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Abstract: This paper presents a reinforcement learning framework for solving battery scheduling
problems in order to extend the lifetime of batteries used in electrical vehicles (EVs), cellular phones,
and embedded systems. Battery pack lifetime has often been the limiting factor in many of today’s
smart systems, from mobile devices and wireless sensor networks to EVs. Smart charge-discharge
scheduling of battery packs is essential to obtain super linear gain of overall system lifetime, due to
the recovery effect and nonlinearity in the battery characteristics. Additionally, smart scheduling
has also been shown to be beneficial for optimizing the system’s thermal profile and minimizing
chances of irreversible battery damage. The recent rapidly-growing community and development
infrastructure have added deep reinforcement learning (DRL) to the available tools for designing
battery management systems. Through leveraging the representation powers of deep neural networks
and the flexibility and versatility of reinforcement learning, DRL offers a powerful solution to
both roofline analysis and real-world deployment on complicated use cases. This work presents a
DRL-based battery scheduling framework to solve battery scheduling problems, with high flexibility
to fit various battery models and application scenarios. Through the discussion of this framework,
comparisons have also been made between conventional heuristics-based methods and DRL. The
experiments demonstrate that DRL-based scheduling framework achieves battery lifetime comparable
to the best weighted-k round-robin (kRR) heuristic scheduling algorithm. In the meantime, the
framework offers much greater flexibility in accommodating a wide range of battery models and use
cases, including thermal control and imbalanced battery.
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1. Introduction

In recent years, many advanced autonomous systems rely on portable and eco-friendly energy
supplies. From mobile devices and sensors to drones and electrical vehicles (EVs), the demand for
energy supply with long lifetime and stability keeps increasing. The lithium-ion battery holds the
advantages of being eco-friendly, lightweight and compact in size, with high energy density. Figure 1a
shows the principle of a typical lithium battery. During discharge, the positive Li-ions are released
from anode and travel to cathode, which provides an electron current through the load. During charge,
the opposite happens, and the anode receives the Li-ions. The capacity of lithium-ion batteries (packs)
spans from a few mAh (ampere hour) to kAh, based on application scenarios. Figure 1b shows a
diagram of the lithium battery capacity scale for various applications, in order from low to high.

In many cases, the lithium-ion battery appears in packs connected in series and parallel, which
are also designed with controllable switches to be connected/disconnected from the load. The smart
scheduling of parallel-connected battery packs (charge, discharge, and rest) can enhance the battery
utility and extend the battery-pack lifetime. The reason lies in the fact that the lithium-ion battery has
two unique characteristics: rate-capacity effect and recovery effect [1–4]. The rate-capacity effect is the
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behavior in which the battery shows smaller overall capacity when discharged with higher current.
The recovery effect is the behavior in which the battery’s voltage can be slowly recovered during rest,
after a continuous discharge process. Due to these properties, the smart scheduling of the battery
pack can optimize the discharge current for rate-capacity effect, and make full use of the recovery
effect, thus increasing the system’s lifetime. Furthermore, a smart scheduling agent can prevent the
battery from over-charge or deep discharge, which could damage the battery’s internal chemistries,
and heavily degrade the battery’s lifetime.
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Figure 1. (a) Principle of modern lithium-ion battery. (b) Typical lithium battery capacity and voltage,
versus its application.

Research has been performed on solving the battery management problem using heuristics. The
traditional round-robin (RR) can easily out-perform the sequential scheduling, due to the battery
recovery effect. There are reported lithium-ion battery scheduling algorithms, including weighted-k
round-robin (kRR) scheduling [1], scheduling based on dynamic programming [2], and using analytical
approaches such as linear priced timed automata [3,4]. Similar battery scheduling problems have also
been solved for wireless sensor network battery usage [5], battery scheduling considering electricity
price [6], and situations where the lithium-ion battery is in combined use with a photovoltaic (PV)
rooftop [7]. These algorithms are typically formulated as solutions to constraint optimization problems,
and derived using heuristics, sometimes borrowing ideas from areas with similar abstractions, such as
operating systems.

