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Abstract: Due to the wide integration of information technology in equipment and weapons, a stable
and reliable power supply has become one of the pivotal factors in modern warfare to achieve victory.
As a critical infrastructure to provide continuous energy supply during long-duration electrical
outage, military microgrid always suffers fierce attacks from the enemy. In order to improve the
defense effect, a lot of investigation has been made into resource allocation, Distributed Generator
(DG) distribution, network reconfiguration, and so forth. Nevertheless, the information gap between
defender and attacker has not been considered in the literature. Therefore, this paper is intended to
highlight this information mismatch to appeal for community attention and evaluate its capability
to improve defensive performance. Firstly, a novel assessment metric is proposed to identify the
level of asymmetric information. Then, an Attacker-Defender (AD) model is developed to describe
the zero-sum game between two opposite agents, which is subsequently tackled with dual theory
and big-M method. Finally, three cases ranging from 6-bus to 57-bus are utilized for numerical
experiments to analyze the influence of asymmetric information on military microgrid confrontation.
Results on various levels of attack strength validated the effectiveness and significance of asymmetric
information in eliminating the attack damage and improving the defensive performance.

Keywords: asymmetric information; microgrid confrontation; attacker-defender model; mixed
integer linear programming

1. Introduction

The military force of a country is founded primarily for protecting national territory and global
interests from aggression and loss, but its task has gone far beyond that in recent years, including
emergency rescue, humanitarian aid, public order maintenance, and so forth. Therefore, the intensity
and scope of military operations keep increasing, resulting in the consumption of all sorts of fossil fuel
skyrocketed to great heights [1]. It has been reported that the United States Department of Defense
(DOD) is the largest single energy consumer in the country [2]. In order to deliver petroleum products
to forward operation and stationary bases, soldiers need to risk their lives in midway due to unexpected
explosions caused by the enemy. Furthermore, a considerable amount of fuel will be exhausted during
the transportation trip. On the other hand, consisting of various energy sources and storage units that
may work in a coordinated manner to support loads, a microgrid provides a lot of prominent benefits,
for example, island ability, reliability, security, and utilization of Renewable Energy Sources (RES),
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and so forth. Of which the most crucial is providing continuous energy supply during long-duration
electrical outage, which is of great significance in real warfare since the domestic electric grid is always
the first to be hit as critical infrastructures. Therefore, driven by the motivation to improve security
and efficiency, a lot of demonstration projects are implemented by DOD [3], including the Smart
Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) Joint Capability
Technology Demonstration (JCTD) [4], Fort Sill Microgrid Demonstration [5], and Environmental
Security and Technology Certification Program (ESTCP) [3]. Due to profound advantages of microgrid
and the vast leading effects of US DOD, microgrid has been constructed in a lot of countries for military
utilization in the last five years [1,6,7].

Generally, microgrid is immune to unforeseen cascading failures in central grid due to its island
capability. Nevertheless, it is still vulnerable when faced with targeted attacks, for example, cyber
and physical (CP) actions to cut the real-time balance between energy generation and consumption.
Compared with domestic grid, microgrid has a smaller capacity and inertia, thus it is more sensitive to
power imbalance. Therefore, microgrid security concern has been proposed and investigated in the
community of academic, industry, and military.

In Reference [8], the CP attack was categorized into three types: physical attack, cyberattack,
and human attack. The operation through or against people who are related to power system is
termed as ‘human attack’, including bribery, threat, and social engineering, and so forth. Cyberattack
launches action to disrupt the availability, integrity, and confidentiality of Supervisory Control and
Data Acquisition (SCADA) system, of which the most popular ones are: denial of service/distributed
denial of service (DoS/DDoS) attack [9], false data injection attack [10], load redistribution attack [11],
traffic analysis, and cracking password, and so forth. Physical attack affects the system via invaliding
component and equipment, such as tripping line [12], isolating bus, disconnecting generator,
and damaging transformer, and so forth. For more details, the interested reader is referred to
References [13,14]. In addition to CP attack, natural disasters, such as hurricane and flood, are
popular factors to induce power outage [15]. A comprehensive review of the impacts of natural
disasters on power system is generated in Reference [16].

Although cyberattack gained the most attention in the literature, physical attack is the most
popular method in military microgrid confrontation between defenders and attackers due to the
following two reasons: (1) The communication network of military microgrid is physically isolated
with the Internet, thus cyberattack is very hard or almost impossible to implement; (2) Human attack
is also very difficult since the spy is trained to gain more valuable information. Consequently, tripping
a line with a bomb turns to be a direct and the most effective method, which is then regarded as the
type of attack for consideration in this paper.

Concentrated on a fixed type of attack, there is a zero-sum game between two opposite agents:
defender and attacker. A tri-level optimization model is proposed to identify the optimal allocation
strategy of defending resources in Reference [17], where coordinated attacks including physical
short-circuiting of transmission lines and intruding of communication network are considered.
In Reference [18], malicious attack is alleviated via optimal Distributed Generator (DG) islanding and
network topology reconfiguration, where a Defender-Attacker-Defender (DAD) model is developed
and addressed by the Column and Constraint Generation (CCG) method [19]. Following on from the
combination of DAD and CCG, the single wave of attack is extended to multi-period by Reference [20],
where defensive transmission lines and DGs are respectively planned and allocated to mitigate the
multi-period attack damage. In Reference [21], the role of Battery Energy Storage Systems (BESSs) in
enhancing microgrid robustness in overcoming attacks is investigated, where four participants are
included in a framework involving interactions between a robustness-oriented economic dispatch
model and a bilevel Attacker-Defender (AD) model. In Reference [22], the problem of allocating
fortification resources in power grid for the purpose of maximizing its immunity against malicious
attack is investigated, resulting in a two-stage optimization model with the capability of generalizing
several other network fortification problems and the corresponding exact solution algorithm.



Energies 2020, 13, 1954 3 of 21

Although sophisticated problems, models, and algorithms are reported in the above literature,
there is an implicit assumption that the attacker is informed with full information of the target
system, for example, the topology, generator capacity, load amount, branch distribution, and other
component parameters, and so forth, which is impossible in most cases of real confrontation. Actually,
there is an information gap between attacker and defender in military microgrid confrontation
since deception strategies are ubiquitous in the battlefield. In order to highlight this information
mismatch to appeal for community attention and evaluate its capability to improve defensive
performance, the information possessed by defender and attacker is defined as symmetric and
asymmetric information in this paper, and the impact of asymmetric information in military microgrid
confrontation is comprehensively investigated.

Since asymmetric information in military microgrid confrontation has not been numerically
investigated before, an assessment metric should be defined, which consists the first contribution of
this paper. The asymmetric and symmetric information are abstracted as binary vectors, then the
distance between them is naturally determined as assessment metric. However, after testing on a
6-bus demo system, various traditional vector distance definitions, for example, Minkowski distance,
Hamming distance, and Jaccard distance, and so forth, are not suitable for the case in this paper since
they cannot identify full characteristic of information mismatch. Therefore, a novel definition of binary
vector distance combining coverage rate and deviation rate is proposed in this paper as the assessment
metric of asymmetric information.

In order to analyze the influence of asymmetric information in military microgrid confrontation,
the game between defender and attacker is formulated as an AD model. Based on dual theory
and big-M method, the bilinear max − min AD model is evolved into a single level Mixed Integer
Linear Programming (MILP) problem and tackled with commercial solver Cplex. Set the symmetric
information of 6-bus, 24-bus, and 57-bus systems as benchmark, the influence of asymmetric
information is quantitatively analyzed based on a lot of numerical experiments, which is the second
contribution of this paper. Based on simulation results on various levels of attack strength and
asymmetric information across all three systems, the effectiveness and significance of asymmetric
information in eliminating attack damage and improving defensive performance have been validated.

