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Abstract: Currently, various types of superconducting power cables are being developed worldwide,
and research and development of a tri-axial high-temperature superconducting (HTS) power cable
are underway. The tri-axial HTS power cable reduces the amount of HTS wire due to its multilayer
structure, has high current characteristics, and has less loss than other superconducting cables.
However, since the radii of each phase are different, magnetic coupling makes it difficult to measure
power loss and analyze performance. This paper presents the results of the design and performance
analysis of a tri-axial HTS power cable. A prototype tri-axial HTS power cable was designed with a
rated power of 60 MVA, a rated voltage of 23 kV and a length of 6 m, and was tested by cooling to
77 K with liquid nitrogen. We analyzed the performance of the tri-axial HTS power cable in normal
conditions through a finite element method (FEM) simulation and experiment. The alternating current
(AC) loss of the tri-axial HTS power cable was calculated using a FEM program based on the Maxwell
equation, and the result was used to confirm the AC loss of the tri-axial HTS power cable prototype
measured by the electrical measurement method. In conclusion, in the current test of a tri-axial
HTS cable designed as 23 kV/60 MVA, the DC critical current was over 6000 A, the AC loss was
approximately 0.24 W/m, and the simulation and analysis design values were satisfied. The results of
this study will be effectively applied to commercial tri-axial HTS power cable development to be
installed in a real power system. This means that the actual tri-axial HTS cable has sufficient capacity
for rated current operation in the system where it will be applied, and the actual measurement of the
cable loss can be applied as an important factor in the design of the cooling capacity of the entire
superconducting cable, which consists of several kilometers.

Keywords: high temperature superconducting (HTS) cable; tri-axial HTS cable; AC loss

1. Introduction

High-temperature superconducting (HTS) cables are being developed, and have the advantage
of higher current densities as compared to conventional copper cables, as power demand increases
worldwide [1]. HTS cables are being studied in a variety of structures for applications in high-capacity
systems with low voltage and high current [2,3]. Especially in the case of coaxial-type HTS cable that
consists of multiple layers of one axis, superconducting wires can be reduced because a self-balancing
shielding layer is not necessary in three-phase equilibrium conditions, and thus it has a compact
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structure [4]. A tri-axial HTS power cable structure is determined by radius, pitch length, and winding
direction [5]. This structure is composed by taking into account the cross-sectional area that is sufficient
for fault current to flow, the insulation thickness according to the voltage level, and the amount of
superconducting wire according to the rated current [6]. Parameters, such as pitch length and winding
direction, which determine the structure of a tri-axial HTS power cable, affect the current distribution
of the cable [7]. The different radii between each phase and layer cause a non-uniform current in the
tri-axial HTS power cable [8]. The non-uniform current distribution consequently increases AC loss in
the cable and also degrades cable performance. AC losses can be minimized with a uniform current
distribution of each phase through proper structure design of the tri-axial HTS power cable [9,10].

This paper analyzes the cable performances through the design and fabrication of the 23 kV/60 MVA
class tri-axial HTS power cable. In addition, the design and performance verification of the tri-axial HTS
power cable was carried out through the production and measurement of laboratory scale 6-m-long
prototype cable. The tri-axial HTS power cable has a four-layer structure using YBCO superconducting
wire. Phase A consists of two layers to increase the operating current. The numerical, analysis-based,
impedance balancing algorithm can iteratively calculate the pitch length and winding direction to
minimize the unbalanced current. The AC loss of the designed tri-axial HTS power cable was simulated
using the finite element method (FEM) based on the Maxwell equation and E-J superconducting
characteristics, and the result was compared with the measured AC loss [11]. The characteristics of
the tri-axial HTS power cable were measured using electrical methods, and the performances of the
cables were evaluated by measuring the V-I characteristics and the AC losses of each phase of the
superconducting layer [12]. For the tri-axial HTS power cable, the critical currents of each phase were
measured under liquid nitrogen conditions at 77 K [13,14]. The measured AC loss of the tri-axial
HTS power cable was 249 mW/m, which is similar to the calculated result obtained using the FEM
program. The results of this study will be effectively applied to the development of commercial tri-axial
HTS power cable which will be installed in a Korea Electric Power Corporation (KEPCO) system.
KEPCO is promoting the first tri-axial HTS power cable system demonstration project in Korea, and for
this purpose, it has established a demonstration site of a connection between the substation and the
substation to transmit power. The purpose of this paper is to develop and verify the performance of
initial prototypes reflecting the conditions of on-site system power capacity (23 kV/60 MVA) and HTS
power cable systems for real-grid applications. The data through the design and experiment of this
prototype cable will be used as an important factor for the design of the actual system rated current
operation and the cooling capacity of the superconducting cable system.

