal is 
the fraction of the nominal mass flow to the UFH and is, therefore, limited from 0 to 1. In Figure 2B, 
an increase in the sample air temperature over the setpoint, i.e., due to solar gains, can be observed. 
In Figure 2C, and 2D, the calculation of the script can be followed. The lines are colored according to 
the variable text colors in the script.  

In Figure 2C, it can be observed that, even though the temperature is over the setpoint between 
3 a.m. and 5 a.m. (Figure 2B), the PI signal is not zero. It only gets to zero when the integral part also 
decreases so much so that the sum of the integral and error parts is less or equal to zero. Although 
the OutSignal is limited, the negative values of OutSignalTemp are still used for the calculation. This 
enables the effect, which looks like prediction in some cases. This effect is further discussed in section 
3.3.  

3. Results 

3.1. Found Simplified Models 

The simplified model of the system that is needed for the parameter calculation was estimated 
for 16 different cases. All three parameters of the gained models varied between all cases. The used 
cases and exact parameter values are included in Table 2 with parameter values also visualized in 
Figure 3. The process gain (Kp) has two clearly different orders and altogether three different levels. 
The values were around 1 for all cases where the PRBS signal was used as the setpoint and were 
much larger for other cases. For the ideal step and measured setbacks, the Kp value was around 20, 
for all other setback cases, around 40.  

The time delay (L) values for the PRBS cases had around a 100 times difference between the 
March week and February week values in R5, and the same difference was larger than 1000 times in 
R6, the southern room with more solar gains. L was smaller than 10 seconds for the two shortest 
setbacks, between 10 and 30 s for the February PRBS tests in R6, and larger than 100 in all other cases. 

20

21

22

23

24

25

21/03 00:00 21/03 12:00 22/03 00:00 22/03 12:00

Te
m

ep
ra

tu
re

 (°
C

) SetPoint Measure

-1.2

-0.6

0

0.6

1.2

21/03 00:00 21/03 12:00 22/03 00:00 22/03 12:00

K*Integ K*E OutSignal OutSignalTemp

-9
-6
-3
0
3
6
9

21/03 00:00 21/03 12:00 22/03 00:00 22/03 12:00

E/Ti Integ' (OutSignal - OutSignalTemp)/tt

Figure 2. PI implementation in IDA ICE and example signals. In (A), variables in the script are colored
after each line it is referred where the example signals are visualized. Lines in (B–D) graphs use the
same color-coding.

3. Results

3.1. Found Simplified Models

The simplified model of the system that is needed for the parameter calculation was estimated for
16 different cases. All three parameters of the gained models varied between all cases. The used cases
and exact parameter values are included in Table 2 with parameter values also visualized in Figure 3.
The process gain (Kp) has two clearly different orders and altogether three different levels. The values
were around 1 for all cases where the PRBS signal was used as the setpoint and were much larger for
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other cases. For the ideal step and measured setbacks, the Kp value was around 20, for all other setback
cases, around 40.

Table 2. List of all used models and their parameters.

Based on
Room

Model
Number

Model
Group Model Source Kp L (Seconds) T (Seconds)

R5 & R6 1 Longer step Ideal step 21.842 476 27,892
2 Setbacks 24-h setback at 0 °C 41.063 141.12 23,652
3 Setbacks 12-h setback at 0 °C 42.649 410.58 30,141
4 Setbacks 6-h setback at 0 °C 44.717 156.96 38,648
5 Setbacks 3-h setback at 0 °C 42.664 9.66 35,191
6 Setbacks 1-h setback at 0 °C 41.446 3.9 42,130

R5 7 Longer step 2-day measured
setback 24.256 720 33,720

8 Longer step 3-day measured
setback 21.472 780 41,820

9 PRBS sL 2-day PRBS in
February 1.0123 218.4 27,152

10 PRBS sL 1-week PRBS in
February 1.03 286.8 50,122

11 PRBS lL 2-day PRBS in March 1.0555 2034 48,950

12 PRBS lL 1-week PRBS in
March 1.0599 2226.6 51,845

R6 13 PRBS sL 2-day PRBS in
February 1.03 25.8 17,237

14 PRBS sL 1-week PRBS in
February 1.042 12.6 34,930

15 PRBS lL 2-day PRBS in March 1.0973 3996 41,990

16 PRBS lL 1-week PRBS in
March 1.1035 50,084 4737
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Table 2. List of all used models and their parameters. 

