
energies

Article

Open-Source Implementation and Validation of a 3D
Inverse Design Method for Francis Turbine Runners

Sebastián Leguizamón * and François Avellan

Laboratory for Hydraulic Machines, École Polytechnique Fédérale de Lausanne (EPFL), Avenue de Cour 33 bis,
1007 Lausanne, Switzerland; francois.avellan@epfl.ch
* Correspondence: sebastian.legui@alumni.epfl.ch

Received: 21 February 2020; Accepted: 16 April 2020; Published: 18 April 2020
����������
�������

Abstract: The hydraulic design of Francis turbines and pump-turbines is an expensive project-specific
engineering effort that typically involves a direct iterative exploration of the design space. An inverse
design method for turbomachinery has been previously introduced in the literature, and several
recent applications have demonstrated its advantages; however, only a commercial implementation
of the method is currently available. In this work, an open-source implementation of the inverse
design method is introduced. First, the governing equations in cylindrical and curvilinear coordinate
systems are derived, consolidating the somewhat inconsistent formulations that are available in the
literature. Then, a convergence analysis of the method is performed in order to characterize the
behavior of the discretization error and deduce the mesh resolution requirements. A validation of
the method output with respect to high-fidelity computational fluid dynamics simulations is then
presented; it is demonstrated that the velocity fields are well predicted, the pressure distribution on
the blades is reasonably well approximated, and the flow angular momentum extraction is achieved
in the prescribed manner. Possible improvements to the open-source implementation of the method
are discussed.

Keywords: Francis turbine; inverse design; open-source software; computational fluid dynamics;
numerical simulation; hydraulic turbomachine

1. Introduction

Hydropower accounted for 62% of the global renewable electricity production of 2017 [1],
and its global importance is bound to increase for two fundamental reasons. On the one hand,
a rapid electrification of transportation is already underway, implying an ever-growing demand for
inexpensive electricity with low lifecycle greenhouse gas emission intensity. On the other hand, the
exponential increase of the installed capacity of intermittent renewable energy sources such as wind
and solar urges a similar increase of the energy storage capacity, 96% of which is currently supplied by
pumped storage [1].

The hydraulic design of Francis turbines is a project-specific engineering effort that involves an
iterative exploration of the design space. In spite of modern optimization techniques implemented in
the framework of computational fluid dynamics (CFD), the hydraulic design of Francis turbines still
demands considerable engineering input and know-how. Design methodologies currently used in
industry are direct: they require the specification of the blade geometry in terms of a distribution of
angles at the leading and trailing edges, as well as a distribution of the blade angle variation along
the chord. The design is then evaluated by means of CFD and modified iteratively until a satisfactory
compromise among the design objectives is achieved, after which expensive experimental verification
is undertaken. Improvement of the design methodology may result in greater competitiveness and
faster project development.

Energies 2020, 13, 2020; doi:10.3390/en13082020 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0001-9954-3360
http://dx.doi.org/10.3390/en13082020
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/13/8/2020?type=check_update&version=2


Energies 2020, 13, 2020 2 of 21

An inverse design method involves calculating the set of system parameters, e.g., the turbine
geometry, that will result in the desired system behavior, e.g., the runner efficiency or flow field
characteristics. One of the earliest 3D inverse design methods for turbomachinery was proposed by
Tan et al. [2] for highly loaded, infinitely thin blades in an annular cascade configuration, assuming
inviscid and incompressible flow as well as a simplified meridional channel geometry. This seminal
work was later extended by Borges [3,4] to account for meridional channels of arbitrary geometry,
followed by Zangeneh [5], who further generalized the method to describe compressible flows and
blades of finite thickness. Soon thereafter, Zangeneh co-founded Advanced Design Technology,
a software company that commercializes an implementation of the inverse design method under the
brand name TURBOdesign, among other related products.

Rather than directly establishing a trail blade geometry, in the inverse design method the user
specifies the desired blade loading distribution, which is closely related to the resulting pressure
distribution. The method therefore has the potential to render the design of Francis turbines and
pump-turbines more physically intuitive: instead of defining blade angle distributions that are only
indirectly related to the desired flow fields, the user specifies the work distribution to be achieved by
the runner and the method calculates the blade angle distributions that accomplish the task. In doing
so, the inverse design method has the potential to reduce the number of expensive CFD iterations
required to achieve a satisfactory design, allowing for a considerable reduction of the time-to-solution.

The commercial implementation of the inverse design method has been successfully used in
recent investigations focused on the design optimization of pump-turbines and Francis turbines.
Zhu et al. [6,7] performed a multiobjective optimization of a reversible pump-turbine and investigated
the effect of the blade lean angle on the hydraulic efficiency and on the magnitude of the pressure
fluctuations. Daneshkah and Zangeneh [8] parametrically studied the influence of the blade loading
distribution and stacking condition on the efficiency and cavitation performance of a Francis
runner, leading to some design guidelines and considerable insight. Wang et al. [9] built on the
aforementioned publications by Zhu et al. in order to investigate the trade-offs present in the optimum
design of a pump-turbine; it was found that minimizing secondary flow losses improves the pump
efficiency, whereas minimizing the profile losses increases the turbine efficiency, resulting in a set of
Pareto-optimal designs between the two objectives. For a comprehensive review of the inverse design
method and many of its recent applications in hydraulic turbomachinery, see Yang et al. [10].

In this context, the objective of the present work is to provide an open-source implementation
of the inverse design method (see Supplementary Materials) that may contribute to further research
into the optimal design of Francis turbines and pump-turbines. Indeed, although the method has been
available in the literature for many years, no open-source implementation is currently available and
not every researcher may afford a commercial license. More importantly, there are some mathematical
inconsistencies between the articles of Borges [3] and Zangeneh [5], specifically in the final form of
the equations in the curvilinear coordinate system which hinder independent implementations of the
method. Apart from a detailed derivation of the final equations, this article presents a validation of the
method with respect to high-fidelity CFD simulation results, and a thorough characterization of the
method convergence.