2. Design of a Tri-Axial HTS Power Cable

2.1. Numerical Design of the Tri-Axial HTS Power Cable

Figure 1 shows the core structure of a 6-m-long tri-axial HTS power cable. The core of the cable
consists of two layers of phase A to achieve a rated current capacity. In this paper, a concentric support
made of glass fiber reinforced plastic (GFRP), instead of copper, was installed in the center of the cable
core to allow for only the superconducting layer performance to be measured. The insulation layer
between each phase of the cable was designed to maintain the voltage level. The detailed structures
and specifications of the tri-axial HTS power cable are shown in Tables 1 and 2. Design items are
numerically designed and structurally analyzed based on the radius, voltage, current, length, etc.
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2G HTS wire (S* Corp.) 
(to lamination) 

Width 4 ~ 4.2 mm 
Thickness 0.2 ~ 0.25 mm 

Min. DC Ic: 150 A@77 K (self-field) 

Insulation layers  
PPLP  

(Poly-Propylene Laminated Paper) Thickness: about 4 ~ 4.2 mm 

* HTS wire corporation of Korea. 

Table 2. Specifications of the tri-axial HTS power cable model. 

Items Values 
Voltage/capacity 23 kV/60 MVA 

Rated current per phase About 1500 Arms * (2200 Apeak *) 
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* Apeak: instantaneous value of the current. 
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Figure 1. Structure of the 6-m-long, tri-axial high-temperature superconducting (HTS) power cable.

Table 1. Structures of the prototype tri-axial HTS power cable model.

Structure Material Values

Former GFRP
(Glass Fiber Reinforced Plastics) Radius: about 16 mm

Conducting layers
(phase A, B, C)

2G HTS wire (S * Corp.)
(to lamination)

Width 4 ~ 4.2 mm
Thickness 0.2 ~ 0.25 mm

Min. DC Ic: 150 A@77 K (self-field)

Insulation layers PPLP
(Poly-Propylene Laminated Paper) Thickness: about 4~4.2 mm

* HTS wire corporation of Korea.

Table 2. Specifications of the tri-axial HTS power cable model.

Items Values

Voltage/capacity 23 kV/60 MVA
Rated current per phase About 1500 Arms * (2200 Apeak *)

Total cable length 6000 mm
Radius of each layer (phase A1/A2/B/C) 18.2 mm/18.4 mm/24.5 mm/29.1 mm

Design temperature 77.3 K (in liquid nitrogen)
Minimum DC Ic of each phases (phase A1/A2/B/C) About 2900A/3100 A/4000 A/4500 A

* Arms: Root Mean Square value of the current. * Apeak: instantaneous value of the current.

The numerical design goal of the tri-axial HTS power cable is to achieve uniform current
distribution in each layer. To calculate the current distribution in each layer of a tri-axial HTS power
cable, the resistance, inductance, and mutual inductance must be taken into account. Figure 2 shows
the electrical equivalent circuit diagram of the tri-axial HTS power cable.