Based 
on 

Room 

Model 
Number 

Model 
Group Model Source Kp 

L 
(seconds) 

T 
(seconds) 

R5 & R6 1 Longer step Ideal step 21.842 476 27,892 
 2 Setbacks 24-hour setback at 0 ℃ 41.063 141.12 23,652 
 3 Setbacks 12-hour setback at 0 ℃ 42.649 410.58 30,141 
 4 Setbacks 6-hour setback at 0 ℃ 44.717 156.96 38,648 
 5 Setbacks 3-hour setback at 0 ℃ 42.664 9.66 35,191 
 6 Setbacks 1-hour setback at 0 ℃ 41.446 3.9 42,130 

R5 7 Longer step 2-day measured setback 24.256 720 33,720 
 8 Longer step 3-day measured setback 21.472 780 41,820 
 9 PRBS sL 2-day PRBS in February 1.0123 218.4 27,152 

 10 
 

PRBS sL 
1-week PRBS in 

February 1.03 286.8 50,122 
 11 PRBS lL 2-day PRBS in March 1.0555 2034 48,950 
 12 PRBS lL 1-week PRBS in March 1.0599 2226.6 51,845 

R6 13 PRBS sL 2-day PRBS in February 1.03 25.8 17,237 

 14 
 

PRBS sL 
1-week PRBS in 

February 1.042 12.6 34,930 

Figure 3. Log-value of all model parameters shown in Table 2.

The time delay (L) values for the PRBS cases had around a 100 times difference between the
March week and February week values in R5, and the same difference was larger than 1000 times in
R6, the southern room with more solar gains. L was smaller than 10 s for the two shortest setbacks,
between 10 and 30 s for the February PRBS tests in R6, and larger than 100 in all other cases. There was
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ranging from 140 to 4000 (around 2 m to 1 h) and in one case (1-week PRBS in March for R6, model 16)
it was over 50,000 s (around 14 h).

The T values varied least of the parameters, i.e., between 10,000 and 100,000 s (between around 4
and 15 h). Only in the same model 16 case, where an extra-large L value occurred, the T value was a lot
lower at a bit less than 5000. So exceptionally, for this model, L is larger than T.

Based on mostly the Kp and L values, the models are divided into four groups, shown in Table 2.
The setbacks and longer step groups are self-evident from above. The PRBS models are divided
into models with a short L (PRBS sL) and a long L (PRBS lL). These groups will be used below
for visualization.

3.2. Identified PI Parameters

In total, 68 PI parameter value pairs were obtained. All the parameter values are included in
Appendix A, Table A1. However, all the parameter combinations are also visualized in Figure 4a, where
each point on the graph is a parameter combination. The scales are the logarithms of the parameter
values with base 10. The graphs in Figures 4b and 5 follow the same logic. In Figure 4a, the parameter
estimation method is shown by the marker shape and the model group is shown by the marker color.
In the logarithmic scales, the tendency in the parameter estimation results seems to be roughly linear,
so the lower the integration time the higher the proportional gain.

Energies 2020, 13, x FOR PEER REVIEW 9 of 21 

 

 15 PRBS lL 2-day PRBS in March 1.0973 3996 41,990 
 16 PRBS lL 1-week PRBS in March 1.1035 50,084 4737 

3.2. Identified PI Parameters 

In total, 68 PI parameter value pairs were obtained. All the parameter values are included in 
Appendix A, Table A. However, all the parameter combinations are also visualized in Figure 4a, 
where each point on the graph is a parameter combination. The scales are the logarithms of the 
parameter values with base 10. The graphs in Figure 4b and Figure 5 follow the same logic. In Figure 
4a, the parameter estimation method is shown by the marker shape and the model group is shown 
by the marker color. In the logarithmic scales, the tendency in the parameter estimation results seems 
to be roughly linear, so the lower the integration time the higher the proportional gain.  