The article is structured as follows: Section 2 presents an overview of the inverse design method,
the governing equations in cylindrical and curvilinear coordinate systems, and several details about
the solution algorithm; Section 3 describes the convergence analysis and validation of the method;
Section 4 contains a discussion and the outlook.

2. Inverse Design Method Implementation

2.1. Method Overview

The inverse design method assumes that the flow is steady, inviscid and incompressible, so it can
be described by potential flow theory. The blades are represented by sheets of bound vorticity, i.e.,
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the vorticity is not shed downstream. Furthermore, the flow is assumed to be irrotational at the inlet,
with uniform radial and tangential velocity components, whereas at the outlet a uniform axial velocity
profile is considered, in line with the requirement of no residual angular momentum downstream
of the runner. These assumptions imply that the blades extract constant work along each streamline.
A correction to account for blockage effects due to the blade thickness is introduced in the mean flow
equations, although the blades are otherwise assumed to be infinitely thin.

The user input to the inverse design method includes:

• The available head H , discharge Q, rotational speed ω, and number of blades B;
• The meridional channel geometry: hub, shroud, leading edge and trailing edge curves;
• The camber surface angle f , also termed blade wrap angle, along the blade leading edge;
• The blade thickness distribution tn(r, z) normal to the camber surface;
• The blade loading distribution λ(r, z).

The method outputs the blade shape that satisfies the inputs, including the required loading
distribution, and the associated flow fields. The blade geometry is defined by its camber surface,
itself determined by a distribution of the wrap angle f(r, z), and by the blade thickness distribution
specified by the user. An example camber surface is presented in Figure 1 on the cylindrical coordinate
system (r, θ, z) used in this work.

Figure 1. Blade camber surface example on the cylindrical coordinate system (r, θ, z). The planes
defined by θ = [0, π

2 ] illustrate the meridional projection of the blade leading edge (1) and trailing
edge (2), as well as the curves that define the axisymmetric shroud (3) and hub (4) surfaces. The blade
camber surface is defined by a set of coordinates (r, θ, z), with θ = f(r, z). More generally, the B
camber surfaces are defined by θ = if(r, z), with i = 1, 2, ...,B.

In the current implementation, the meridional channel geometry is automatically calculated based
on the runner specific speed and the hydraulic conditions, as detailed in Section 2.4.2. The normal
blade thickness tn and blade loading λ are specified at the hub and shroud only, and then interpolated
in the spanwise direction to compute their distribution on the blade.

The blade loading is defined as

λ(r, z) =
∂rCθ
∂m̂

, (1)
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where r is the radius, m̂ is the streamwise meridional coordinate, and Cθ is the average tangential
velocity, defined as

Cθ =
B

2π

∫ 2π
B

0
Cθdθ. (2)

The blade loading is therefore directly proportional to the variation of the flow angular momentum

along a streamline. From Euler’s equation, we have that ω
∫ ∂rCθ

∂m̂ dm̂ = gH
.
= E, where E is the

transferred specific energy; consequently, in the current implementation of the method the user
specifies a normalized blade loading distribution that is then scaled according to the available head.
Similarly, the normal blade thickness is specified relative to the average blade chord c. Example
distributions of blade loading and normal blade thickness are presented in Figure 2a,b, respectively.
Both of these are specified in terms of the control points of non-uniform rational basis splines (NURBS).

(a)

(b)

Figure 2. Example distributions of (a) blade loading and (b) normal blade thickness.

The fluid velocity C (r, θ, z) is decomposed into an axisymmetric mean velocity C (r, z) and a
tangentially-periodic velocity c (r, θ, z). The blade camber surface, defined by the wrap angle f (r, z),
is updated iteratively, together with the flow field, until convergence is achieved. To begin the
iterative procedure, an initial guess of f is computed based on the rCθ distribution, together with
the assumption of uniform meridional velocity Cm, itself computed from the discharge. As seen in

Figure 2a, the Kutta–Joukowski condition is satisfied by setting ∂rCθ
∂m̂ = 0 at the trailing edge, such

that the pressure difference there is null, whereas the well-aligned flow condition is satisfied by setting
∂rCθ
∂m̂ = 0 at the leading edge, meaning that the incidence angle is defined to be zero.

2.2. Governing Equations in Cylindrical Coordinates

The governing equations are hereafter presented in the form they take on the cylindrical coordinate
system illustrated in Figure 1.

2.2.1. Mean Flow

The mean flow is described by Stokes’ axisymmetric stream function Ψ (r, z) [11], which is found
by solving the following elliptic equation

∂2Ψ
∂r2 −

1
r

∂Ψ
∂r

+
∂2Ψ
∂z2 +

∂Ψ
∂r

∂

∂r
ln

1
Bf

+
∂Ψ
∂z

∂

∂z
ln

1
Bf

= −rBf
(
∂

∂r
rCθ

∂f

∂z
− ∂

∂z
rCθ

∂f

∂r

)
, (3)

where the right-hand side is equal to zero outside the blade region. The blockage factor Bf , which
accounts for the accelerating effect of the blade thickness on the mean flow, is defined as
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Bf = 1− tθ
r

B

2π
, (4)

where tθ represents the blade thickness in the tangential direction, which is proportional to the
user-defined normal blade thickness tn; it is calculated as

tθ = tn

√√√√1 + r2

[(
∂f

∂r

)2
+

(
∂f

∂z

)2
]

. (5)

The mean radial and axial velocity components are defined in terms of the stream function as

Cr = −
1
rBf

∂Ψ
∂z

, (6)

and

Cz =
1
rBf

∂Ψ
∂r

. (7)

Equation (3) is subject to the following boundary conditions. At the inlet and outlet, uniform
radial and axial velocities are imposed, respectively, resulting in Neumann boundary conditions on
Ψ which depend on the discharge and the inlet and outlet areas. At the walls the normal velocity is
zero, which implies that the hub and shroud curves are streamlines; consequently they are defined by
constant Ψ values. By convention Ψ = 0 at the hub, whereas at the shroud Ψ = Q

2π .