The inductance and mutual inductance of the electrical equivalent circuit are calculated as shown
in Equations (1) and (2). The impedance matrix is derived from the equivalent circuit connected to the
source and the load, as shown in Figure 2 using Equations (1) and (2). The current distribution in each
phase and layer is determined by the iterative calculation of the impedance matrix of Equation (3) with
a combination of pitch length and winding direction. The iterative calculation of the impedance matrix
is performed by applying an impedance matching algorithm that satisfies the set current value in each
layer, and Figure 3 shows a flow chart of the impedance matching method [15,16].
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where Li is the self-inductance of the i layer, Mij is the mutual inductance between the i layer and j
layer, ri is the radius of the i layer, rj is the radius of the j layer, µ0 is the magnetic permeability of free
space, D is the distance between the cable center and the outmost surface, ai is the winding direction of
clockwise, aj is the winding direction of counter-clockwise, Lpi is the pitch length of the i layer, and Lpj
is the pitch length of the j layer.
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where Vi is the voltage of the i layer, Ii is the current of the i layer, j is the imaginary unit, ω is the
angular frequency, Li is the self-inductance of the i layer, Mij is the mutual inductance between the i
layer and j layer, and Rload is the load resistance.Energies 2020, x, x FOR PEER REVIEW 4 of 14 
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The tri-axial HTS power cable was analyzed under the rated current load condition. The impedance
matching process was used to select one case suitable for a combination of more than 10,000 pitch
lengths and winding directions as shown in Figure 3. Table 3 shows the current distribution calculation
results, and the current distribution of each phase was uniform. In addition, it was calculated that
about half of the rated current flows in each layer in phase A have two layers.

Table 3. Results of current distribution in the tri-axial HTS power cable.

Items Values

Circuit condition Load (about 8 Ω)
Pitch length of each layer

(phase A1, phase A2, phase B, phase C) 300/460/550/510 mm

Winding direction of each layer
(+1 = clockwise, −1 = counter-clockwise) +1,+1,−1,+1

Current distribution of phase A1 1122.4 Apeak
Current distribution of phase A2 1030.7 Apeak
Current distribution of phase B 2150.7 Apeak
Current distribution of phase C 2150.8 Apeak

Current ratio between phase A1 and A2 0.9

2.2. FEM Anaysis of the Tri-Axial HTS Power Cable

The structure of the tri-axial HTS power cable with uniform current distribution obtained by
mathematical calculations was designed. The AC loss of the superconducting layer of the tri-axial HTS
power cable that occurred during steady state operation was analyzed using a FEM analysis program.
Figure 4 shows a 2D AC loss analysis model of a tri-axial HTS power cable with a 1/5 scale model taken
to reduce overall analysis time.
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The governing equation for the tri-axial HTS power cable AC loss analysis applies Maxwell’s
equations, including Faraday’s law and Ampere’s circuital law, as shown in Equations (4) and (5).
In addition, E-J characteristics with superconducting nonlinear characteristics, as shown in Equation (6),
are reflected in each phase’s superconducting wire [17,18].

µ
∂Ĥ
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+∇× Ê = 0 (4)
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(
J
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where µ is the magnetic permeability, t is the time, H is the magnetic field, E is the electric field, Ec is
the critical electric field, J is the current density, Jc is the critical current density, and n is the n-value.

Figure 5 shows the results of the AC loss analysis of each phase of a tri-axial HTS power cable at a
rated current of 2200 Apeak. The superconducting layers are adjacent to each other, resulting in a large
loss of phases A1 and A2, where a large amount of vertical magnetic field acts on the superconducting
wire and low B and C phase losses, relatively far from the magnetic field.
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Figure 6 shows the single-phase AC loss results obtained by FEM analysis for the tri-axial HTS
power cable. The analysis results show that the AC losses are 73, 113, and 74 mW/m, depending
on the phase from A to C at the rated current, and the total loss is 260 mW/m. The results of the
single-phase AC losses obtained by FEM analysis were compared with the measurement result of a
real-scale tri-axial HTS power cable.
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3. Measurement Results and Discussion