For the very small proportional gain, the integration time varies significantly from this otherwise 
linear behavior in the log10-log10 scale. The reason for this is depicted partly in Figure 5a. As can be 
seen, this covers the four cases calculated or optimized for March. Actually, these were all achieved 
for Room 6. This means that the solar peaks have been severe and almost no heating was needed. 
Therefore, these cases resulted in obscure parameters.  

The clear separation between parameters is evident. The two sets of parameters with both blue 
and red (optimal) results made up one group and both green ones the other. This is also the difference 
in outdoor conditions, as can be seen in Figure 5a. The first group was generated at dynamic outdoor 
temperatures and realistic solar irradiation, while the second group bordered constant outdoor 
temperatures and no solar radiation. Here, also the separation between the March and Jan/Feb 
periods is clear, so it can be assumed that more solar gains causes the K parameter to be smaller and 
Ti to be longer. For the optimal cases, the combinations closer to the blue ones are optimized for the 
variable setpoint, the lower values for the constant setpoint.  

In Figure 4b, the parameter combinations, which do not achieve the needed setpoints in Room 6 
for at least 97% of the time (with a slack of 0.05 °C), are colored black. Both the one constant and two 
variable setpoint levels are checked and the coloring shows if any of the three are violated. If the 
graph would be for R5, all of the points, except the one with a dashed circle around it, would be black. 
This means that only one parameter combination would achieve the required temperatures in R5, if 
the setpoints were not shifted, as it was described in Section 2.6. 

In Figure 5b, all the K-Ti pairs are colored by the log10 (K/Ti) value. This logarithm is further 
used for describing the pairs, as this is a clear indicator whether the pair is in the lower right or upper 
left corner of the log10-log10 graph. 

 

 
Figure 4. All PI parameter value pairs (K, Ti) on log-valued axes colored based on the method, in (a) 
the default black circle with cross is the PI parameters pair used in IDA ICE by default, in (b) the black 
points are the ones that would not result in acceptable temperatures for R6 without setpoint shifting. 

R5 
(a) (b) 
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points are the ones that would not result in acceptable temperatures for R6 without setpoint shifting.
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Figure 5. Graph (a) shows the underlying climate data and graph (b) shows the log-ratio values of all
the PI parameter pairs. In (a), the constant climate is at 0 ◦C with no solar radiation, HP stands for
heating period and all the dates are covered in Section 2.



Energies 2020, 13, 2068 10 of 20

For the very small proportional gain, the integration time varies significantly from this otherwise
linear behavior in the log10-log10 scale. The reason for this is depicted partly in Figure 5a. As can be
seen, this covers the four cases calculated or optimized for March. Actually, these were all achieved
for Room 6. This means that the solar peaks have been severe and almost no heating was needed.
Therefore, these cases resulted in obscure parameters.

The clear separation between parameters is evident. The two sets of parameters with both
blue and red (optimal) results made up one group and both green ones the other. This is also the
difference in outdoor conditions, as can be seen in Figure 5a. The first group was generated at dynamic
outdoor temperatures and realistic solar irradiation, while the second group bordered constant outdoor
temperatures and no solar radiation. Here, also the separation between the March and Jan/Feb periods
is clear, so it can be assumed that more solar gains causes the K parameter to be smaller and Ti to be
longer. For the optimal cases, the combinations closer to the blue ones are optimized for the variable
setpoint, the lower values for the constant setpoint.

In Figure 4b, the parameter combinations, which do not achieve the needed setpoints in Room 6
for at least 97% of the time (with a slack of 0.05 ◦C), are colored black. Both the one constant and two
variable setpoint levels are checked and the coloring shows if any of the three are violated. If the graph
would be for R5, all of the points, except the one with a dashed circle around it, would be black. This
means that only one parameter combination would achieve the required temperatures in R5, if the
setpoints were not shifted, as it was described in Section 2.6.

In Figure 5b, all the K-Ti pairs are colored by the log10 (K/Ti) value. This logarithm is further used
for describing the pairs, as this is a clear indicator whether the pair is in the lower right or upper left
corner of the log10-log10 graph.