2.2.2. Periodic Flow

The periodic velocity is expressed using the Clebsch formulation [2] as

c (r, θ, z) = ∇Φ− S (θ− f)∇rCθ, (8)

where Φ (r, θ, z) is the potential function of the periodic flow and S (θ− f) is the periodic sawtooth
function with zero mean value, which introduces a velocity jump across the blade camber surface.
A Fourier series in the tangential direction is used to express these functions as

Φ (r, θ, z) =
∞

∑
n=−∞

Φn (r, z) einBθ, (9)

and

S (θ− f) = Re
∞

∑
n=−∞

einB(θ−f )

inB
, (10)

respectively. Then, the governing equation for the nth harmonic of the potential function of the
periodic flow, Φn (r, z), can be shown to be

∂2Φn

∂r2 +
1
r

∂Φn

∂r
+
∂2Φn

∂z2 −
n2B2

r2 Φn =
e−inBf

inB
∇2rCθ − e−inBf

(
∂f

∂r

∂

∂r
rCθ +

∂f

∂z

∂

∂z
rCθ

)
, (11)

where the right-hand side is equal to zero outside the blade region.
These Helmholtz-type equations are subject to the following boundary conditions. At the inlet

and outlet, where the flow is assumed to be uniform, i.e., the periodic velocity is null, a Dirichlet
condition of the form Φn = 0 is imposed. At the hub and shroud, where ∂c

∂n̂ = 0, the corresponding
condition ∂Φn

∂n̂ = 0 is imposed.



Energies 2020, 13, 2020 6 of 21

2.2.3. Blade Camber Surface

Having determined the mean and periodic flow components, the blade shape is calculated by
enforcing that the camber surface be aligned with the flow field. This condition reads

(
Cr + cr,bl

) ∂f
∂r

+
(
Cz + cz,bl

) ∂f
∂z

=
rCθ
r2 +

cθ,bl

r
− ω, (12)

where the periodic velocity at the blade is defined as cbl =
1
2 (c

+ + c−), i.e., taking the average between
the periodic velocities at the pressure and suction sides of the blade, c±.

This hyperbolic equation is solved using the method of characteristics, which amounts to
integrating along the meridional projection of the flow streamlines on the blade surface. An initial
condition is necessary, namely the user-defined camber surface angle f along the leading edge,
sometimes termed the blade stacking condition.

2.2.4. Calculation of the Pressure

The pressure difference across the blade can be calculated as

p+ − p− =
2π
B
ρWbl ·∇rCθ =

2π
B
ρ

[(
BfCr + cr,bl

) ∂
∂r
rCθ +

(
BfCz + cz,bl

) ∂
∂z
rCθ

]
, (13)

where ρ is the fluid density and Wbl is the relative flow velocity at the blade, averaged between the
pressure and suction sides. Note that the mean velocity increment caused by the blockage effect, which
affects both blade sides, should have no impact on the pressure difference; for this reason the mean
velocities Cr,z disregarding the blockage effect are used, i.e., they are multiplied by Bf . Indeed, only
when disregarding the blockage effect is the torque calculated from the integration of the pressure
difference over the blade equal to the torque calculated from the conservation of angular momentum.

The momentum balance described by Euler’s equation can be used to estimate the pressure
gradient based on the mean flow velocity C as[

∂p

∂r
,
∂p

∂z

]
= −ρ

[
Cr

∂Cr
∂r

+Cz
∂Cr
∂z
−
C2
θ

r
+ gr, Cr

∂Cz
∂r

+Cz
∂Cz
∂z

+ gz

]
, (14)

where gr,z accounts for the gravitational acceleration as well as the acceleration associated with the
force exerted by the blades on the fluid. By integrating the pressure gradient, the pressure difference
between any two points can be calculated. Taking the inlet midspan as the reference datum, and
knowing that the pressure there is equal to p◦ = ρgH − 1

2ρC2, the pressure at any point can be

calculated as p (r, z) = p◦ +
∫ l

0 ∇p δl.

2.3. Governing Equations in Non-Orthogonal Curvilinear Coordinates

A finite difference scheme is used to solve the governing equations. A discretized meridional
channel example is illustrated in Figure 3. The domain is meshed along curvilinear coordinates (ξ, η)
that conform to the meridional channel geometry, including the blade leading and trailing edges,
resulting in non-orthogonality.
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Figure 3. Example of a meshed meridional channel domain, composed of: (1) inlet, (2) leading edge,
(3) trailing edge, and (4) outlet.