The rest of this paper is organized as follows. Section 2 reveals the information involved in
military microgrid confrontation and proposes assessment metric on the basis of comparison and
analyses. Based on the AD model of microgrid confrontation, solution methodology to analyze the
influence of asymmetric information is provided in Section 3. Three cases including 6-bus, 24-bus,
and 57-bus systems are employed for numerical experiment in Section 4, with results are presented
and discussed. Section 5 concludes this paper.

2. Assessment Metric of Asymmetric Information

Microgrid confrontation is ubiquitous ranging from industry to military, where terrorists and
enemies are typical attackers taking cyber and physical actions respectively. Based on years of training
and practicing, attackers might be sophisticated and professional, but the attack decision and action
cannot be made without comprehensive recognition of the target system. Therefore, the microgrid
information/data is of great significance for attackers. In order to illustrate what information is
involved in the microgrid confrontation, a military conflict scenario is introduced. However, due to
the extensive utilization of defensive and deception strategies, there is an information gap between
defender and attacker, which is very important in real confrontation and should not be omitted. Thus,
how to quantitatively analyze the asymmetric information is investigated in this section.

2.1. Information Involved in the Microgrid Confrontation

In the era of information, IT equipments are playing fundamental roles in modern warfare.
Generally, IT devices are powered by electricity, thus microgrid is widely built to provide reliable,
continuous, and stable electricity. On the other hand, in order to grasp the initiative in a war, disabling
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all types of IT equipment is the most common and efficient strategy. Therefore, microgrid always
suffers various types of attacks from the enemy. Correspondingly, defense operations will be taken by
the defender.

In the confrontation of microgrid, a lot of information will be utilized by both sides to make
rational decisions, including network topology, nodal feature, branch attribute, generator/load
characteristic, and so forth. In order to facilitate the description, a 6-bus system retrieved in
Reference [23] is employed as an example, whose topology is shown in Figure 1.

1 2
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G G

G

G :   Generator

:   Load:   Branch

1 :   Bus

Legend:

Figure 1. Single line diagram of 6-bus sample system.

As shown in Figure 1, the system includes 6 buses, 11 branches, 3 generators, and 3 loads. In the
smart grid era, distributed generators and battery storage systems will be placed as well to improve
the robustness, for example, minimizing the unserved load. Although the sum number of components
is revealed in Figure 1, a lot of physical quantity is still unknown, such as generator capacity, load
level, branch power flow limit, and so forth. In reality, the accurate information of system topology
is very hard to be squeezed by enemies, not to mention other detailed physical data. Therefore,
the scope of this paper on asymmetric information analysis is restricted in topology level based on the
following assumptions.

• Assumption 1: The number of buses is recognized by enemies, that is, the number of nodes is
exposed and fixed during the microgrid confrontation.

• Assumption 2: The detailed physical quantity of each equipment is inaccessible by enemies, thus
from the perspective of an attacker, each branch/generator/load is indifferent and the average
data will be utilized.

Generally, the node is very difficult to conceal, thus Assumption 1 is proposed to provide a
basic framework for this research. The accurate information of each component can only be achieved
by physical measurement or document retrieval, but both methods are impractical for enemy to
implement, thus Assumption 2 states that the detailed physical quantity is inaccessible. Although the
exact data cannot be gained, estimation is much easier, therefore the average data is employed by
enemy according to Assumption 2. It should be noted that both assumptions are proposed to facilitate
the description and demonstration, and the methodology of asymmetric information analysis can still
be established without these assumptions.
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2.2. Assessment Metric

In terms of microgrid data, the defender has full access permission, thus the topology information
obtained by him/her is accurate and utilized as the reference for asymmetry analysis. On the other
hand, the attacker is trying to collect microgrid information via satellite observation, Unmanned Aerial
Vehicle (UAV) detection, and espionage, and so forth. Since the successful implementation of each
method depends on political, technical, meteorological, and geographical conditions, the accuracy
of acquired data cannot be guaranteed. Figure 2 illustrates the asymmetric information on system
topology between attackers and defenders. For each sub-figure, defender is regarded as the benchmark
with respect to the total number (sum) and position (binary numbers: 1 represents there is a
generator/load/branch, and 0 otherwise). It can be observed that attacker 1 has accurate information
on the sum, but the distribution exists a minor deviation. Attacker 2 and 3 has a bigger and smaller
estimation of system scales respectively, resulting in the inaccurate assessment of component number
and location.

Bus 1 2 3 4 5 6 Sum Bus 1 2 3 4 5 6 Sum

Defender 1 1 1 0 0 0 3 Defender 0 0 0 1 1 1 3

Attacker 1 1 1 0 0 0 1 3 Attacker 1 0 1 0 0 1 1 3

Attacker 2 1 0 1 0 1 1 4 Attacker 2 1 0 1 0 1 1 4

Attacker 3 1 0 0 1 0 0 2 Attacker 3 0 0 1 1 0 0 2

(a) (b)

Order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Sum

Branch 1－2 1－3 1－4 1－5 1－6 2－3 2－4 2－5 2－6 3－4 3－5 3－6 4－5 4－6 5－6

Defender 1 0 1 1 0 1 1 1 1 0 1 1 1 0 1 11

Attacker 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 0 11

Attacker 2 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 12

Attacker 3 1 0 1 1 0 1 0 1 1 1 0 1 1 0 0 9

(c)

Figure 2. Illustration of asymmetric information on system topology between attackers and defenders:
(a) The installation of generators; (b) The distribution of loads; (c) The existence of branches.

Based on Figure 2, it is obvious that the system topology information can be generated as binary
row vectors, for example, x = [1 1 1 0 0 0] and y = [1 1 0 0 0 1] for defender and attacker 1 in
Figure 2a. Therefore, the asymmetric information between attacker and defender can be represented
by the distance between vectors x and y.

Traditionally, vector differences can be measured by a lot of methods, of which the most popular
one is Minkowski distance:

DMinkowski = p

√√√√ n

∑
j=1

∣∣xj − yj
∣∣p, (1)

where n is the total number of elements in vector x; p takes the value of 1, 2, 3, . . . , ∞ to identify various
types of definition.

If p = 1, the Minkowski distance evolves into city block distance:

DCityblock =
n

∑
j=1

∣∣xj − yj
∣∣ . (2)

If p = 2, the Minkowski distance emerges into Euclidean distance:

DEuclidean =
√
(x− y)(x− y)T . (3)
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If p = ∞, the Minkowski distance results into Chebychev distance:

DChebychev = max
{∣∣xj − yj

∣∣n
j=1

}
. (4)

In addition, other types of vector distance definitions are popular in the literature, such as Cosine
distance (5), Hamming distance (6), and Jaccard distance (7).

DCosine = 1− xyT√
(xxT) (yyT)

, (5)

DHamming =
#
{(

xj 6= yj
)n

j=1

}
n

, (6)

DJaccard =
#
{(

xj 6= yj
)n

j=1
⋂ [(

xj 6= 0
)n

j=1
⋃ (

yj 6= 0
)n

j=1

]}
#
{(

xj 6= 0
)n

j=1
⋃ (

yj 6= 0
)n

j=1

} , (7)

where #{ } is an operator counting the number of elements in the set enclosed by braces.
All the above distance definitions are employed to identify the asymmetric information between

attacker and defender in the 6-bus system, and results are summarized in Table 1.

Table 1. Vector distances measured by various methods.