Reinforcement learning (RL) has been a novel method in scheduling for applications such as job
scheduling in clusters [8] and smart grids [9]. Compared with conventional heuristics-based scheduling
policies, reinforcement learning has multiple advantages. Firstly, the training process of designed
reinforcement learning agents involves exploration and exploitation at the same time, and thus the
exact environment parameters (battery recovery effect, etc.) do not need to be pre-determined nor
fixed. Instead, one can let the agent learn the optimal strategy through a large number of experiments.
Secondly, with the representation power of neural networks [10], RL agents have the potential of
discovering better solutions than human intuition, as well as more closely fitting the actual environment
than rule-based models. Thirdly, neural network (NN)-based RL models are adaptive and versatile,
thanks to differentiability. Numerous works, including transfer learning [11] and model-agnostic
meta-learning (MAML) [12], have showcased that a well-trained NN agent can later be used to adapt
incrementally to new use cases, or just to further optimize for specific domains. Last, but not least,
embedded RL agents can be readily deployed in a wide range of software/hardware platforms, thanks
to the large eco-system brought by the deep learning community. Recently, the advancement of both
software and hardware technology has made it possible to fit very powerful models into tight power
and delay envelopes, with successes in computer vision [13] and speech recognition [14]; thus the design
space for the scheduling agent can be quite wide while still maintaining low resource consumption.
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Although heuristics-based schedule algorithms already achieve good results in terms of extended
battery lifetime, they are limited from requirements for solving constraint optimization problems.
Meanwhile, each heuristic scheduling algorithm is developed for certain battery models and use cases
and needs to be adjusted when those parameters change. Using RL agents for battery management
can overcome these difficulties. By developing a universal RL training framework, the optimized
scheduling algorithm can be obtained for any battery model and environment settings, considering
many factors, including the load current, temperature, battery balance requirement, and so on.
Compared with heuristic scheduling algorithms, the RL scheduling framework can therefore be more
flexible towards application scenarios. Due to the time and resource limitations, a computer-simulated
battery model can be utilized to develop the RL framework and train the RL scheduling agent.

This paper proposes a reinforcement learning framework to solve the traditional lithium-ion
battery scheduling problem. A Python-based battery model incorporating capacity charge/discharge
and thermal transfer physics is established. A multi-agent actor-critic method is used to train the battery
scheduling agent. The trained RL agent achieves battery lifetime close to the best heuristic scheduling
algorithm, protects the battery from overheating, and manages the battery imbalance conditions.

2. Battery Model

Obtaining an accurate analytical model of the lithium-ion battery is critical for training the battery
scheduling agent. As described before, two types of effect have been reported for lithium-ion batteries:
rate capacity effect and recovery effect. The kinetic battery model (KiBaM), first proposed in [15], is a
widely used battery model to explain the two effects and estimate the battery state of charge (SOC).
In the KiBaM model (Figure 2), two charge tanks, separated by a tunnel with flow rate k, are used to
model the total capacity of the battery. The right tank (direct available tank), which has a capacity
ratio c, represents the direct available capacity of the battery; the left tank (bound tank), which has a
capacity ratio 1-c, represents the charge temporarily stored and partially being used to supplement
the direct available tank. The volume of the charge in two tanks, q1 and q2, represents the amount of
charge in each tank. The height of the direct available tank, h1, is directly related to the measured open
circuit voltage (OCV) of the battery. During discharge, the electrical load will first drain charge from
the direct available tank. Due to the height difference between the two tanks (h1–h2), the charge in
the left tank will flow into the right tank through the tunnel. The flow rate k is proportional to the
conductance and height difference.
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Figure 2. Schematic of the kinetic battery model (KiBaM). The charge can flow from left tank to right
tank due to the height difference, h1–h2.