The governing equations on the non-orthogonal curvilinear coordinate system (ξ, θ, η) are
hereafter derived. The transformation between cylindrical coordinates (r, z) and curvilinear
coordinates (ξ, η) is represented by the Jacobian

J =


∂ξ

∂r

∂η

∂r

∂ξ

∂z

∂η

∂z

 , (15)

defined at each grid point. Its determinant is

J = |J| = ∂ξ

∂r

∂η

∂z
− ∂ξ

∂z

∂η

∂r
. (16)

The Jacobian components can be used to predefine other transformation parameters that are going
to appear in the governing equations, namely

α =

(
∂ξ

∂r

)2
+

(
∂ξ

∂z

)2
, (17)

β =
∂ξ

∂r

∂η

∂r
+
∂ξ

∂z

∂η

∂z
, (18)

γ =

(
∂η

∂r

)2
+

(
∂η

∂z

)2
, (19)

τ =
∂ξ

∂r

∂

∂ξ

∂ξ

∂r
+
∂η

∂r

∂

∂η

∂ξ

∂r
+
∂ξ

∂z

∂

∂ξ

∂ξ

∂z
+
∂η

∂z

∂

∂η

∂ξ

∂z
, (20)

and
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σ =
∂ξ

∂r

∂

∂ξ

∂η

∂r
+
∂η

∂r

∂

∂η

∂η

∂r
+
∂ξ

∂z

∂

∂ξ

∂η

∂z
+
∂η

∂z

∂

∂η

∂η

∂z
. (21)

2.3.1. Mean Flow

The application of the chain rule, i.e., ∂
∂r = ∂

∂ξ
∂ξ
∂r +

∂
∂η

∂η
∂r and ∂

∂z = ∂
∂ξ

∂ξ
∂z +

∂
∂η

∂η
∂z , together with

extensive algebraic manipulation result in the following governing equation for Stokes’ axisymmetric
stream function Ψ (ξ, η)

α
∂2Ψ
∂ξ2 + 2β

∂2Ψ
∂ξ∂η

+ γ
∂2Ψ
∂η2 + µ

∂Ψ
∂ξ

+ ν
∂Ψ
∂η

= −rBfJ
(
∂

∂ξ
rCθ

∂f

∂η
− ∂

∂η
rCθ

∂f

∂ξ

)
, (22)

where the right-hand side is equal to zero outside the blade region; µ and ν are defined as

µ = α
∂

∂ξ
ln

1
Bf

+ β
∂

∂η
ln

1
Bf
− 1
r

∂ξ

∂r
+ τ , (23)

and

ν = γ
∂

∂η
ln

1
Bf

+ β
∂

∂ξ
ln

1
Bf
− 1
r

∂η

∂r
+ σ. (24)

The blockage factor Bf depends on the blade thickness in the tangential direction, that now reads

tθ = tn

√√√√1 + r2

[
α

(
∂f

∂ξ

)2
+ 2β

∂f

∂ξ

∂f

∂η
+ γ

(
∂f

∂η

)2
]

. (25)

The mean radial and axial velocity components can be respectively calculated as

Cr = −
1
rBf

(
∂Ψ
∂ξ

∂ξ

∂z
+
∂Ψ
∂η

∂η

∂z

)
, (26)

and

Cz =
1
rBf

(
∂Ψ
∂ξ

∂ξ

∂r
+
∂Ψ
∂η

∂η

∂r

)
. (27)

The camber surface equation, presented further down, includes the mean streamwise and
spanwise velocity components, Cξ and Cη , respectively. These are calculated as

Cξ = −
J

rBf

∂Ψ
∂η

, (28)

and

Cη =
J

rBf

∂Ψ
∂ξ

. (29)

2.3.2. Periodic Flow

Following the same procedure, i.e., application of the chain rule and extensive algebraic
manipulation, the governing equation for the nth harmonic of the potential function of the periodic
flow, Φn (ξ, η), can be expressed as

α
∂2Φn

∂ξ2 + 2β
∂2Φn

∂ξ∂η
+ γ

∂2Φn

∂η2 + µ̃
∂Φn

∂ξ
+ ν̃

∂Φn

∂η
− n2B2

r2 Φn =
e−inBf

inB
∇2rCθ − e−inBf ζ, (30)
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where ∇2rCθ is calculated as

∇2rCθ = α
∂2

∂ξ2 rCθ + 2β
∂2

∂ξ∂η
rCθ + γ

∂2

∂η2 rCθ + µ̃
∂

∂ξ
rCθ + ν̃

∂

∂η
rCθ, (31)

whereas µ̃, ν̃ and ζ are defined as

µ̃ =
1
r

∂ξ

∂r
+ τ , (32)

ν̃ =
1
r

∂η

∂r
+ σ, (33)

and

ζ =
∂f

∂ξ

(
α
∂

∂ξ
rCθ + β

∂

∂η
rCθ

)
+
∂f

∂η

(
γ
∂

∂η
rCθ + β

∂

∂ξ
rCθ

)
. (34)

2.3.3. Blade Camber Surface

The coordinate transformation results in the following form of the camber surface alignment
condition used to calculate the blade shape:

(
Cξ + cξ,bl

) ∂f
∂ξ

+
(
Cη + cη,bl

) ∂f
∂η

=
rCθ
r2 +

cθ,bl

r
− ω, (35)

where the streamwise, spanwise and tangential components of the periodic flow velocity at the blade
are computed, respectively, as

cξ,bl =
N

∑
n=1

[(
α
∂Φc

n

∂ξ
+ β

∂Φc
n

∂η

)
cos (nBf) +

(
α
∂Φs

n

∂ξ
+ β

∂Φs
n

∂η

)
sin (nBf)

]
, (36)

cη,bl =
N

∑
n=1

[(
β
∂Φc

n

∂ξ
+ γ

∂Φc
n

∂η

)
cos (nBf) +

(
β
∂Φs

n

∂ξ
+ γ

∂Φs
n

∂η

)
sin (nBf)

]
, (37)

and

cθ,bl =
N

∑
n=1

nB

r
[Φs

n cos (nBf)−Φc
n sin (nBf)] , (38)

where N is the number of harmonics solved for, and Φc,s
n corresponds to the trigonometric

decomposition of the imaginary Fourier coefficients Φn.
These three equations are derived from Equation (8), noting that the sawtooth function cancels

out when averaging between the pressure and suction sides of the blade, and using Euler’s formula to
express the imaginary Fourier coefficients in terms of their corresponding trigonometric counterparts.