Distance Generator Information Load Information Branch Information

Atker. 1 Atker. 2 Atker. 3 Atker. 1 Atker. 2 Atker. 3 Atker. 1 Atker. 2 Atker. 3

DCityblock 2.00 3.00 3.00 2.00 3.00 3.00 6.00 7.00 4.00
DEuclidean 1.41 1.73 1.73 1.41 1.73 1.73 2.45 2.65 2.00
DChebychev 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DCosine 0.33 0.42 0.59 0.33 0.42 0.59 0.27 0.30 0.20
DHamming 0.33 0.50 0.50 0.33 0.50 0.50 0.40 0.47 0.27
DJaccard 0.50 0.60 0.75 0.50 0.60 0.75 0.43 0.47 0.33

It can be seen from Table 1 that DChebychev is constant for all cases, thus nothing can be generated in
terms of the sufficiency of information between different attackers. For generator and load information,
DCityblock, DEuclidean, and DHamming cannot distinguish the difference between attacker 2 and 3. To sum
up, DCosine and DJaccard gain better performance in this dataset. However, they are far away to be
nominated as a candidate to evaluate binary vector distances in this research since the obtained single
value might be resulted by two completely opposite scenarios. For example, if

x = [1 1 1 1 1 1 1 1 1 1 0 0 0 0 0],

y1 = [1 1 0 0 1 1 0 0 1 1 0 0 0 0 0],

y2 = [1 1 1 1 1 1 1 1 1 0 1 1 1 1 1],

there has DJaccard(y1) = 0.4 and DJaccard(y2) = 0.4; however, y1 and y2 are totally different since the
former attacker missed 4 real branches while the latter included 5 fake circuits.

To address the above concerns, a novel definition of vector distance (8) is proposed in this paper.

DHybrid = f

#
{(

xj = 1
)n

j=1
⋂ (

yj = 1
)n

j=1

}
#
{(

xj = 1
)n

j=1

}
× 100 +

#
{(

xj = 0
)n

j=1
⋂ (

yj = 1
)n

j=1

}
#
{(

yj = 1
)n

j=1

}
+ ε

= 100 · f (A) + B, ,

(8)
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where f (A) is a function rounding A to 2 digits to the right of the decimal point, that is, f (A) =

round(A, 2) in Matlab; ε is an arbitrary small positive number. Examples of f ( ) and ε can be given
as f (0.9735) = 0.97 and ε = 0.001. In order to give a full explanation of Equation (8), the following
questions are proposed and answered:

• What is A? The numerator of A is #
{(

xj = 1
)n

j=1
⋂ (

yj = 1
)n

j=1

}
, showing the number of real

components confirmed by attacker. The denominator is the total number of elements in vector x.
Therefore, A is defined as coverage rate from the viewpoint of defender, representing how much
real information has been identified.

• What is B? The numerator of B is #
{(

xj = 0
)n

j=1
⋂ (

yj = 1
)n

j=1

}
, representing the number of fake

components (it is not exist in reality but incorrectly confirmed by attacker). The denominator is
the total number of elements in vector y. Therefore, B is defined as deviation rate in respect to
attacker, indicating how much fake information has been introduced.

• Why is the function f ( ) employed? According to the mathematical formulation, the range of
A is valued in [0, 1]. In terms of precision concerns, 2 digits after decimal point is acceptable.
The reason to utilize function f ( ) is cutting tail to avoid duplicates in the following addition
operation 100 · f (A) + B.

• Why is the term ×100 utilized? Combined with f ( ), the reason to include ×100 is eliminating
duplicate numbers. Due to the rounding operation, values f (A) are fixed into 101 discrete
numbers {0.00, 0.01, 0.02, · · · , 0.98, 0.99, 1.00}. By multiplying 100, the term 100 · f (A) turns
into an integer in [0, 100], while B is decimal, thus adding these two terms will deduce a unique
number and the addition operation is reversible, which means given a number within the domain
of DHybrid ∈ [0.00, 101.00), the values of A and B can be exactly derived. For example, if DHybrid =

97.4323, there have A = 0.97 and B = 0.4323.
• Why is the term +ε introduced? ε is included to restrict the range of B is [0, 1), that is, eliminating

the number B = 1. If B can arrive at 1, the duplication might arise in some special cases.
For instance, DHybrid = 98.00 can be interpreted as [A, B] = [0.97, 1.00] or [A, B] = [0.98, 0.00],
resulting completely opposite conclusion for B. Therefore, by adding ε, B = 1.00 is evolved into

1
1+ε < 1.00, the value DHybrid = 98.00 can only be interpreted as [A, B] = [0.98, 0.00].

According to the vector distance definition (8), the value of DHybrid can be decoded into integer
and decimal parts, representing coverage and deviation rate respectively. From the attacker’s point of
view, one prefers a higher coverage rate and lower deviation rate, thus DHybrid = 100.00 is optimal,
meaning accurate microgrid information is acquired. Based on coverage and deviation rates, the quality
of DHybrid can be quickly identified. In order to facilitate quality identification, a fitness function is
proposed in (9), and the corresponding variation tendency along with DHybrid changing is given in
Figure 3.

VFitness = A− B. (9)

In Figure 3, there is a red baseline VFitness = 0, indicating the coverage rate is equal to deviation
rate, thus it can be regarded as an acceptance line. If A < B, the quality of information is poor and the
attack action may conduct on fake components; if A > B, the attacker may implement a threatening
attack based on the obtained information.
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Figure 3. Fitness value evaluation of vector distance DHybrid.

3. Influence Analysis of Asymmetric Information on Microgrid Confrontation

It is known in Section 2 that the asymmetric information between attacker and defender can
be measured by binary vector distance DHybrid. Nevertheless, the impact of DHybrid on microgrid
confrontation is still waiting to be discovered. To fill this gap, a mathematical model of microgrid
confrontation is developed in this section, where the attack strength is sensitive to the accuracy of
acquired information. Therefore, by comparing the attack effectiveness derived from symmetric and
asymmetric information, impacts can be identified and analyzed.

3.1. Confrontation with Symmetric Information

In a microgrid confrontation, the attacker is always trying to maximize the unserved power via
various types of assault, and the defender utilizes Optimal Power Flow (OPF) tools to minimize the
power imbalance. Different kinds of attacks can result in the invalidation of generator, load, and branch,
and so forth. In this paper, the attack action to destroy circuits is investigated as a representative. On the
other hand, OPF strategies to redispatch generator and branch power flow is employed by defenders.
Therefore, the mathematical model of microgrid confrontation in accordance with References [24–29]
is formulated as follows:

max
zl

∆ (10)

subject to :

zl = {0, 1}; ∀l ∈ L (11)

∑
l∈L

zl ≤ N (12)

∆ = min
pi , fl ,S

+
b ,S−b ,θ f r(l),θto(l)

{
∑
b∈B

(
S+

b + S−b
)

(13)

subject to :

∑
i∈I|bu(i)=b

pi + ∑
l∈L|to(l)=b

fl − ∑
l∈L| f r(l)=b

fl − S+
b + S−b = Db : (βb); ∀b ∈ B (14)

fl = (1− zl)γl(θ f r(l) − θto(l)) : (πl); ∀l ∈ L (15)

− Fl ≤ fl ≤ Fl : (σl , φl); ∀l ∈ L (16)

0 ≤ pi ≤ Pi : (µi); ∀i ∈ I (17)
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S+
b ≥ 0, S−b ≥ 0; ∀b ∈ B

}
. (18)

where the definition of utilized indexes, sets, parameters, and decision variables are summarized in
Table 2.

Table 2. Definition of indexes, sets, parameters, and decision variables.

Symbol Definition

∆ System power imbalance.
zl Binary variable, if circuit l is attacked zl = 1; otherwise zl = 0.
L Set of branch indexes.

N Maximum number of branches can be attacked.
pi Power output of generator i.
fl Power flow of line l.

S+
b Power surplus at bus b.

S−b Power deficit at bus b.
f r(l) Origin bus of line l.
to(l) Destination bus of line l.

θb Phase angle at bus b.
B Set of bus indexes.
I Set of generator indexes.

bu(i) The bus that generator i is connected with.
Db Demand at bus b.
γl Suspectance of line l.
Fl Power flow capacity of line l.
Pi Capacity of generator i.

β, π, σ, φ, µ Dual variables corresponding to each constraints.