Variations of KiBaM have been proposed to improve battery modeling accuracy while incorporating
additional environmental parameters, such as temperature dependency [16]. In this work, the
fractional-order KiBaM (FO-KiBaM) proposed in [17] is applied, which includes an additional fractional
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order, α, to further fit the nonlinear battery capacity versus discharge current. The equation below
shows the battery charge/discharge dynamic behavior described in this work:

dαy1

dtα
= −i(t) + k δh(t) = −i(t) + k

(
y2(t)
1− c

−
y1(t)

c

)
(1)

dαy2

dtα
= −k δh(t) = −k

(
y2(t)
1− c

−
y1(t)

c

)
(2)

in which i(t) is the discharge current from the load, k is the conductance between the two tanks, and α is
the exponential term between load current and charge change (0 < α < 1). An α closer to 1 indicates the
battery has higher linearity in capacity, and a smaller α indicates a higher rate-capacity effect. In [17],
the estimated α is 0.99, but simulation for α = 0.9 is also performed to show that the RL agents can
perform close to the best heuristic scheduling algorithm for high non-linear battery models.

The heat generated during battery charge/discharge could cause the battery temperature to
exceed the maximum allowed, thus causing hazardous battery degradation. For efficient and safe
battery operation, the overheated battery should be cooled down before further usage. To model
the lithium-ion battery temperature, the model proposed in [18,19] was applied. The governing
equations are:

Ccell
dTcell

dt
= QP + QS −QB (3)

QP = I(V −V0) = I2Rη (4)

QS = Tcell ∆S
I

nF
(5)

QB = Ah(Tcell − Tamb) (6)

in which Ccell is the heat capacity of the battery, Tcell is the battery temperature, QP is the resistive heat,
QS is heat from system entropy change, and QB is the heat transfer between the battery and ambient
environment. In the first equation, Rη is the battery’s internal resistance. In the second equation,
∆S is the entropy change of the battery, I is the load current (positive for charging and negative for
discharging), n is 1 for lithium-ion battery, and F is the Faraday constant. In the third equation, A is the
battery surface area, h is the heat transfer coefficient, and Tamb is the ambient temperature. As can be
seen from the equation, Tcell increases quadratically with load current at the beginning, and stabilizes
when the Tcell − Tamb reaches certain threshold.

A Murata VTC6 18650 3000 mAh lithium-ion battery was selected as the base model in our
experiment [20], and the parameters of this model are listed in Table 1. The battery model has a
cylindrical shape with diameter of 18 mm and height of 65 mm, and a total weight of 46.6 g. The c was
set to be 0.5, and k was set to be 0.001; both are within reasonable range for computation precision. The
thermal parameters were approximated based on literature on similar battery models [21,22].

The numerical 18650 battery model with thermal behavior was established, based on the above
information, for developing the RL battery scheduling framework. Python was selected as the
developing language, since it has the feature of fast prototyping, and has a rich developer community
which supports many open source libraries. These libraries include circuit simulation packages
as PySpice [23] and PySerDes [24], and machine learning packages such as Tensorflow [25] and
Pytorch [26]. These packages can help develop the AI-assisted full battery management system
simulation framework.
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Table 1. The parameters of the lithium-ion battery model used in the work.

Parameter Value

Base model Murata VTC6 18650

Electrical Parameters

Capacity 3000 mAh
Nominal voltage 3.7 V
Capacity ratio c 0.5

Fractional order α 0.9 or 0.99
Recovery flow rate 0.001
Discharge current 4 A

Charge current 0.3 A
Step time duration 1 min

Physical & Thermal Parameters

Battery dimension 18 mm Ø × 65 mm
Battery mass ~45 g

Max operating temp. 60 ◦C
Battery specific heat

capacity ~0.96 ± 0.02 J /g K

Internal resistance 0.1 Ohm
Entropy change ∆S −30 J/mol·K

Heat transfer coeff. h 13 Wm−2K−1

The rate-capacity effect and recovery effect were observed in the simulation plotted in Figures 3a
and 3b. In these plots, the SOC in the direct available tank, which is indeed h1, was selected as the
y-axis. This quantity, which is directly related to the battery’s measured OCV, is used to represent
battery capacity status in later sections of this paper. The actual interpretation of the battery’s direct
available SOC from the battery’s OCV, which forms the classical problem of battery SOC estimation, is
beyond the scope of this paper. The temperature of the battery under various discharge currents was
also simulated and plotted in Figure 4. As indicated in the plot, the battery’s steady state temperature
increased quadratically with discharge current.
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3. Reinforcement Learning Algorithm