2.4. Additional Implementation Details

The method has been implemented in MATLAB R2017b, although translating the code to other
languages should be relatively straightforward. Three open-source scripts, related to the NURBS
definition [12], logarithmic spacing [13], and plotting capabilities [14], have been used within the code.
Hereafter some details of the implementation are presented.

2.4.1. Algorithm Overview

As illustrated in Algorithm 1, the code comprises an initialization stage, where the meridional
channel geometry is generated and discretized, and an iterative solution stage, which includes three
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main steps: the solution of Equation (22) for the mean flow, the solution of Equations (30) for the
periodic flow, and the integration of Equation (35) for the camber surface.

2.4.2. Meridional Channel Geometry Generation

The inverse design method requires the input of the meridional channel geometry, including
the hub, shroud, blade leading edge and blade trailing edge meridional projections. The current
implementation includes a function that calculates a trail meridional channel geometry that serves as
a good starting point; the code can be extended to allow for the input of an arbitrarily parametrized
geometry, although this is left for future work.

Algorithm 1: Implemented inverse design method.

read user inputs
generate meridional channel geometry
generate finite difference mesh
initialize fields and constant integration parameters: f , tn, rCθ, ∇rCθ, ∇2rCθ, µ̃, ν̃.
while camber surface angle f has not converged do

initialize variable integration parameters: ∇f , tθ, Bf , ∇ ln 1
Bf

, µ, ν, ζ.

Function ComputeMeanFlow()
assemble and solve system matrix for Ψ
calculate mean flow velocity C

End
Function ComputePeriodicFlow()

foreach n← 1 to N do
assemble and solve system matrix for Φn

end
calculate periodic flow velocity c

End
integrate blade camber surface equation to calculate update: f ← f + δf

check whether camber surface angle f has converged
end
output runner geometry and flow fields

The trail meridional channel geometry is calculated as a function of the available discharge Q,
rotational speed ω, and the runner specific speed, defined as

nq =
ω
√

Q
π

(2gH)
3
4

. (39)

Bovet [15,16] proposed expressions that define the shape of the meridional channel as a function
of nq ; the shape is then scaled according to a sizing parameter that depends on Q, ω and nq .
The expressions that determine the meridional channel geometry contain 10 parameters that were
fitted by Bovet to a database of Francis turbines designed by several manufacturers for a wide variety
of operating conditions. In the current implementation, these parameters were updated somewhat
by incorporating the more recent Francis turbine and pump-turbine designs that are reported by
Henry [17]. Eight meridional channel geometry examples generated using the present approach are
presented in Figure 4.
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Figure 4. Meridional channel geometry examples for eight values of the specific speed nq .

2.4.3. Discretization and Numerical Methods

As illustrated in Figure 3, the meridional channel domain is discretized with a mesh that conforms
to the blade leading and trailing edges. Finite difference approximations are used to discretize the
differential operators: ∂

∂ξ , ∂
∂η , ∂2

∂ξ2 and ∂2

∂η2 . Second-order accurate central differences are used for
interior nodes, whereas second-order one-sided approximations are used for the boundary nodes [18].
Equivalent finite difference approximations are used to calculate the components of the Jacobian J,
needed to compute the mesh metric coefficients, i.e., α, β, γ, J , τ , and σ.

The implicit algorithm used to solve the mean and periodic flow equations entails the solution
of a large sparse linear systems assembled from the finite difference approximations of each term
present in the respective governing equation. The iterative biconjugate gradient stabilized method
(BiCSTAB) is used, together with an incomplete lower-upper (ILU) factorization of the system matrix
as a preconditioner.

The blade camber surface equation is solved by integrating along the flow streamlines on the
blade surface, which is to say along the characteristic curves of the equation. The camber surface
angle f at the blade leading edge, i.e., the stacking condition, is used as initial condition for this
integration. As evidenced in Figure 5a, the mean flow streamlines tend to recede from the hub and
concentrate towards the shroud. Furthermore, during the initial iterations the periodic flow velocity is
of considerable magnitude and may further disrupt the streamlines, making their distribution much
less homogeneous. This implies that, when integrating equispaced streamlines starting at the blade
leading edge, some blade regions may end up sparsely populated, resulting in significant interpolation
error when calculating f at nodes that are relatively far from the closest integrated streamline.

To address this problem, the integration is performed in steps. For each of the nodes in a given grid
line defined by constant η-coordinate, the streamline is integrated backwards using the second-order
accurate Crank-Nicolson scheme until the upstream grid line is intersected; the calculated δf is used,
together with the f value interpolated at the intersection with the upstream grid line, to compute the
new f value at the node from which the streamline originated. This process is repeated from leading
edge to trailing edge, as illustrated in Figure 5b, ensuring a uniform distribution of streamline sections
and therefore avoiding the aforementioned interpolation error.
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(a) (b)
Figure 5. Mean flow stream function Ψ whose contour lines are the mean flow streamlines (a),
and integration along the flow streamlines on the blade surface (b).

Once the camber surface angle fnew that respects the current flow field is calculated, a relaxation
factor φf is used to compute the updated camber surface angle as f = fnewφf + fold (1− φf ).
The relaxation factor ensures stability of the algorithm by damping the variation of the camber surface
angle; φf is adaptively selected according to

φf = min

[
max

(
0.60−

|∆f |0.6
l2

25
, 0.05

)
, max

(
0.60−

|∆f |0.4
l∞

10
, 0.10

)]
, (40)

where |∆f |l2 and |∆f |l∞ are respectively the l2-norm and the l∞-norm, with |x|ln = n
√

∑i |xi|n,
calculated over all the grid nodes on the blade, of the variation ∆f = fnew − fold. This expression
simply states that the relaxation factor is inversely proportional to the magnitude of the blade camber
surface angle update, measured in terms of its average and maximum values over the blade; the
parameters were fine-tuned based on extensive testing over several geometries. The relaxation factor
φf is typically close to 0.5.