3.3. Setpoint Temperature Tracking and PI Output Signal Behaviour

Each parameter combination results in different air temperature profiles and PI output signal
profiles. There are four examples of the temperature and PI output profile combinations shown in
Figure 6 for the constant setpoint cases and in Figure 7 for the variable setpoint cases in Room 6. In both
figures, the Jan/Feb week is depicted on the left and the March week on the right. The parameter
combinations are chosen as the ones with minimum and maximum log10 ratios of the parameters,
the IDA ICE default combination, and the one which resulted in optimal energy consumption (see
Section 3.5). The combinations are ordered by the log10 ratio of the parameters with the minimum
ratio at the top and the maximum ratio at the bottom. The IDA ICE default combination is the second
(0.3/300) and the optimal is the third from the top (18/2300). Here, the parameter values were rounded
to two significant numbers.

In the first column of Figure 6, most of the controllers show results that suggest maintaining
a constant setpoint in the situation with no solar gains is an easy task. The small fluctuations are
largest when a very small proportional gain (K = 0.012 in Figure 6a) with a large integration time is
applied. This controller changes the signal too slowly, as its PI output signal in black shows. The signal
stays almost constant throughout the day and even throughout the week. Due to the same effect,
temperatures drop below the constant setpoint in March in Figure 6b and the setpoint tracking is poor
in the variable cases. The level at which the signal is constant depends on the season, as there is a clear
difference between February and March.
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The constant setpoint cases in Figure 6 show that 2400/42 manages to maintain the constant
setpoint the best. However, there is no significant difference for the variable setpoint cases. However,
the PI output signal in the same case changes most rapidly. Both a large proportional gain and relatively
small integration time contribute to this. Such switching reduces the life span of most of the devices,
so this would not be acceptable in practice. For the case with also a large proportional gain but with a
large integration time as well (18/2300), the signal is a bit smoother. In the long integration time cases,
the heating starts earlier and stops sooner than for the shorter integration time. It can be observed that
the PI signal turns on before the temperature lowers below the setpoint generating a prediction effect.
This is especially clear for 18/2300 during the March week.

The variable setpoint cases in February in Figure 7’s first column show that in cold weather with
no solar peaks, the 24 ◦C setpoint peaks were not reached due to the short duration of the setpoint
increase. Therefore, setpoint tracking during high setpoints is clearly not good but is also not required.
However, the PI signal is 1 during these times, which means the heater is fully on as is the aim for load
shifting. In this figure, again controllers 18/2300 and 2400/42 both maintain the lower setpoint well.
However, the latter is switching on and off often and has almost no other state. In March, the solar
peaks govern the temperatures. However, the second column of Figure 7 shows that the heating is
turned on as well.

All the cumulative profiles over the heating period are shown in Figure 8. For the PI signal, only
R6 is shown as the profiles look very similar for the two rooms. The switching behavior indicated
before is clearly dependent on the log10 ratio of the PI parameters. The higher the ratio, the more
abrupt the changes, as the cumulative graph indicates behaviors close to on–off signals. As shown in
Figure 9, a zoom-in on R6’s constant setpoint graph, the higher temperatures at the high-temperature
end are clearly dependent on the Ti value. The low-temperature end seems to be more dependent on
the K value. Therefore, the energy consumption of the parameter combination is mostly dependent
on the K value and avoiding over-heating at the disturbances is more dependent on the Ti value.
This effect was also observed in the analysis.
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Figure 9. (Left): Zoom-in on Figure 8’s lower temperature end of the constant temperature graph of
R6; (right): Zoom-in on the temperature end of the same graph.

3.4. Setpoint Shifting

It is clear, that some of the parameter combinations did not achieve the required temperature setpoint
and some resulted in higher temperatures above the setpoint. Especially at the high temperature end, there
was also a clear difference between rooms R5 and R6, as can be seen from Figure 8. This was caused by
the room orientations as the R6 faces south-west and gets more solar gains than the north-west orientated
R5. As declared in Section 2.6, the setpoints were shifted for all cases in the way that temperatures would
reach the required setpoint for at least 97% of the time. The shift values were different for R5 and R6
as well as for the constant and variable setpoint cases. As a result, all temperatures reached the given
setpoints at around 95–97% of the heating period. This accuracy was considered satisfactory. The shifts
are shown together with the energy consumption evaluation in Figure 10.
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3.5. Energy Performance and Total Setpoint Tracking Accuracy