The objective function (10) to be maximized is the system power imbalance after attack.
Constraint (11) restricts the decision variable to be binary. Due to limited resources and budget,
constraint (12) states that the maximum number of actions can be implemented is N. Equation (13)
defines the system power imbalance as the sum of nodal unserved power, which is the objective
function of the OPF minimization subproblem as well. The nodal power balance equation is formulated
as constraint (14) according to Kirchhoff’s Current Law (KCL). Equation (15) defines the DC power
flow for each branch. Constraints (16), (17), and (18) give the lower and upper limit for branch power
flow, generator output power, and nodal power surplus/deficit, respectively.

The optimization problem (10)–(18) is a two-level AD model: the upper-level (10)–(13) represents
the attacker’s decision to maximize the system power imbalance; the lower-level (13)–(18) corresponds
to the defender’s OPF reaction strategy. It should be noted that the lower-level problem is
parameterized by the upper-level decision variables zl .

Although both objective function and constraint of optimization problem (10)–(18) are linear,
the optimization problem (10)–(18) cannot be tackled by the majority of off-the-shelf solvers,
for example, Cplex, Matlab, and Lingo, and so forth, due to its mixed-integer bilinear max-min property.
Therefore, the dual theory is utilized in this paper to reformulate the lower-level minimize problem
into a maximize one, facilitating the transformation from max-min to max-max. Since two two-level
maximize problem can be easily merged into a single-level one, resulting in a MILP problem, which is
suitable for commercial and open-source solvers. In addition to dual theory, the Karush–Kuhn–Tucker
(KKT) condition can also be employed to perform the transformation as well.

According to dual theory, the single-level maximize equivalent problem is given as:

∆ = max
zl ,βb ,πl ,σl ,φl ,µi

{
∑
b∈B

Dbβb −∑
l∈L

Flσl −∑
l∈L

Flφl −∑
i∈I

Piµi

}
(19)

subject to :

zl = {0, 1}; ∀l ∈ L (20)
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∑
l∈L

zl ≤ N (21)

βbu(i) − µi ≤ 0; ∀i ∈ I (22)

βto(l) − β f r(l) + πl + σl − φl = 0; ∀l ∈ L (23)

− 1 ≤ βb ≤ 1; ∀b ∈ B (24)

∑
l∈L|to(l)=b

(1− zl) γlπl − ∑
l∈L| f r(l)=b

(1− zl) γlπl = 0; ∀b ∈ B (25)

σl , φl ≥ 0; ∀l ∈ L (26)

µi ≥ 0; ∀i ∈ I, (27)

where constraints (20)–(21) are identical with upper-level constraints (11)–(12), whereas (22)–(25) are
dual constraints corresponding to primal variables pi, fl ,

{
S+

b , S−b
}

, and θ, respectively.
Although the optimization problem (19)–(27) is single-level, it is nonlinear due to the production

term zlπl in constraint (25) between binary and continuous variables. For the sake of generating MILP,
linearizion process should be implemented, that is, substituting (25) with the following constraints:

∑
l∈L|to(l)=b

(γlπl − γlτl)− ∑
l∈L| f r(l)=b

(γlπl − γlτl) = 0; ∀b ∈ B (28)

−M(1− zl) ≤ τl − πl ≤ M(1− zl); ∀l ∈ L (29)

−Mzl ≤ τl ≤ Mzl ; ∀l ∈ L, (30)

where τl is introduced to replace zlπl ; M is a big positive number; constraints (29)–(30) are included to
guarantee the equivalence between τl and zlπl , that is, achieving τl = zlπl .

Finally, the mixed-integer bilinear max-min problem (10)–(18) is converted into a standard
MILP as:

Objective : Eq.(19) (31)

Constraints : Eq.(20)− (24), Equation (26)− (27), Equation (28)− (30). (32)

3.2. Confrontation with Asymmetric Information

Take branch data into consideration, the asymmetric information means the attacker obtained
dataset L′ is different from the reality, that is, L′ 6= L. In order to evaluate the impact of asymmetric
information, the following two steps should be implemented:

• Step 1: Calculate the MILP (31)–(32) with the input of L′ rather than L, then collect the optimal
attack plan z′;

• Step 2: Substitute the obtained z′ into (25), and calculate the MILP (19)–(27) after the elimination
of constraints (20) and (21), then remark the final objective value as ∆′.

In Step 1, the attacker generates an attack plan z′ due to asymmetric information L′. In step 2,
the attack plan z′ is validated with original network, where dataset L is utilized, to evaluate how
much power imbalance can be caused to the real system. Therefore, the subtraction between ∆
and ∆′ provides an ideal indicator to illustrate the impact of asymmetric information. Generally,
∆ − ∆′ is greater than 0, showing that less power imbalance is induced due to the mismatch
between L′ and L. Therefore, the magnitude of ∆ − ∆′ has a positive correlation with the impact
of asymmetric information.

4. Numerical Experiments

In order to identify the impacts of asymmetric information on microgrid confrontation, 3 systems
retrieved from Matpower [23] are employed for numerical experiments in this section—case6ww,
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case24_ieee_rts, and case57. The simulation program is coded with Matlab 2019b, where Cplex
12.10.0 is called via YALMIP [30] for the solution of MILP. The execution hardware is a 64-bit Windows
PC with 16.0 GB RAM and 2 Intel Core i7-7700HQ CPU running at 2.80 GHz.

4.1. Experiment Settings

As shown in Section 3.2, the asymmetric information L′ is utilized as input for impact analysis.
However, in reality, it is almost impossible to achieve the explicit details of L′. Actually, the difficulty
is identical to the attacker who wants to obtain L. Fortunately, the quality of asymmetric information
DHybrid is much easier to be gained, thus it is supposed to be available in the following experiments.

Therefore, in this experiment, the asymmetric information L′ is generated based on DHybrid. It can
be seen from (8) that a variety of L′ may result into a single DHybrid value, thus giving a DHybrid
can generate several L′. In order to address this concern, the random sampling strategy is utilized
as follows:

• Step 1: Generate the pool of real and fake branches Lreal and L f ake. Obviously, real branch pool is
the original circuit, that is, Lreal = L, whose cardinality is nL. On the other hand, any fake branch
can be built between two nodes where there is no real branch, thus L f ake = L f ull − Lreal , where

L f ull is the full set of branch linking any two bus in a system, whose cardinality is C2
n = n(n−1)

2 .
• Step 2: Get the coverage and deviation rates A and B based on the value of DHybrid and its

definition Equation (8).
• Step 3: Compute the number real and fake circuits nreal and n f ake in the asymmetric information

L′. Based on Steps 1 and 2, there has

nreal
nL

= A,
n f ake

nreal + n f ake
= B. (33)

Thus the following result can be obtained

nreal = AnL, n f ake =
AB

1− B
nL. (34)

It should be noted that nreal and n f ake might not be integers, thus a round() process should be
implemented, that is, let nreal = round(nreal) and n f ake = round(n f ake).

• Step 4: Randomly select a number of nreal and n f ake branches from Lreal and L f ake, then L′ can be
obtained by combining these two resulted subsets.

It should be pointed out that random numbers are introduced in Step 4, thus a single DHybrid
value may result in a lot of L′. In order to eliminate the influence of randomness, the above steps
are implemented 50 times for each DHybrid, resulting in 50 sets of L′. Taking these L′ as input for
asymmetric information analysis illustrated in Section 3.2, the minimum, average, maximum value of
∆− ∆′ will be reported.