An additional stability measure that is implemented is to scale the periodic velocity by a factor φc,
which is smoothly relaxed from a value of φc = 0.5 at the first iteration to a value of φc = 1 from the
tenth iteration onwards.

The solution convergence is assessed based on |∆f |l2 over the blade grid nodes and |∆C
C |l2 over

all nodes. In other words, for a solution to be considered converged, the variation of both the blade
camber surface angle and the velocity field between successive iterations must fall below an arbitrary
threshold value, typically 0.1◦ and 0.1%, respectively.

3. Characterization and Validation of the Inverse Method Implementation

3.1. Convergence Analyses

In this section the convergence characteristics of the implemented method, both in terms of
iterations and discretization resolution, are investigated with the objective of verifying the stability of
the method and establishing the grid resolution requirements.

The iterative convergence behavior of the inverse design method is illustrated in Figure 6 for a
representative Francis turbine case, using a mesh resolution that guarantees negligible discretization
error. Figure 6a presents the l2-norm of the variations ∆f and ∆C

C between successive iterations as
a function of the iteration number. The convergence is mostly monotonic, except for a small bump
close to the tenth iteration after which the full periodic velocity is considered by having φc = 1. About
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25 iterations are required to achieve a converged solution; a faster convergence is possible for this
particular case by setting the relaxation factor φf ≈ 1.0, although the more conservative adaptive
approach is preferred in order to ensure convergence for all cases. Figure 6b evidences the monotonic
convergence of the camber surface angle f at five points; the results are normalized by the respective
angle value at the last iteration, f35. As expected, the points closer to the leading edge (m̂ = 0) change
significantly less than the points further down, in relation to their initialization value f1, given that the
camber surface angle at the leading edge is fixed by the stacking condition selected.

(a) (b)
Figure 6. Iterative convergence behavior for a typical Francis turbine case. Variation of the camber
surface angle and velocity field between successive iterations (a), and convergence of the camber
surface angle at midspan at five streamwise positions (b), as functions of the iteration number.

The convergence of the method with respect to the mesh resolution has been studied in detail.
The grid resolution R is defined such that the number of nodes in the spanwise direction is 2R + 1.
For reference, the mesh illustrated in Figure 3 has R = 6, implying 65 nodes across the span.

A representative Francis turbine case is used for the grid convergence analysis. The pressure
difference across the blade p+ − p− .

= ∆p as well as the blade angle βb = tan−1
(
r ∂f∂m

)
are selected

to assess the convergence, given that these variables depend on the mean and periodic flow velocity
components, as well as on the camber surface angle f . A total of 25 points uniformly distributed over
the blade and four different resolutions R = (4, 5, 6, 7) are considered.

Figure 7a presents the relative error for τRi = (∆p, βb)Ri with respect to the corresponding values
computed on the finest grid, τR7. The relative error for each of the 25 points analyzed is illustrated
by thin lines, whereas the bold lines represent the average relative error, with error bars computed
from the standard deviation. A clear convergence of the solution is evidenced, with the relative error
monotonically decreasing with the mesh resolution. For the coarsest mesh the average relative error
for the pressure difference is about 2%, whereas for the blade angle it is less than 1%.

Richardson extrapolation is used to compute the average discretization error. Any given solution
metric can be described by the general model τ = k1 + k2∆xk3 , where ∆x is the discretization size, k3

is the convergence rate, k2 is a constant and k1 is the converged metric [18]; as such, the discretization
error is equal to k2∆xk3 . This error model has been independently fitted to the 25 points analyzed,
each of which includes the resulting ∆p and βb at four resolutions.

Figure 7b presents the averaged results of the Richardson extrapolation analysis. The average
convergence rate computed is k3 = 1.79, whereas the average discretization error for the coarsest
resolution is 2%. Note that the error presented in Figure 7b is relative to the finest resolution, which
is not necessarily converged; on the contrary, the error presented in Figure 7b is with respect to the
converged solution with ∆x→ 0, implying that it truly is the magnitude of the discretization error.
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(a) (b)
Figure 7. Grid convergence behavior for a typical Francis turbine case. Relative error of ∆p and βb at
25 points with respect to the finest grid solution (a), and average discretization error computed from
Richardson extrapolation of ∆p and βb at 25 points (b), as functions of the discretization size ∆x.

Even though all the operators in the present implementation are discretized with second-order
accurate approximations, the effective convergence rate is ≈ 1.8, below the formal 2.0. This behavior
is probably due to the fact that the number of harmonics N that can be resolved is proportional to
the mesh resolution: the source terms of the governing equation for the potential function of the
periodic flow, Equation (11), are imaginary exponential functions of frequency proportional to nB,
with 1 ≤ n ≤ N , and therefore the highest order harmonic that can be resolved is subject to the
Nyquist–Shannon sampling criterion. If higher order harmonics are used, the source terms suffer from
aliasing and inject spurious information into the periodic velocity solution. In short, since the number
of harmonics considered increases with the mesh resolution, the convergence rate is slightly below 2.0.

The time to solution, averaged over five runs, for each of the four resolution levels is presented
in Table 1. The computations are performed on a single i7-4810MQ CPU core running at 3.8 GHz on
Ubuntu Linux 16.04 LTS. It is evidenced that the time to solution increases very significantly with R,
given that the number of equations being solved increases with the resolution, as explained above.
Although these data are representative of the code performance, the time to solution does depend on
other factors such as the turbine geometry: low specific speed runners with long blades tend to have
more grid nodes for a given resolution level, since R only depends on the number of nodes along the
span, and are therefore relatively more expensive to compute.

Table 1. Convergence study of the inverse design method implementation.