The energy consumption results after setpoint shifting are shown in Figures 10 and 11. It is clear
that the variable setpoint cases consumed less energy. This is because the average room temperatures
were lower. The setpoints were also higher than the constant cases in some periods but coincidentally
the higher setpoint temperatures often occurred during the day and the lower setpoints occurred
during the night, so this does not influence heating energy use much. Also, the high setpoints were not
actually reached. In the constant temperature cases, a clear optimum emerged between the log10 ratio
of −3 and −1. This means that in optimal cases, the K value was 10 to 1000 times smaller than Ti.
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The horizontal lines in Figure 10 represent the shifted energy performance at the benchmark for
the on–off cases with different dead-bands. From top to bottom (yellow to blue) the corresponding
dead-bands are 1 K, 0.5 K, 0.16 K, and 0.05 K. The optimal PI parameter combinations result in a
lower energy consumption than even the lowest of the lines with an unrealistically small dead-band.
The commonly used dead-band of 0.5 K consumes 2–3 kWh/m2/year more energy than the PI cases
for the variable setpoint. For the constant setpoint, the lowest PI results are up to 7 kWh/m2/year or
9% lower than for the on–off with a 0.5 K dead-band, which, for example, in R6 is at 81 kWh/m2/year.
Omitting the extreme poorly performing cases, the total variation in energy consumption is more than
10 kWh/m2/year or 12% in the constant setpoint case.

Figure 11 shows the same data colored by the model group. The IDA ICE default parameter is at
one edge of the optimum range with exactly 1000 times difference. The energy consumption is already
around 5 kWh/m2/year or 5% higher on that edge compared with the optimal case. The parameters
optimized for setpoint tracking are also close to an optimal energy consumption. The PRBS sL group
performs well almost in all cases but not optimally, while in all other groups some combinations
perform poorly. The optimal range of parameters is shown in detail in Table 3. Most of the optimal
values were calculated using TRY climate data but the methods varied.
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Table 3. Optimal parameter combinations from log10 ratio from −3 (excluded) to −1. Ordered in
increasing energy consumption values for the R6 constant setpoint.

K Ti Model Method Climate Setpoint Room Total
Length

18 2300 - GenOpt TRY, Jan/Feb week variable R6 Inf
13 1500 - GenOpt TRY, March week constant R5 Inf
28 2800 - GenOpt TRY, March week variable R5 Inf
21 6200 11 Cohen-Coon TRY, March weekend PRBS R5 2 days
20 6700 12 Cohen-Coon TRY, March week PRBS R5 7 days
27 1500 - GenOpt TRY, Jan/Feb week constant R5 Inf
16 820 - GenOpt TRY, Jan/Feb week constant R6 Inf
32 1700 - GenOpt TRY, Jan/Feb week variable R5 Inf
5.2 510 4 Cohen-Coon Const 6-h setback equal 1.5 days

3.7 460 2 Cohen-Coon Const 24-h
setback equal 6 days

42 2700 9 AMIGO TRY, Jan/Feb weekend PRBS equal 2 days
27 650 - GenOpt TRY, March week constant R6 Inf
54 1900 - GenOpt TRY, heating period variable R5 Inf
2.8 1300 4 SIMC Const 6-h setback equal 1.5 days
59 3600 10 AMIGO TRY, Jan/Feb week PRBS R5 7 days
61 1800 9 SIMC TRY, Jan/Feb weekend PRBS R5 2 days
41 930 - GenOpt TRY, heating period constant R6 Inf
2.4 1500 1 Cohen-Coon Const Ideal step equal 60 days

2.0 1100 2 SIMC Const 24-h
setback equal 6 days

85 2300 10 SIMC TRY, Jan/Feb week PRBS R5 7 days
55 800 - GenOpt TRY, heating period constant R5 Inf
98 3200 - GenOpt TRY, heating period variable R6 Inf

1.6 1300 3 Cohen-Coon Const 12-h
setback equal 3 days

The AAE of the temperatures for rooms R5 and R6 are shown in Figure 12. The AAE is clearly
dependent on the room and setpoint but not on the parameter combination. The AAE is constantly at
0.5 K for R5 and around 0.7 for R6 in the variable setpoint cases. The accuracy here depends mostly on
the solar gains. For the constant setpoint case, the optimal region is everything, with a Ti lower than
104 and a K higher than 100.5. The error is around 0.2 K for all the simulations in R5, for R6 the error
ranges from 0.25 to 0.6 K, and in extreme cases to 1 K.
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4. Discussion