Although the original and terminal nodes of each branch in L f ake have been fixed in Step 1, other
parameters are not identified, for example, susceptance γl and power flow capacity Fl . Since each fake
line is not included in the original dataset, γij and Fij for all ij ∈ L f ake are generated according to the
following equations:

γij = average (γl) , where {l ∈ L| f r(l) = i ∪ to(l) = i ∪ f r(l) = j ∪ to(l) = j} , (35)

Fij = average (Fl) , where {l ∈ L| f r(l) = i ∪ to(l) = i ∪ f r(l) = j ∪ to(l) = j} . (36)

Take the fake branch 1–6 shown in Figure 1 as an example, there has

γ16 =
γ12 + γ14 + γ15 + γ26 + γ36 + γ56

6
. (37)
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All the datasets utilized in this paper are fetched from Reference [23], but the power flow capacity
Fl for case57 is vacant, that is, Fl = 0 for all branches. In this experiment, we randomly generate Fl for
these missing values according to the following equation:

Fl = 70 + round(10al), (38)

where al ∈ [0, 1] is a random number subject to standard uniform distribution. Combined with (38),
the domain of Fl is [70, 80], which is suitable for this system according to the explanation revealed in
Reference [31]. For quick reference and reproductivity purposes, case57 data reported in the appendix
of Reference [31] is utilized in this experiment.

If the impact of asymmetric information on microgrid confrontation is analyzed in single fixed
circumstance, the conclusion might be biased. Thus a variety of scenarios are generated for simulation,
including different levels of asymmetric information DHybrid and attack strength Ra. In this experiment,
DHybrid is sampled on 6 values: 100.0, 90.1, 80.2, 70.3, 60.4, and 50.5, with the VFitness corresponds to
1.0, 0.8, 0.6, 0.4, 0.2, and 0.0, respectively; Ra takes 5 values: 10%, 20%, 30%, 40%, and 50%. For each Ra,
the result of N in (21) is obtained as N = RanL, that is, the attack strength is capable to destroy a rate
of Ra branches compared with the total number of real circuits.

Based on the above settings, 30 sets of simulation results will be generated for each target system,
and each set is obtained based on a statistic of 50 random simulations.

4.2. The 6-bus System

As shown in Figure 1, the 6-bus system consists of 6 buses, 11 branches, 3 generators, and 3 loads,
thus n = 6 and nL = 11. In terms of different values of DHybrid, the numbers of nreal and n f ake can

be calculated according to (34). Table 3 summarizes the result. Based on C2
n = n(n−1)

2 , L f ull contains
15 circuits, therefore the cardinality of L f ake is 4, which means n f ake should be less than or equal to
4. However, n f ake is 6 when DHybrid takes 50.5, indicating that DHybrid = 50.5 is not suitable for this
system. Therefore, another set of DHybrid ranging from 100.0 to 70.25 is employed for case6ww, and the
corresponding nreal and n f ake are reported in Table 3 as well. In Table 3, ‘Sum’ is equal to the cardinality
of asymmetric information L′.

Table 3. Two settings of DHybrid for case6ww.

Setting 1 Setting 2

DHybrid VFitness nreal n f ake Sum DHybrid VFitness nreal n f ake Sum

100.0 1.0 11 0 11 100.0 1.0 11 0 11
90.10 0.8 10 1 11 95.05 0.9 10 1 11
80.20 0.6 9 2 11 90.10 0.8 10 1 11
70.30 0.4 8 3 11 85.15 0.7 9 2 11
60.40 0.2 7 4 11 80.20 0.6 9 2 11
50.50 0.0 6 6 12 75.25 0.5 8 3 11

Based on the above Setting 2 and different values of Ra, numerical experiments are implemented
on case6ww and the result is collected in Table 4. DHybrid = 100.0 means the information obtained
by attacker is symmetric, thus there is no variation for 50 random simulations, that is, the minimum,
average, and maximum are always identical. Due to its symmetric information feature, its result on
different attack strength is utilized as a denominator to calculate the damage percentage. It can be
seen from Table 4 that the majority of damage percentage value is less than 100%, which means the
resulted system power imbalance is smaller than symmetric information, that is, the effect of attack is
weakened by the introduction of asymmetric information.
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Table 4. Numerical simulation results of case6ww.

(
DHybrid, VFitness

) Attack Strength = (Ra, N); Power Imbalance = (∆, Damage Percentage)

(10%, 1) (20%, 2) (30%, 3) (40%, 4) (50%, 6)

∆ Per. ∆ Per. ∆ Per. ∆ Per. ∆ Per.

(100.0, 1.0)

Min. 0.00 \ 50.00 100.0% 70.00 100.0% 95.00 100.0% 180.00 100.0%
Avg. 0.00 \ 50.00 100.0% 70.00 100.0% 95.00 100.0% 180.00 100.0%
Max. 0.00 \ 50.00 100.0% 70.00 100.0% 95.00 100.0% 180.00 100.0%

(95.05, 0.9)

Min. 0.00 \ 0.00 0.0% 0.00 0.0% 35.00 36.8% 100.00 55.6%
Avg. 0.00 \ 19.02 38.0% 44.56 63.7% 79.97 84.2% 135.73 75.4%
Max. 0.00 \ 50.00 100.0% 70.00 100.0% 95.00 100.0% 180.00 100.0%

(90.10, 0.8)

Min. 0.00 \ 0.00 0.0% 0.00 0.0% 35.00 36.8% 116.54 64.7%
Avg. 0.00 \ 29.84 59.7% 44.63 63.8% 77.70 81.8% 144.46 80.3%
Max. 0.00 \ 50.00 100.0% 70.00 100.0% 95.00 100.0% 180.00 100.0%

(85.15, 0.7)

Min. 0.00 \ 0.00 0.0% 0.00 0.0% 10.00 10.5% 40.00 22.2%
Avg. 0.00 \ 12.98 26.0% 23.92 34.2% 48.08 50.6% 109.36 60.8%
Max. 0.00 \ 50.00 100.0% 70.00 100.0% 95.00 100.0% 180.00 100.0%

(80.20, 0.6)

Min. 0.00 \ 0.00 0.0% 0.00 0.0% 5.71 6.0% 50.00 27.8%
Avg. 0.00 \ 9.96 19.9% 21.89 31.3% 52.52 55.3% 109.13 60.6%
Max. 0.00 \ 50.00 100.0% 70.00 100.0% 95.00 100.0% 180.00 100.0%

(75.25, 0.5)

Min. 0.00 \ 0.00 0.0% 0.00 0.0% 0.00 0.0% 3.33 1.9%
Avg. 0.00 \ 1.77 3.5% 14.45 20.6% 34.52 36.3% 70.56 39.2%
Max. 0.00 \ 50.00 100.0% 58.57 83.7% 84.53 89.0% 120.00 66.7%

Although Table 4 concludes all experiment results, it is very difficult to draw significant
conclusions due to its messy layout. In order to facilitate the observation, Figure 4 is given to
rephrase the data reported in Table 4, where the box chart is introduced for presentation, with the
lower bar, middle mark, and upper bar corresponding to the minimum, average, and maximum values,
respectively. If the middle mark is closer to the lower/upper bar, the average suffers more effect from
the minimum/maximum value. At first sight, it is obvious that the power imbalance is higher with
the stronger attack strength. For each Ra, DHybrid = 100.0 should be observed first since it represents
the symmetric information, and the result provides a basis for the analysis of asymmetric information.
Take Ra = 10% as an example, the system power imbalance is 0 for all DHybrid = 100.0, indicating
that the system can withstand a broken of 10% branches. If the damage caused by an attacker with
accurate information is 0, then 0 power imbalance can be induced with asymmetric information, which
is identical to Figure 4. If Ra goes higher to 20%, 50MW load cannot be served when DHybrid = 100.0.
It should be pointed out that, the minimum of ∆ can reach 0 for all five DHybrid 6= 100.0 cases, which
means the attack has no effect on system loads at some scenarios out of 50 samples. On the other
hand, a 50 MW power imbalance can also be caused by these attacks, showing the effect of asymmetric
information may not be helpful. However, the average of ∆ is reducing with the decreasing of
DHybrid, thus benefits from the introduction of asymmetric information have been validated. Similar
findings can be generated for Ra equals 30%, 40%, and 50%. One interesting observation is that,
if DHybrid = 75.25, the minimum damage can be as small as 0, and the maximum is always smaller
than the case of DHybrid = 100.0. Therefore, it can be concluded that asymmetric information with a
level of DHybrid = 75.25 or lesser will always result in weaker damage than symmetric information.
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Figure 4. The impact of asymmetric information on system power imbalance under different attack
strength levels for case6ww.