Resolution level R 4 5 6 7 [−]
Number of nodes in spanwise direction: 2R + 1 17 33 65 129 [−]
Representative discretization error ' 4 ' 1.5 ' 0.5 ' 0 [%]
Time to solution 0.051 0.154 1.06 13.4 [min]

Based on these results, it can be concluded that a resolutionR = 5 can be used to efficiently explore
the design space at a computational cost of about 10 s per simulation, whereas a resolution R = 6 can
be used to compute the definite mesh-independent results in just over one minute. A considerable
speed-up is expected if the code is ported to C++ or another high-performance programming language.
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3.2. Implementation Validation

The inverse design method implementation is validated on a Francis turbine case characterized by
a specific speed nq = 0.338 and a hydraulic power of 156.6 MW. The blade loading and blade thickness
distributions specified are similar to the ones presented in Figure 2, whereas the mesh resolution is
selected as R = 6 to ensure converged results; the corresponding meridional channel discretization
is illustrated in Figure 3. The number of blades is set to 16, and a quadratic camber surface angle
distribution is specified at the leading edge as the stacking condition, with a ∆f of 8.2◦ at the shroud
with respect to the hub. This stacking condition corresponds to an average leading edge slant of
tan−1

(
rLE∆f
zLE

)
= 20◦, where rLE is the leading edge radius at the shroud and zLE is the leading

edge height. A render of the resulting runner is shown in Figure 8, whilst Figure 9 illustrates the
distributions of the blade camber surface wrap angle f and the blade angle βb = tan−1

(
r ∂f∂m

)
.

The runner geometry output by the method is evaluated using the commercial CFD software
ANSYS CFX 19.2, where the Navier–Stokes equations coupled with the k− ω SST turbulence model
are solved in steady-state. Only one blade-to-blade channel is simulated. A mesh with 8.54 million
elements and an average dimensionless wall distance over the blade of y+ = 15.1 is employed.
The velocity orientation and magnitude is prescribed at the inlet, and an average static pressure of
0 Pa is imposed at the outlet.

This simulation configuration is commonplace in the field of hydraulic turbomachines, both
in academia and in industry, and has been shown to provide numerical results that are in good
agreement with experiments [19–23], at least at the best efficiency operating conditions. Using this
well-established CFD methodology is adequate to validate the correctness and physical soundness of
the solution obtained with the implemented inverse design method, although it is acknowledged that
both numerical solutions will have some degree of discrepancy with respect to physical reality.

Figure 8. Render of one quarter of the resulting Francis runner. The pressure and suction surfaces are
depicted red and blue, respectively.
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Figure 9. Camber surface wrap angle f and blade angle βb, defined as the angle between the blade
camber surface tangent and the meridional projection of the streamwise direction.

3.2.1. Qualitative Validation

First the velocity fields are used to qualitatively validate the output of the inverse design method
implementation. On the following figures, even though the color scale is not identical in MATLAB

and CFX, the same variable range is enforced and both color bars are presented. To further aid in the
assessment of the results, the meridional projections of the blade leading and trailing edges, as well
as of the hub and shroud, are superimposed on the CFX flow fields. There is a significant agreement
for the mean flow velocity magnitude C, as evidenced in Figure 10. Both the main flow features
and the velocity magnitude are well approximated by the present method, compared to the fully-3D
Navier–Stokes solution, in spite of the underlying inviscid and axisymmetric mean flow assumptions.
The same can be said about the radial and axial mean velocity components, presented in Figures 11
and 12, respectively.

The greatest discrepancy is evidenced in the flow near the shroud, where the mean axial velocity
is somewhat overpredicted by the present method. This behavior is most likely a consequence of
the inviscid flow assumption. Another divergence occurs for the mean radial velocity prediction
near the intersection between the leading edge and the shroud, where the magnitude of the flow
acceleration in this high-curvature region is slightly underpredicted by the present method. Overall,
a good agreement between both approaches is evidenced.

Figure 10. Mean flow velocity magnitude C computed using the inverse design method
implementation (left) and the ANSYS CFX Navier–Stokes solver (right).
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Figure 11. Mean radial velocity Cr computed using the inverse design method implementation (left)
and the ANSYS CFX Navier–Stokes solver (right).

Figure 12. Mean axial velocity Cz computed using the inverse design method implementation (left)
and the ANSYS CFX Navier–Stokes solver (right).

The comparison of the mean tangential velocity Cθ is presented in Figure 13. This velocity
component illustrates the manner in which the inflow angular momentum is extracted by the runner.
As such, the notable agreement achieved validates the proposed methodology by demonstrating that
the designed runner accomplishes an essentially complete extraction of the flow angluar momentum.
Moreover, not only is the momentum extraction thorough, it is also performed according to the
prescribed blade loading distribution, as revealed by the equivalent gradient of Cθ on both solutions.

3.2.2. Quantitative Validation

For a quantitative validation of the inverse design method implementation, a comparison of the
pressure distribution on the blade along five representative span locations is performed.

The pressure difference ∆p across the blade is presented in Figure 14. As revealed by Equation (13),
the pressure difference is proportional to ∇rCθ, i.e., proportional to the blade loading, and to the
meridional projection of the relative flow velocity, which is greatest towards the shroud. Both of these
factors are encompassed in the pressure difference distributions obtained.
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Figure 13. Mean tangential velocity Cθ computed using the inverse design method implementation
(left) and the ANSYS CFX Navier–Stokes solver (right).

Figure 14. Pressure difference across the blade along five span locations computed using the inverse
design method implementation (left) and the ANSYS CFX Navier–Stokes solver (right).