The architecture of the multi-agent RL battery scheduling framework is shown in Figure 5. The
framework consists of an environment for battery pack operation and measurement, and a group of
RL agents to control the batteries. The environment in this work consisted of four identical batteries
in parallel, each controlled by one RL agent. The state of the environment was defined as the direct
available SOC and temperature of each battery. During each step, the state of the environment was
first measured and passed to the four battery agents. Each agent then picked an action for the battery,
based on the input environment state. Three action values existed, including 0 for rest, 1 for discharge,
and 2 for charge with a constant charging current. For all the batteries with discharge action, they
were discharged with equal current to supply a total load current, Iload. If any battery’s direct available
SOC dropped below a threshold (0.5 in this work), the battery was considered deeply discharged and
was disabled in the current episode. After all batteries’ SOC dropped below that threshold value, the
episode was considered completed, and the batteries’ states were reinitialized for the next episode.
In this work, 1 minute was used as the step duration for each action pair.
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Figure 5. The architecture of the reinforcement learning battery scheduling framework. Four agents
generate actions (rest, discharge, or charge) and control the four batteries. The environment measures
battery state of charge (SOC) and temperatures, representing system states.

During the RL agent training, the environment took the actions from the battery agents, processed
the batteries, and generated the reward. The reward for each step was defined as:

Reward = 1 + RT (7)

RT = Ae
−Ea
RT (8)
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in which RT is the negative reward from temperature effect, A is a pre-exponential constant factor,
Ea is the activation energy for lithium-ion battery [22], R is the gas constant, and T is the ambient
temperature. During the discharge, each successful discharge step would add reward by 1. Agents
that could manage the batteries for longer lifetimes got higher rewards. At elevated temperatures,
a negative reward, RT, would be added to the step reward, to indicate the high temperature degradation
of the battery. Equation (8), which is indeed the Arrhenius equation, served as a normal estimation of
reaction rate under different temperatures, which indicated battery health condition degradation [27].
This reaction rate was used as an estimation of the battery degradation, and A was arbitrarily picked
so that the reward reduced to zero when the battery temperature increased above ~60 ◦C, which is
a nominal upper operating temperature for lithium-ion batteries. Under such environment reward
settings, the agents were trained to maximize the number of steps for discharging, while maintaining
the battery temperature within safe margins.

A multi-agent actor-critic method was used for training the battery agents, which is a training
method used in cooperative tasks such as desktop gaming [28,29] and microgrid energy scheduling [30].
Figure 6 shows the proposed neural network structure for training the battery agents. The battery
agents generated the action from the measured environment states and sent to the environment. The
environment processed the battery, calculated rewards, and took measurements to generate the new
state. The step reward and the new state were then sent to the central critic, which calculated the
td-target and then tuned the critic and agent networks. The centralized training was used since all
agents shared the same environment states, which could be used by one value function approximator.
The actor network was composed of two ResNet layers [31] followed by a fully connected layer, and
the critic was composed of three fully connected layers.
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Figure 6. Multi-agent actor-critic training method for battery scheduling. The agent consists of
two ResNet layers followed by a fully connected layer, and the central critic consists of three fully
connected layers.

4. Experiment

4.1. Electrical Only

The RL battery scheduling framework was first tested under the electrical-only setting, and the
battery thermal model was temporarily disabled, as well as the thermal reward, RT. Two separate
scenarios under electrical-only settings were tested: one without charging current (so effectively
only discharge and rest action), and the other with a constant charging current. Table 2 summarizes
the battery scheduling results (minutes) for the two scenarios, using both an RL scheduling agent
and heuristic scheduling. According to the table, the RL agent achieved the best results for all
experiment setups, while other heuristic scheduling algorithms only achieved good results under one
or a few circumstances.



Energies 2020, 13, 1982 8 of 13

Table 2. Battery scheduling results using various scheduling algorithms under the simulation setup in
this work, electrical-only environment. Unit: minutes.