A 6-m-long of 23 kV/60 MVA-class tri-axial HTS power cable consisting of multilayer HTS wire
and a GFRP support was fabricated to evaluate the performance of the cable. The conductors of
each phase are spirally wound on the support of the GFRP, and between each layer, are laminated
with insulators of polypropylene-laminated paper, which considers isolation voltage level. Normally,
current leads are connected at both ends of the cable to supply current to each phase. In the case of the
tri-axial HTS power cables, one end consisted of a three-phase short circuit to reduce contact resistance
losses. Figure 7 shows the fabricated tri-axial HTS power cable.
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Figure 9 shows the hardware configuration concept of the DC Ic measurement for the 6-m-long
tri-axial HTS power cable. The DC power supply supplies current to the cable sample, the shunt
resistor measures the current, and the voltage tap on both ends of the cable measures the voltage.
The control part collects these two signal data to obtain a critical current value for the critical voltage.
The critical current of each phase is measured independently.
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The critical current and AC loss measurements of the cable were carried out at cryogenic conditions
with 4–5 h of cooling at 77 K in liquid nitrogen. As shown in Figure 10, the measurement configuration
concept shown in Figure 9 was implemented through actual cables and measurement equipment.
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The measured critical currents for phase B and phase C were 6194.9 A and 7308.1 A, respectively.
In addition, phase A was measured until 7308.1 A. Figure 11 shows the critical current measurement
results for each phase of the tri-axial HTS power cable. It can be seen that the measured critical current
is more than the design current value, and that the manufactured cable sample is stable.
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Figure 12 illustrates the principle of AC loss measurement for superconducting cables. It can be
seen that V0 and I0 are easy to measure with accurate volt-meters. However, Θ is very difficult to
measure even if we use an accurate (expensive) lock-in amplifier. Very fast measurement methods
should be applied to perform a precise integration process. The method using cancel coil is measured by
resistance, which was canceled due to the influence of the voltage and magnetic field by self-inductance
of the cable [21–23].
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The tri-axial HTS power cable uses an electrical method to measure AC losses under single current
conditions. Figures 13 and 14 show the configuration of the AC loss measurement method of the
tri-axial HTS power cable. The AC loss was measured for each phase through the voltage taps and the
current sensor on A, B, and C, and the total cable loss according to the unit length was calculated [24,25].
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The tri-axial HTS power cable is connected to both ends of the AC current source, and the voltage
is measured by the signal wire attached to the cable. In addition, the current is measured by a current
transformer. A cancel coil is used to remove the inductance component of the tri-axial HTS power
cable. The purpose of this method is to remove the reactive component from the measured voltage to
improve measurement accuracy. Figure 15 shows the AC loss measurement results for a single-phase
current. The measured results show that the AC losses of each phase were 55, 72, and 122 mW/m at a
rated current of 2200 Apeak, and the total AC loss of a single-phase current was 249 mW/m. The FEM
simulation result of the tri-axial HTS power cable was 260 mW/m, which is similar to the total AC loss
measurement result.
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4. Conclusions

A 23 kV/60 MVA-class, tri-axial HTS power cable was designed, fabricated, and tested to evaluate
the performance. The tri-axial HTS power cable has been designed in the proper structure by
mathematical calculations and FEM analysis focusing on current balancing. Based on the designed
structure, a 6-m-long of tri-axial HTS power cable was fabricated. The critical currents of each phase
in the tri-axial HTS power cable were measured. As a result of the critical current measurement,
the critical current value of each phase was measured to be over 6000 A, and it appears that it has
sufficient performance for rated current operation in a 23 kV 60 MVA grid system. The measurement
error of the AC loss was reduced by removing the reactive component of the voltage being measured
on the tri-axial HTS power cable. The AC loss was measured for single-phase current from a 0 to
2200 Apeak operation range of the rated current. The total AC losses for single-phase current condition
measured less than 250 mW/m. The measured AC losses were compared with the FEM model and
were similar to the simulation results. The results of this study can also be used for future design
and performance evaluation and verification of tri-axial HTS power cables with copper formers.
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The superconducting cable system that will be installed in an actual power transmission network
consists of a superconducting cable, a joint box, a terminal box, and a cooling system. The AC loss
(W/m) of the superconducting cable contributes significantly to the overall cooling capacity in a few
km of superconducting cable system. In calculating the capacity of an expensive cryogenic refrigerator,
the actual AC cable loss value has the advantage of ensuring stability of the capacity of the cooling
system, and can be applied as a design factor to secure the system stability against the operating
temperature of the superconducting cable. The results of this paper will provide important data for the
tri-axial superconducting cable system that will be installed at the first real grid system site in Korea.
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