Different PI parameter estimation methods were applied on various periods and control profiles.
An optimal region of the parameter ratio was determined where the energy consumption was the
lowest. Half of the parameter combinations in the optimal region for energy consumption were
found via GenOpt, although they were optimized for the minimal temperature setpoint tracking error.
Although most reliably well-performing, this approach is not always suitable in practice as it requires
an advanced model of the building. Therefore, it is practical that the other half of the parameter
combinations in the optimal region were found using only short tests and simple calculations.

For all these other methods, simplified models were identified. In the optimal region, all the tested
simplified methods were represented: Cohen–Coon, AMIGO, and SIMC. The results tuned in Matlab
were not represented, probably due to the chosen goal being speed for that methodology. The models
underlying these calculations were obtained from the week or weekend pseudo-random temperature
setpoint (PRBS) data or setbacks of 6, 12, or 24 h. It is clear that the longer the setback, the easier it
is to identify a simple model on it. This is probably the reason why the 1- and 3-h setbacks resulted
in less desirable parameters. Still, conducting 24-h setbacks would probably not be comfortable for
the occupants. Therefore, it is beneficial that 6-h setbacks could suffice. For example, these could
be conducted during the night when the outdoor conditions are less variable with no solar gains.
The suitable PRBS cases included both the January and March data, indicating that it is possible to get
quality parameters in various weather conditions.

The optimal parameter combinations resulted in an annual heating energy reduction of up to 9%
or 7 kWh/m2/year. The comparison of heat emitters and controllers in the European standard room
shows similar results with 5% to 10% savings for the PI controlled UFH compared with the on–off

control [20]. This does not compare to the 32% achieved for radiators in [23], however, the actual
difference is difficult to compare as the baselines are different. The reduction of 7 kWh/m2/year here
can be seen as highly significant as this can be achieved with only parameter correction, which does not
require intensive computation when the simple tests are applied. Accounting for the more expensive
thermostat head with variable parameters option, the payback time of this change is around 5 years.
This saving can be achieved without setpoint reductions, which means no penalty on comfort. On the
contrary, due to less fluctuation, comfort could even improve.

The methodology used here could be applied in any UFH system. In public and office buildings, a
detailed model often exists and optimization of the parameters could be possible. Due to the large floor
areas in these buildings, the absolute savings could be significant compared with the on–off control.
Even more evident would be the saving in outdoor UFH systems installed under garage runways or
stadiums to keep them clear from ice and snow.

Evidently, the parameter value results apply to the studied building, and future research can
determine possible variation of the parameters in buildings with a smaller or higher thermal mass,
insulation level, and maximum heating power. However, the wide range of well-performing parameter
combinations and the fact that the suitable region is the same for both the north and south facing rooms
provides an indication that the parameters from this region could be suited to different buildings as
well. This should be confirmed by future studies on the subject.
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5. Conclusions

Several combinations of the input data and PI parameter estimation methods were applied with
the aim to improve UHF temperature control, resulting in 68 different PI parameter combinations.
Based on the results and discussion above, most importantly concluded is that:

• For the first time in the scientific literature, it is shown that UFH can operate with determined PI
parameters similar to ideal control;

• A performance close to optimal could also be achieved by parameters achieved from shorter tests,
e.g., weekend pseudo-random setpoints, and 6- to 24-h setbacks which were shown to be suitable;

• The optimal PI parameters improved the room temperature control accuracy considerably, and
that the results show that the UFH PI control with the correct parameters started to work in a
predictive fashion and the resulting room temperature curves were practically ideal;

• The optimal PI parameters reduced the energy consumption for heating by up to 9%
(7 kWh/m2/year) in comparison with the on–off control (at around 80 kWh/m2/year) and by
5% in comparison with the default PI parameters;

• The variation amplitude of the heating energy needed using different estimated (not random)
parameters was more than 15 kWh/m2/year for the constant setpoint, which stresses the importance
of having the correct PI parameters;