Experiment Sequential RR 2RR All-Way (4RR) RL Agent

Discharge only (α = 0.99) 84 92 92 92 92
Discharge only (α = 0.9) 112 124 136 145 145

Charge enabled (α = 0.99) 84 116 108 92 116
Charge enabled (α = 0.9) 112 152 154 145 154

In the discharge-only scenario, the constant load current, Iload, was set to be 4 A. Figure 7a shows
the reward during the RL agent training, Figure 7b shows the battery’s available SOC curve using
the RL agents before training, and Figure 7c shows the battery’s available SOC curve using the RL
agents after training, with α as 0.9. The total reward converged after ~50,000 training episodes. Before
the RL agents were trained, they generated rather random actions, and some batteries depleted fast
with high instant current, losing the opportunity to recover capacity. After training, the batteries were
discharged evenly with smaller instant currents, and maintained longer lifetimes. Figure 7c also shows
the discharge curves using RR and all-way (4RR) scheduling. Due to the high rate-capacity effect in the
FO-KiBaM model, a lower instant discharge current for each individual battery can save the battery
capacity. Meanwhile, as long as the battery’s available SOC was above 50% in the experiment setup,
the charge in the direct available tank could be supplemented from the storage tank. As a result, the
all-way scheduling performed superior to the RR scheduling. The RL agents trained in the experiment
behaved close to the all-way scheduling.
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Figure 7. (a) Total reward during training, no temperature effect, discharge-only scenario. (b) SOC
curves of the four batteries in discharge-only scenario, reinforcement learning (RL) agent scheduling,
before training. (c) SOC curves of four batteries, in discharge-only scenario, round-robin (RR), 2RR,
all-way (4RR), and RL agent scheduling, after training. (d) Voltage of four batteries, 2RR, 4RR, and RL
agent scheduling, in charging enabled mode. The parameter αwas selected as 0.9 in these plots.



Energies 2020, 13, 1982 9 of 13

In the scenario with a constant charging current, the constant charging current was arbitrarily set
to be 0.3 A. The charging action could supply additional charge into the direct available tank, thus could
be the optimized action for batteries with low available SOC. Figure 7d shows the battery’s available
SOC curve using the 2RR, all-way, and RL agent scheduling. The 2RR scheduling performed superior
to the all-way scheduling under constant charging enabled, and the trained RL agents performed
close to the 2RR scheduling. The intuition is that 2RR allowed certain cycles of charging, rather than
completely discharging in all-way scheduling, and maintained the instant discharge current lower
than 1RR. The trained RL agents behaved close to 2RR scheduling.

4.2. Thermal Effect

The framework was then tested with battery temperature effect, and the temperature reward, RT,
was enabled. An increased constant load current, Iload, of 16 A was used, so the battery temperature
could easily exceed the safety margin. Figure 8a shows the rewards during training. The total reward
converged after ~6000 training episodes. Figure 8b shows the battery’s available SOC and temperature
curve before the training, and Figure 8c shows the curves after training. Before the RL agents were
trained, certain batteries got discharged more than others, and the temperature of these batteries
increased over the maximum allowed value, such as battery 4, which increased to over 100 ◦C. After
training, the RL agents learned to discharge the batteries evenly to reduce the instant current, thus
reducing the generated heat quadratically, as indicated in Equations (3)–(6). The RL agents thus
maintained the battery temperature under 60 ◦C before depletion. With a higher instant current,
the RL agents could also be trained to shut down the whole battery system (pick all action as 0) to
ensure safety.
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4.3. Imbalanced Battery

The imbalanced battery is a condition in which the SOC of the batteries inside a battery pack
differ from each other. Causes of imbalanced battery include manufacture variation of battery capacity,
variation of battery internal resistance, and variation of the battery discharge/charge current [32]. Active
and passive cell balancing methods have been developed, in which passive methods dissipate energy
for high voltage cells, and active methods use techniques such as switched capacitors to transport
charges between imbalanced batteries [33,34]. With the support of a battery management system, the
imbalance of the battery should be observed in advance and balanced via the scheduling policy.