In addition to Figure 4, Table 4 can be interpreted from another dimension as shown in Figure 5.
It can be seen that the difference between Ra = 10% and Ra = 50% is getting smaller from
DHybrid = 100.0 to DHybrid = 75.25, indicating that the destruction effect gained form the increase of
attack strength is diminished by asymmetric information. Therefore, if deception strategies are utilized
by defender to increase the level of asymmetric information, the microgrid system can withstand
stronger attack strength in confrontations.

1 0 0 9 5 . 0 5 9 0 . 1 8 5 . 1 5 8 0 . 2 7 5 . 2 5
0

2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0
2 0 0  R a  =  1 0 %  R a  =  2 0 %  R a  =  3 0 %  R a  =  4 0 %  R a  =  5 0 %

 
 

�
�

�
�

��
�


	
�

��
�



�

��
��

�
�

�

A s y m m e t r i c  I n f o r a m t i o n  D H y b r i d

Figure 5. The impact of attack strength on system power imbalance under different asymmetric
information levels for case6ww.
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4.3. The 24-bus System

The original data of case24-ieee-rts are downloaded from Reference [23], where several
generators are connected into one node and there exist two or more circuits between two buses.
In this experiment, these supplement generators and circuits are evolved into a single one with their
capability accumulated, thus 24 buses, 34 branches, 10 generators, and 17 loads, are included in this
system. Based on the default experiment settings given in Section 4.1, results are generated and
reported in Table 5.

Table 5. Numerical simulation results of case24-ieee-rts.

(
DHybrid, VFitness

) Attack Strength = (Ra, N); Power Imbalance = (∆, Damage Percentage)

(10%, 3) (20%, 7) (30%, 10) (40%, 14) (50%, 17)

∆ Per. ∆ Per. ∆ Per. ∆ Per. ∆ Per.

(100.0, 1.0)

Min. 387.0 100.0% 1373.0 100.0% 1468.0 100.0% 1607.0 100.0% 1607.0 100.0%
Avg. 387.0 100.0% 1373.0 100.0% 1468.0 100.0% 1607.0 100.0% 1607.0 100.0%
Max. 387.0 100.0% 1373.0 100.0% 1468.0 100.0% 1607.0 100.0% 1607.0 100.0%

(90.1, 0.8)

Min. 0.0 0.0% 106.0 7.7% 110.0 7.5% 445.0 27.7% 456.0 28.4%
Avg. 114.4 29.6% 832.1 60.6% 1033.9 70.4% 1144.4 71.2% 1248.2 77.7%
Max. 387.0 100.0% 1373.0 100.0% 1468.0 100.0% 1607.0 100.0% 1607.0 100.0%

(80.2, 0.6)

Min. 0.0 0.0% 0.0 0.0% 0.0 0.0% 0.0 0.0% 299.9 18.7%
Avg. 59.3 15.3% 305.1 22.2% 534.8 36.4% 666.1 41.4% 923.4 57.5%
Max. 309.0 79.8% 973.0 70.9% 1052.0 71.7% 1428.0 88.9% 1607.0 100.0%

(70.3, 0.4)

Min. 0.0 0.0% 0.0 0.0% 0.0 0.0% 0.0 0.0% 0.0 0.0%
Avg. 32.3 8.3% 156.5 11.4% 229.4 15.6% 456.8 28.4% 593.3 36.9%
Max. 309.0 79.8% 698.0 50.8% 698.0 47.5% 1428.0 88.9% 1253.0 78.0%

(60.4, 0.2)

Min. 0.0 0.0% 0.0 0.0% 0.0 0.0% 0.0 0.0% 0.0 0.0%
Avg. 10.4 2.7% 55.1 4.0% 113.5 7.7% 226.4 14.1% 431.2 26.8%
Max. 309.0 79.8% 473.0 34.5% 873.0 59.5% 977.0 60.8% 1373.0 85.4%

(50.5, 0.0)

Min. 0.0 0.0% 0.0 0.0% 0.0 0.0% 0.0 0.0% 0.0 0.0%
Avg. 3.3 0.9% 39.5 2.9% 80.6 5.5% 97.8 6.1% 184.0 11.5%
Max. 165.0 42.6% 309.0 22.5% 564.0 38.4% 698.0 43.4% 623.0 38.8%

Generally, Table 5 shows a similar feature with Table 4. In order to further investigate the
difference, damage percentage is employed for comparison as the level of system power imbalance
is quite different. Therefore, Table 6 is obtained from the subtraction of Table 4 by Table 5. It can be
seen that the majority of percentage difference value is greater or equal than 0%, indicating that better
performance on the defense (less damage percentage) has been achieved by case24-ieee-rts.

Figure 6 illustrates the increase of power imbalance ∆ across different level of attack strength
Ra. If DHybrid = 100.0, there is a flat tail on the trend line, that is, ∆{Ra=40%} = ∆{Ra=50%}, meaning
the attack limit has been reached. Therefore, it can be concluded that the system can be destroyed
with Ra = 40% of attack strength under symmetric information. On the other hand, the attack limit is
much larger than 40% for asymmetric information, which is validated by Figure 7, where additional
experiments are carried out on Ra = {60%, 70%, 80%, 90%, 100%}. It is shown in Figure 7 that,
if symmetric information is obtained by attacker, the power imbalance can be reached under Ra = 10%
is 387 MW, which cannot be arrived without Ra = 50% and 90% under asymmetric information
circumstance DHybrid = 70.30 and 50.50, respectively. In addition, if asymmetric information DHybrid =

{90.1, 80.2, 70.3, 60.4, 50.5} is involved, the system cannot be destroyed even it suffers an attack
strength of Ra = 100%.
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Table 6. Difference on the damage percentage between case6ww and case24-ieee-rts.(
DHybrid, VFitness

)
Ra = 10% Ra = 20% Ra = 30% Ra = 40% Ra = 50%

(100.0, 1.0)

Min. \ 0.00% 0.00% 0.00% 0.00%
Avg. \ 0.00% 0.00% 0.00% 0.00%
Max. \ 0.00% 0.00% 0.00% 0.00%

(90.1, 0.8)

Min. \ −7.72% −7.49% 9.15% 27.18%
Avg. \ −22.57% −6.76% 12.97% −2.27%
Max. \ 0.00% 0.00% 0.00% 0.00%

(80.2, 0.6)

Min. \ 0.00% 0.00% 36.84% 46.08%
Avg. \ 37.46% 27.32% 40.34% 22.80%
Max. \ 29.13% 28.34% 11.14% 0.00%

(70.3, 0.4)

Min. \ 0.00% 0.00% 10.53% 22.22%
Avg. \ 14.56% 18.54% 22.18% 23.84%
Max. \ 49.16% 52.45% 11.14% 22.03%

(60.4, 0.2)

Min. \ 0.00% 0.00% 6.02% 27.78%
Avg. \ 15.91% 23.53% 41.19% 33.79%
Max. \ 65.55% 40.53% 39.20% 14.56%

(50.5, 0.0)

Min. \ 0.00% 0.00% 0.00% 1.85%
Avg. \ 0.67% 15.15% 30.26% 27.75%
Max. \ 77.49% 45.25% 45.55% 27.90%
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Figure 6. The impact of asymmetric information on system power imbalance under different attack
strength levels for case24-ieee-rts.
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Figure 7. Influence of asymmetric information on system power imbalance for case24-ieee-rts.