There is an overall agreement between the present method results and those calculated with the
Navier–Stokes solver, although there are also some noticeable discrepancies that are probably due to a
combination of factors, including some error in the computed flow velocity, the assumptions inherent
to Equation (13), and the simplifications of the present model. Perhaps the assumption of infinitely
thin blades has the greatest impact: it is likely responsible for the underprediction of the pressure
difference in the first 8% of the chord, i.e., for m̂ < 0.08; the method then tends to compensate for
this by an overprediction of the pressure difference for 0.20 < m̂ < 0.40, especially near the shroud.
Based on the five profiles presented in Figure 14, the average relative error of the pressure difference
computed with the present method amounts to 12%, whereas the relative error in the computed torque
is equal to 3%. Since the torque is calculated by integration of the pressure difference, a smaller error
is expected because, to a certain extent, regions where the pressure difference is underpredicted will
cancel out the overcontribution of regions where it is overpredicted. Moreover, at least part of the 3%
torque overprediction by the current method is explained by the neglect of all energy losses in the flow.

A comparison of the pressure profiles over the blade is presented in Figure 15. Whereas in the
Navier–Stokes solver the pressure is actually computed on each of the blades surfaces, in the current
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implementation Equation (14) is used to estimate the average meridional pressure p, and then the
computed pressure difference across the blade is symmetrically superimposed: p±blade = p± 1

2 ∆p.

Figure 15. Pressure on the blade along five span locations computed using the inverse design method
implementation (left) and the ANSYS CFX Navier–Stokes solver (right).

Although there is some agreement in the pressure profiles over the blade between the inverse
design method implementation and the Navier–Stokes solution, there are at least two significant
discrepancies. The first one has to do with the leading and trailing edges: On the one hand, as already
discussed, the assumption of infinitely thin blades hinders the rapid build-up of the pressure at the
leading edge, and renders the formation of a stagnation point impossible. On the other hand, there
is a pressure jump at the trailing edge near the shroud that is not supposed to be there according to
the simplified model. Two possible explanations for that discrepancy are the accumulation of viscous
effects or the influence of secondary structures, although no conclusive explanation has been found.

The second significant discrepancy has to do with the repartition of the pressure difference
between the suction and pressure sides. It is evident that the simplified approach used to calculate
the pressure on each surface, namely a symmetric repartition of the pressure difference, is only
approximative. The Navier–Stokes solution suggests that, relative to the mean meridional pressure,
the pressure drop on the suction side is greater than the increment on the pressure side.

The energetic efficiency of the runner, computed using the Navier–Stokes solution, is equal to
ηe = 97.8%. This value does not consider the energy losses in the guide vanes, which were not
modeled, and by definition it does not include the disk friction or leakage discharge losses either.
Acknowledging this, the calculated efficiency is considerably high, implying that the implemented
inverse design method is actually capable of providing a good hydraulic design that follows the blade
loading distribution prescribed as input.

4. Discussion and Outlook

Even though the computational cost of the ANSYS CFX simulation is about 7000 times greater
than the present method, the latter is clearly not expected to replace the former: the Navier–Stokes
simulations are still necessary to calculate the turbine efficiency, to assess the risk of cavitation, and to
study the flow behavior at off-design operating conditions. On the contrary, the two approaches may
be complementary: the present inverse design method may be used to quickly identify suitable runner
designs that would then be evaluated thoroughly by means of the more expensive and reliable solver.

The blade angle βb distribution provided by the inverse design method, presented in
Figure 9, is non-monotonic and varies considerably along the span, suggesting that it would not
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be straightforward to arrive at this geometry by direct parametric manipulation of the blade angles,
i.e., by the direct design method. Furthermore, the manner in which these angles affect the flow is
unintuitive, whereas the effect of the blade loading on the pressure difference distribution and flow
velocity components is more intelligible. It might therefore be advantageous to integrate the present
inverse method into the design methodology of Francis runners.

The main assumptions of the model, namely considering the flow as inviscid and the blades as
infinitely thin on the periodic flow equations, are expected to introduce only minor error into the
design: The blade camber surface angle computed by the method mostly depends on the mean velocity
components, which are well predicted as evidenced in Section 3.2.1; this accuracy is partly due to the
blockage factor Bf , which effectively corrects these velocity components by accounting for the blade
thickness. The most important discrepancies were found on the pressure distribution estimated by the
method, which has no effect on the output geometry. The pressure distribution is subject to the error
introduced by the approximative nature of Equation (14), and by the lack of a stagnation region on the
leading edge, itself a consequence of the assumption of infinitely thin blades.

One possible improvement to the method would be to implement a better approximation of the
pressure distribution. In the momentum balance used to compute the meridional projection of the
pressure gradient, Equation (14), only the axisymmetric mean velocity components were considered,
i.e. the gradients in the tangential direction were neglected. Nevertheless, the flow solution does
include the complete 3D velocity field by means of the tangential harmonic decomposition, so it is in
fact possible to compute all the terms in the momentum balance to derive a better approximation of the
pressure gradient. The problem is, however, that the velocity gradients in the tangential direction are
subject to the noise introduced by the Gibbs phenomenon near the blade, so a filtering of the spurious
oscillations would prove necessary.

Another possible improvement would be to introduce more flexibility and generality into the
design method. In the current implementation, it is assumed that the blade leading edge is well aligned
with the incoming flow, that the angular momentum at the trailing edge is null, and that the extracted
work is constant along the blade span. Although these assumptions are reasonable, they limit the
design space and may prevent a widespread use of the method in real applications.

A third development direction lies in the input and output capabilities of the code. It would be
beneficial to allow the user to specify an arbitrarily parametrized meridional channel geometry, and to
facilitate several output geometry formats compatible with CAD and CFD software, since the current
implementation only allows exporting nodal coordinates. Even if these coordinates are sufficient to
reconstruct the surfaces and assemble the geometry to be used in the CFD evaluation, this process is
unnecessarily cumbersome and could be significantly shortened.

Supplementary Materials: The open-source code developed, based on MATLAB, is freely available at
http://www.mdpi.com/1996-1073/13/8/2020/s1.
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