In the proposed RL scheduling framework, it is also demonstrated that the RL battery agents can
be trained to observe the imbalanced batteries and smartly schedule the battery activity to gradually
balanced the battery packs. In the experimental setup, one of the four batteries was randomly picked
to have an 80% initial SOC of the other cells. To train the RL agents to balance the batteries, a negative
battery imbalance reward, Rimb, was added into the reward equation:

Reward = 1 + RT + Rimb (9)

Rimb = k ·σ(SOC) (10)

in which σ(SOC) is the standard deviation between the battery’s available SOC, and k is a scale factor,
which was selected as −10 so that a standard deviation of 0.1 between battery SOC would cause the
Rimb to be −1. RT was ignored in the experiment for simplifications. Figure 9a shows the battery’s
available SOC curves using the traditional RR scheduling, and Figure 9b shows the SOC curves using
the trained RL agents. The RL agents learned to first balance the battery pack by discharging the
stronger batteries with higher priority, so that the SOC gap between batteries were reduced. After the
SOC of the four batteries were close, the RL agents then discharged all batteries evenly to maintain the
balanced condition until depletion.
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5. Discussion

The experiment results demonstrate that the trained RL agents can smart schedule the battery
activity under different scenarios. For electrical-only environment settings, this RL agent achieved
comparable results to the best heuristic kRR scheduling algorithm. For heuristic kRR scheduling, as
the number of battery n increases, there exists an optimized value k (1 ≤ k ≤ n) for longest battery
pack lifetime, which can be obtained using analytical equations from exact battery capacity models.
The RL agents can be trained to approximate the optimized kRR algorithm for any battery model
and environment settings, without needing information on the battery’s electrical model and exact
charge/discharge current, and without solving complicated analytical equations. This feature of
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RL scheduling allows the on-demand modification of the scheduling algorithm according to the
specific battery model and environment settings, without changing the agent training framework. In
certain cases, battery and environment physical parameters could also be unavailable for users to
access directly.

For environment settings with thermal effect, there is no exact temperature reward, RT, generated
in each training step in real application scenarios, but the battery temperature affects the battery
state of health (SOH), which is directly related to the battery capacity. By obtaining the battery SOH
model with temperature degradation, the RL agents can be trained to maximize the battery’s total
lifetime for a fixed number of deployment cycles. This can involve a decision tradeoff that involves
either discharging the batteries for the current deployment cycle as much as possible or stopping the
discharge and let the battery cool down for future use.

This work developed an open-source Python-based lithium-ion battery model and scheduling
architecture. Based on this battery mode, an open-source benchmark for battery scheduling algorithm
comparisons could be further established. Although much research has been performed to enhance
battery scheduling efficiency, the battery models in those works are distinct from each other, and the
algorithm implementation details are not accessible. By maintaining this open-source Python library
and adding additional battery models and use cases, the development of battery scheduling algorithms
could be driven forward.

6. Conclusions and Future Work

In conclusion, this work demonstrates the promise of using multi-agent reinforcement learning
frameworks to solve lithium-ion battery scheduling problems. A FO-KiBaM-based lithium-ion
battery model with thermal effect is implemented in Python and used for simulation. A multi-agent
reinforcement learning framework is implemented, and the RL agents are trained using the simulated
battery data. The trained RL agents learn to charge/discharge the battery intelligently, and the
performance matches the best heuristic scheduling algorithm for various battery model parameters
and environmental settings. The RL agents also learn to maintain the battery temperature under safety
margins and balance the battery pack’s SOC as needed.

Under purely electrical settings, the RL agent learns to schedule the battery after ~50,000 training
episodes. The agent for α = 0.9 battery achieves a lifetime of 145 cycles in discharge-only environment,
and 154 cycles in charge-enabled environment, which are both same as the best kRR scheduling results.
Under thermal effect enabled settings, the RL agent learns to discharge the batteries evenly after ~6000
training episodes, to keep all batteries’ temperatures under 60 ◦C during discharge. Under imbalanced
battery settings, the RL agent learns to balance the battery’s SOC and stop further discharging the
weaker battery, until SOCs for all batteries are balanced.

As future work, more accurate and complete lithium-ion battery models, including OCV
measurement and SOC/SOH estimation, can be used for simulation. Such models can be obtained by
measuring the real battery charge/discharge curves and extracting the battery physical parameters.
The proposed RL-based battery scheduling algorithm could be implemented and used in real-time
embedded systems, with the assistance of modern embedded AI platforms, such as Nvidia Jetson
Nano [35], for neural network acceleration.
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