4.4. The 57-bus System

This grid consists of 57 buses, 78 branches, 7 generators, and 42 loads. Table 7 summarizes the
simulation results. In each column, the power balance is decreasing as DHybrid decreases, validating
the fact that system damage is partially eliminated by asymmetric information. Similar to the former
two cases, Figure 8 is presented to give an intuitive vision. It can be seen that the attack limit is reached
when Ra = 20%, which is much earlier than case24-ieee-rts, resulting in a long flat tail. In order
to adjust the tail into similar figure with case6ww and case24-ieee-rts, the following two attempts
are taken:

• If the branch capacity is increased, the system might not be such easy to be destroyed. Thus,
the first strategy is increasing the predefined range of Fl from [70, 80] to [100, 110] by adding
30 MW to (38). However, only minor variations are obtained in comparison with Table 7 and
Figure 8.

• The second strategy is reducing the attack strength from Ra = {10%, 20%, 30%, 40%, 50%} to
Ra = {00%, 5%, 10%, 15%, 20%} based on the assumption that the system attack limit cannot
be easily revised. Result is illustrated in Figure 9, expressing a similar pattern with the former
two cases.
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Table 7. Numerical simulation results of case57.

(
DHybrid, VFitness

) Attack Strength = (Ra, N); Power Imbalance = (∆, Damage Percentage)

(10%, 8) (20%, 16) (30%, 23) (40%, 31) (50%, 39)

∆ Per. ∆ Per. ∆ Per. ∆ Per. ∆ Per.

(100.0, 1.0)

Min. 403.8 100.0% 449.8 100.0% 449.8 100.0% 449.8 100.0% 449.8 100.0%
Avg. 403.8 100.0% 449.8 100.0% 449.8 100.0% 449.8 100.0% 449.8 100.0%
Max. 403.8 100.0% 449.8 100.0% 449.8 100.0% 449.8 100.0% 449.8 100.0%

(90.1, 0.8)

Min. 140.4 34.8% 226.8 50.4% 230.8 51.3% 259.8 57.8% 255.8 56.9%
Avg. 302.1 74.8% 362.1 80.5% 379.3 84.3% 398.5 88.6% 375.6 83.5%
Max. 403.8 100.0% 449.8 100.0% 449.8 100.0% 449.8 100.0% 449.8 100.0%

(80.2, 0.6)

Min. 117.5 29.1% 159.6 35.5% 214.8 47.8% 177.1 39.4% 219.7 48.8%
Avg. 250.9 62.1% 303.3 67.4% 318.2 70.7% 340.2 75.6% 331.1 73.6%
Max. 403.8 100.0% 424.8 94.4% 449.8 100.0% 449.8 100.0% 449.8 100.0%

(70.3, 0.4)

Min. 55.0 13.6% 154.8 34.4% 136.0 30.2% 166.9 37.1% 105.6 23.5%
Avg. 183.0 45.3% 257.7 57.3% 275.7 61.3% 268.4 59.7% 274.8 61.1%
Max. 303.6 75.2% 416.8 92.7% 417.0 92.7% 416.8 92.7% 416.8 92.7%

(60.4, 0.2)

Min. 42.2 10.5% 79.0 17.6% 109.8 24.4% 120.3 26.7% 60.5 13.5%
Avg. 153.5 38.0% 206.6 45.9% 238.7 53.1% 244.4 54.3% 227.4 50.6%
Max. 314.8 78.0% 403.8 89.8% 403.8 89.8% 365.8 81.3% 345.8 76.9%

(50.5, 0.0)

Min. 6.7 1.7% 38.6 8.6% 41.1 9.1% 56.8 12.6% 72.7 16.2%
Avg. 96.6 23.9% 155.6 34.6% 186.9 41.6% 187.9 41.8% 188.3 41.9%
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Figure 8. The impact of asymmetric information on system power imbalance under different attack
strength levels for case57.
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Figure 9. The impact of asymmetric information on system power imbalance under different attack
strength levels for case57.

4.5. Discussion

Observing Figures 6, 8 and 9, it can be seen that in each column with a fixed Ra value,
the system power imbalance is monotonically decreasing from DHybrid = 100.0 to DHybrid = 50.50.
Since the VFitness value corresponding to DHybrid = {100.0, 90.1, 80.2, 70.3, 60.4, 50.5} is
{1.0, 0.8, 0.6, 0.4, 0.2, 0.0}, showing an monotonic decrease trend as well, it can be carefully
deduced that under any given Ra, the system suffers less damage if VFitness is smaller. However,
Figure 4 is an exception with violations at Ra = 20%, Ra = 40%, and Ra = 50%. Take DHybrid = 95.05
and DHybrid = 90.10 at Ra = 20% as an example, there has ∆{DHybrid=95.05} < ∆{DHybrid=90.10} in
Figure 4. Compared with DHybrid = 95.05, the attacker with DHybrid = 90.10 asymmetric information
has smaller coverage rate A and larger deviation rate B, thus the caused power imbalance should
be less based on common sense and logical analysis. The reason for the irrational results in Figure 4
is statistical bias due to limited sample number. In order to validate the explanation, additional
experiments with 200 samples are implemented. Finally, the violation is eliminated. Therefore, it can
be concluded that the definitions of DHybrid and VFitness are generally reasonable for wide utilization
on judgment, comparison, and decision-making, and so forth.

5. Conclusions

The asymmetric information in military microgrid confrontation is proposed and investigated
in this paper. In order to facilitate the description, symmetric and asymmetric information is
distinguished. Since the existing method is not suitable to evaluate the level of information mismatch,
a novel asymmetric information assessment metric is proposed, where coverage and deviation rates
are included. On the other hand, the military microgrid confrontation is formulated as an AD model,
which is addressed via dual theory and big-M method. The resulted MILP is then solved by the
on-the-shelf solver Cplex. With the consideration of various levels of attack strength, numerical
experiments are implemented on three systems retrieved from Matpower ranging from 6-bus to 57-bus.
Results indicate that asymmetric information is beneficial to alleviate attack damage and improve
defensive performance. Although only branch-tripping is considered in this paper, we intend to claim
that the definition of assessment metric and influence analysis methodology can be easily extended to
other types of attacks where there is an information gap between defender and attacker.



Energies 2020, 13, 1954 20 of 21

Author Contributions: Investigation, P.J.; Methodology, P.J.; Supervision, T.Z.; Validation, S.H.; Writing—original
draft, S.H.; Writing—review & editing, T.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the Distinguished Natural Science Foundation of Hunan Province
(No. 2017JJ1001) and the National Natural Science Foundation of China (Nos. 71901210, 61973310). This work was
also supported by the China Postdoctoral Science Foundation (No. 2017M623381).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kashem, S.B.A.; De Souza, S.; Iqbal, A.; Ahmed, J. Microgrid in military applications. In Proceedings
of the IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering
(CPE-POWERENG), Doha, Qatar, 10–12 April 2018; pp. 1–5.

2. Strakos, J.K.; Quintanilla, J.A.; Huscroft, J.R. Department of Defense energy policy and research: A framework
to support strategy. Energy Policy 2016, 92, 83–91. [CrossRef]

3. Van Broekhoven, S.; Judson, N.; Galvin, J.; Marqusee, J. Leading the Charge: Microgrids for Domestic
Military Installations. IEEE Power Energy Mag. 2013, 11, 40–45. [CrossRef]

4. Stamp, J. The SPIDERS project—Smart Power Infrastructure Demonstration for Energy Reliability and
Security at US military facilities. In Proceedings of the IEEE PES Innovative Smart Grid Technologies (ISGT),
Washington, DC, USA, 16–20 January 2012; p. 1.

5. Johnson, M.D.; Ducey, R.A. Overview of U.S. Army microgrid efforts at fixed installations. In Proceedings
of the IEEE Power & Energy Society General Meeting, Detroit, MI, USA, 24–29 July 2011; pp. 1–2.

6. Podlesak, T.; Vitale, J.; Wilson, B.; Bohn, F.; Gonzalez, M.; Bosse, R.; Siegfried, S.; Lynch, J.; Barnhill,
W. Auto-Tuning for Military Microgrids. In Proceedings of the IEEE Energy Conversion Congress and
Exposition (ECCE), Baltimore, MD, USA, 29 September–3 October 2019; pp. 6270–6277.