• The optimal PI parameters included combinations with log10 (K/Ti) between −3 and −1, in these
combinations, the proportional gain K ranged from 2 to 100 and the integration time Ti from 500
to 6700 s, and thus higher gain and longer integration time values than are conventionally used
are recommended;

• For the variable setpoint, using the PI control had a similar effect to decreasing the dead-band
and the variation in the PI parameters did not have a significant further effect on the energy
consumption, except for when they were extremely poorly tuned;

• The average absolute error for the air temperatures from the setpoint was well below 0.5 K for the
constant setpoints, but above for the variable setpoints.
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Appendix A

Table A1. All obtained parameter values, which were not already shown in Table 3, sorted by log10
ratio from largest to smallest.

K Ti (s) Model Method Climate Setpoint Room Total Length
(Days)

2400 42 14 Cohen-Coon TRY, Jan/Feb week PRBS R6 7
235 13 6 Cohen-Coon Const 1-h setback equal 0.25

1300 100 14 SIMC TRY, Jan/Feb week PRBS R6 7
580 85 13 Cohen-Coon TRY, Jan/Feb weekend PRBS R6 2
930 170 14 AMIGO TRY, Jan/Feb week PRBS R6 7
130 31 6 SIMC Const 1-h setback equal 0.25
77 32 5 Cohen-Coon Const 3-h setback equal 0.75
91 52 6 AMIGO Const 1-h setback equal 0.25
320 210 13 SIMC TRY, Jan/Feb weekend PRBS R6 2
230 340 13 AMIGO TRY, Jan/Feb weekend PRBS R6 2
43 77 5 SIMC Const 3-h setback equal 0.75
30 130 5 AMIGO Const 3-h setback equal 0.75
150 940 10 Cohen-Coon TRY, Jan/Feb week PRBS R5 7
110 710 9 Cohen-Coon TRY, Jan/Feb weekend PRBS R5 2
1.9 2000 4 AMIGO Const 6-h setback equal 1.5

2.3 2500 8 Cohen-Coon Actual 3-day
measured R5 3

2 2300 7 Cohen-Coon Actual 2-day
measured R5 2

1.4 1800 2 AMIGO Const 24-h
setback equal 6

8.7 11,000 15 Cohen-Coon TRY, March weekend PRBS R6 2
11 16,000 11 SIMC TRY, March weekend PRBS R5 2
11 18,000 12 SIMC TRY, March week PRBS R5 7
7.2 18,000 11 AMIGO TRY, March weekend PRBS R5 2
7 20,000 12 AMIGO TRY, March week PRBS R5 7

1.3 3800 1 SIMC Const Ideal step equal 60

0.9 3300 3 SIMC Const 12-h
setback equal 3

1.1 6200 8 SIMC Actual 3-day
measured R5 3

1 5800 7 SIMC Actual 2-day
measured R5 2

0.9 5300 1 AMIGO Const Ideal step equal 60
4.8 32,000 15 SIMC TRY, March weekend PRBS R6 2

0.6 4700 3 AMIGO Const 12-h
setback equal 3

2.7 25000 15 AMIGO TRY, March weekend PRBS R6 2

0.7 8500 8 AMIGO Actual 3-day
measured R5 3

0.6 7700 7 AMIGO Actual 2-day
measured R5 2

0.81 16,000 1 tuned in Matlab Const Ideal step equal 60

0.83 20,000 7 tuned in Matlab Actual 2-day
measured R5 2

0.82 24,000 8 tuned in Matlab Actual 3-day
measured R5 3

0.82 24,000 2 tuned in Matlab Const 24-h
setback equal 6

0.41 32,000 3 tuned in Matlab Const 12-h
setback equal 3

0.41 34,000 5 tuned in Matlab Const 3-h setback equal 0.75
0.15 13,000 16 Cohen-Coon TRY, March week PRBS R6 7
0.43 40,000 6 tuned in Matlab Const 1-h setback equal 0.25
0.41 39,000 4 tuned in Matlab Const 6-h setback equal 1.5

0.043 4700 16 SIMC TRY, March week PRBS R6 7
0.16 18,000 16 AMIGO TRY, March week PRBS R6 7

0.012 15,000 - genopt TRY, March week variable R6 Inf
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