7. Masrur, M.A.; Skowronska, A.G.; Hancock, J.; Kolhoff, S.W.; McGrew, D.Z.; Vandiver, J.C.; Gatherer, J.
Military-Based Vehicle-to-Grid and Vehicle-to-Vehicle Microgrid—System Architecture and Implementation.
IEEE Trans. Transp. Electrif. 2018, 4, 157–171. [CrossRef]

8. Xiang, Y.; Wang, L.; Liu, N. Coordinated attacks on electric power systems in a cyber-physical environment.
Electr. Power Syst. Res. 2017, 149, 156–168. [CrossRef]

9. Ali, S.; Li, Y. Learning Multilevel Auto-Encoders for DDoS Attack Detection in Smart Grid Network. IEEE
Access 2019, 7, 108647–108659. [CrossRef]

10. Liu, X.; Li, Z. False data attack models, impact analyses and defense strategies in the electricity grid. Electr. J.
2017, 30, 35–42. [CrossRef]

11. Xiang, Y.; Wang, L. A game-theoretic study of load redistribution attack and defense in power systems.
Electr. Power Syst. Res. 2017, 151, 12–25. [CrossRef]

12. Zhu, Y.; Yan, J.; Tang, Y.; Sun, Y.L.; He, H. Joint Substation-Transmission Line Vulnerability Assessment
Against the Smart Grid. IEEE Trans. Inf. Forensics Secur. 2015, 10, 1010–1024. [CrossRef]

13. He, H.; Yan, J. Cyber-physical attacks and defences in the smart grid: A survey. IET Cyber-Phys. Syst. Theor.
Appl. 2016, 1, 13–27. [CrossRef]

14. Gunduz, M.Z.; Das, R. Cyber-security on smart grid: Threats and potential solutions. Comput. Netw. 2020,
169, 107094. [CrossRef]

15. Lu, X.; Wang, J.; Guo, L. Using microgrids to enhance energy security and resilience. Electr. J. 2016, 29, 8–15.
[CrossRef]

16. Wang, Y.; Chen, C.; Wang, J.; Baldick, R. Research on Resilience of Power Systems Under Natural
Disasters—A Review. IEEE Trans. Power Syst. 2016, 31, 1604–1613. [CrossRef]

17. Lai, K.; Illindala, M.; Subramaniam, K. A tri-level optimization model to mitigate coordinated attacks on
electric power systems in a cyber-physical environment. Appl. Energy 2019, 235, 204–218. [CrossRef]

18. Lin, Y.; Bie, Z. Tri-level optimal hardening plan for a resilient distribution system considering reconfiguration
and DG islanding. Appl. Energy 2018, 210, 1266–1279. [CrossRef]

19. Zeng, B.; Zhao, L. Solving two-stage robust optimization problems using a column-and-constraint generation
method. Oper. Res. Lett. 2013, 41, 457–461. [CrossRef]

http://dx.doi.org/10.1016/j.enpol.2016.01.036
http://dx.doi.org/10.1109/MPE.2013.2258280
http://dx.doi.org/10.1109/TTE.2017.2779268
http://dx.doi.org/10.1016/j.epsr.2017.04.023
http://dx.doi.org/10.1109/ACCESS.2019.2933304
http://dx.doi.org/10.1016/j.tej.2017.04.001
http://dx.doi.org/10.1016/j.epsr.2017.05.020
http://dx.doi.org/10.1109/TIFS.2015.2394240
http://dx.doi.org/10.1049/iet-cps.2016.0019
http://dx.doi.org/10.1016/j.comnet.2019.107094
http://dx.doi.org/10.1016/j.tej.2016.11.013
http://dx.doi.org/10.1109/TPWRS.2015.2429656
http://dx.doi.org/10.1016/j.apenergy.2018.10.077
http://dx.doi.org/10.1016/j.apenergy.2017.06.059
http://dx.doi.org/10.1016/j.orl.2013.05.003


Energies 2020, 13, 1954 21 of 21

20. Lei, H.; Huang, S.; Liu, Y.; Zhang, T. Robust Optimization for Microgrid Defense Resource Planning and
Allocation Against Multi-Period Attacks. IEEE Trans. Smart Grid 2019, 10, 5841–5850. [CrossRef]

21. Lai, K.; Wang, Y.; Shi, D.; Illindala, M.S.; Jin, Y.; Wang, Z. Sizing battery storage for islanded microgrid
systems to enhance robustness against attacks on energy sources. J. Mod. Power Syst. Clean Energy 2019,
7, 1177–1188. [CrossRef]

22. Costa, A.; Georgiadis, D.; Ng, T.S.; Sim, M. An optimization model for power grid fortification to maximize
attack immunity. Int. J. Electr. Power Energy Syst. 2018, 99, 594–602. [CrossRef]

23. Zimmerman, R.D.; Murillo-Sanchez, C.E.; Thomas, R.J. MATPOWER: Steady-State Operations, Planning,
and Analysis Tools for Power Systems Research and Education. IEEE Trans. Power Syst. 2011, 26, 12–19.
[CrossRef]

24. Haghighat, H.; Zeng, B. Bilevel Mixed Integer Transmission Expansion Planning. IEEE Trans. Power Syst.
2018, 33, 7309–7312. [CrossRef]

25. Xiang, Y.; Wang, L. An Improved Defender–Attacker–Defender Model for Transmission Line Defense
Considering Offensive Resource Uncertainties. IEEE Trans. Smart Grid 2019, 10, 2534–2546. [CrossRef]

26. Davarikia, H.; Barati, M.; Al-Assad, M.; Chan, Y. A novel approach in strategic planning of power networks
against physical attacks. Elect. Power Syst. Res. 2020, 180, 106140. [CrossRef]

27. Wang, Z.; Perera, A. Robust optimization of power grid with distributed generation and improved reliability.
Energy Procedia 2019, 159, 400–405. [CrossRef]

28. Zeraati, M.; Aref, Z.; Latify, M.A. Vulnerability Analysis of Power Systems Under Physical Deliberate Attacks
Considering Geographic-Cyber Interdependence of the Power System and Communication Network. IEEE
Syst. J. 2018, 12, 3181–3190. [CrossRef]

29. Davarikia, H.; Barati, M. A tri-level programming model for attack-resilient control of power grids. J. Mod.
Power Syst. Clean Energy 2018, 6, 918–929. [CrossRef]

30. Löfberg, J. YALMIP: A Toolbox for Modeling and Optimization in MATLAB. In Proceedings of the 2004
IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508), New Orleans, LA,
USA, 2–4 September 2004; pp. 284–289.

31. Jiang, P.; Huang, S.; Zhang, T. Optimal Deception Strategies in Power System Fortification against Deliberate
Attacks. Energies 2019, 12, 342. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TSG.2019.2892201
http://dx.doi.org/10.1007/s40565-019-0501-1
http://dx.doi.org/10.1016/j.ijepes.2018.01.020
http://dx.doi.org/10.1109/TPWRS.2010.2051168
http://dx.doi.org/10.1109/TPWRS.2018.2865189
http://dx.doi.org/10.1109/TSG.2018.2803783
http://dx.doi.org/10.1016/j.epsr.2019.106140
http://dx.doi.org/10.1016/j.egypro.2018.12.069
http://dx.doi.org/10.1109/JSYST.2017.2761844
http://dx.doi.org/10.1007/s40565-018-0436-y
http://dx.doi.org/10.3390/en12030342
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Assessment Metric of Asymmetric Information
	Information Involved in the Microgrid Confrontation
	Assessment Metric

	Influence Analysis of Asymmetric Information on Microgrid Confrontation
	Confrontation with Symmetric Information
	Confrontation with Asymmetric Information

	Numerical Experiments
	Experiment Settings
	The 6-bus System
	The 24-bus System
	The 57-bus System
	Discussion

	Conclusions
	References

