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Abstract: In the smart grid environment, the penetration of electric vehicle (EV) is increasing,
and dynamic pricing and vehicle-to-grid technologies are being introduced. Consequently, automatic
charging and discharging scheduling responding to electricity prices that change over time is required
to reduce the charging cost of EVs, while increasing the grid reliability by moving charging loads
from on-peak to off-peak periods. Hence, this study proposes a deep reinforcement learning-based,
real-time EV charging and discharging algorithm. The proposed method utilizes kernel density
estimation, particularly the nonparametric density function estimation method, to model the usage
pattern of a specific charger at a specific location. Subsequently, the estimated density function is
used to sample variables related to charger usage pattern so that the variables can be cast in the
training process of a reinforcement learning agent. This ensures that the agent optimally learns
the characteristics of the target charger. We analyzed the effectiveness of the proposed algorithm
from two perspectives, i.e., charging cost and load shifting effect. Simulation results show that the
proposed method outperforms the benchmarks that simply model usage pattern through general
assumptions in terms of charging cost and load shifting effect. This means that when a reinforcement
learning-based charging/discharging algorithm is deployed in a specific location, it is better to use
data-driven approach to reflect the characteristics of the location, so that the charging cost reduction
and the effect of load flattening are obtained.

Keywords: electric vehicle charging/discharging; dynamic pricing; reinforcement learning; kernel
density estimation; charger usage pattern

1. Introduction

As environmental problems, such as climate change caused by global warming and air pollution,
have become global issues, electric vehicle (EV) are considered as an alternative to vehicles that use
fossil fuels. Accordingly, the distribution of EVs and charging stations is increasing rapidly with
government investments [1]. This increasing number of alternative vehicles will change the existing
load profile, and it may affect the grid in terms of power loss and voltage deviation. Therefore,
coordination for EV charging is crucial [2].

Additionally, as the proportion of renewable energy generation increases, a method is required to
control the intermittence and volatility of its generation and to increase the reliability of the smart grid.
Among the several available methods, a demand-side management mechanism using dynamic pricing
is broadly utilized to shift load from on-peak to off-peak periods [3]. There are several types of dynamic
pricing schemes. For example, the most common one is time-of-use (ToU) [4], under which electricity
price varies depending on whether the current time zone is on-peak or off-peak. Another scheme is
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the hourly pricing scheme, usually called real-time pricing [5]. In this scheme, the electricity price
changes every hour. A power company, “ComEd” in Illinois, USA, has introduced the hourly pricing
scheme for EVs and residential customers. Electricity pricing schemes are developing towards real-time
pricing, which is more economically efficient as it directly reflects supply and demand. Meanwhile,
vehicle-to-grid (V2G) technology [6] is being introduced, and EV batteries are also gaining recognition
as an energy resource by supplying energy to the grid [7]. Therefore, considering that dynamic pricing
and V2G are being introduced, it would be beneficial to schedule real-time charging/discharging in
response to the price signal, as this makes it possible to minimize EV charging costs and ensure grid
reliability [8]. However, this would be difficult to achieve as, practically, an EV user cannot control
charging/discharging by monitoring the price signal in real-time. Hence, it is imperative to develop
an algorithm that automatically conducts the decision making of charge/discharge in response to the
price signal.

Several papers studying EV scheduling problem with various optimization methods have been
published. The optimization methods that can be applied to EV charging/discharging scheduling
problem can be divided into two categories. In the first case, EV charging/discharging scheduling
problem is usually considered as a sequential decision-making problem, which is modeled as the
Markov decision process (MDP) [9–14] and then solved by dynamic programming [15]. The second
case involves the use of conventional numerical optimization methods, such as linear programming or
convex optimization [16–24]. However, these optimization-based methods have their drawbacks: they
require mathematical model with some assumptions that are hardly known in practice. In particular,
conventional numerical optimization methods mostly aim at planning for given scenarios, which
is usually often predicted using a forecasting model. However, the result of the optimization
highly depends on the accuracy of the forecasting model. In addition, in the case of dynamic
programming-based methods, they require a model that mathematically represents transition in states
that occurs when an agent takes an action, which is generally not known in real world.

Model-free reinforcement learning (RL) approaches have recently attracted attention for their
human-like performances in complex decision-making problems [25]. The advantage of model-free RL
over the optimization-based methods is that they do not rely on prior knowledge of an exact model
information and learn the best actions through repeated trial and error. There have been studies that
apply RL to the EV charging and discharging problems. Wan et al. [26] proposed a model-free deep RL
(DRL) algorithm for charging/discharging scheduling of domestic EV. After obtaining a feature vector
containing a future price trend using long short-term memory (LSTM) network from the historical
price data, the MDP state is composed together with the current state of charge (SOC) amount. Then,
an agent that conducts optimal decision-making of charging/discharging is generated by utilizing the
deep Q-network (DQN) algorithm. The user-driving pattern, i.e., arrival and departure times and SOC
at arrival, is assumed to follow the truncated normal distribution with mean and variance, roughly
estimated based on commuting patterns of ordinary people. This study showed that charging costs
can be minimized by scheduling the charging/discharging of EVs using RL in stochastic and complex
situations. Their simulation results also present that it is better to use RL than to use an optimization
algorithm with forecasting model. Shi et al. [27] proposed a real-time V2G control algorithm to decide
whether the EV should be charged, discharged, or provided frequency regulation. They modeled
the hourly-determined price using the Markov chain, and then Q-learning was used to learn control
operation to maximize profit for the EV’s owner during parking time. They assumed that the EV arrives
at 6:00 p.m. in the afternoon with an SOC of 40% every day and departs at 8:00 a.m. the following
morning with an expected departure SOC of 70%. Dimitrove et al. [28] also proposed RL-based
charging algorithms to maximize the profits of specific EV charging stations with renewable sources.
Considering electricity price and the amount of renewable energy generated hourly, the amount of
charge of the dynamically arriving EVs is determined using the learned Q-learning agent. In this
study, vehicle arrivals were modeled using a non-homogeneous Poisson process and the number of
cars arriving at time intervals was estimated from the data. Vandael et al. [29] focused on deciding
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a day-ahead consumption plan for charging a fleet of EVs. To address the complexity of various
factors, they used the heuristic control scheme and subsequently, used the resulting behavior as the
learning resource for the RL agent. Here, their reference scenarios were formed from assumptions
about the arrival time, departure time, and requested charging amount. Chis et al. [30] modeled a
plug-in electric vehicle (PEV) battery-charging problem as MDP with unknown transition probabilities.
Then, they proposed a state–action–reward–state–action (SARSA) with eligibility traces for learning
the price patterns and for solving the charging problem. They used known day-ahead prices and
predicted prices for the second day-ahead. They also assumed to know daily driving patterns of the
car’s user [31], formulated the EV charging and discharging scheduling problem as a constrained
Markov decision process (CMDP). With the purpose of minimizing the charging cost while making
sure that the EV is fully charged, they proposed safe deep reinforcement learning (SDRL) to solve
CMDP. They used one-year of real-world electricity price data and assumed that the EV user’s driving
behavior, such as arrival/departure time and battery energy follows truncated normal distributions.

The previous paragraph reviewed previous studies on EV scheduling using RL especially focusing
on how the user’s driving patterns such as arrival time, departure time, and SOC at arrival are set.
These were set as fixed values or normal distribution based on the life patterns of ordinary people,
or they were modeled as a stochastic process using the Poisson process. However, in this way the
above methods are insufficient to reflect the usage pattern of a specific charger or the pattern of various
users who uses the charger, which means they are not appropriate to directly deployed in a real
site. For example, if an agent is trained only with fixed arrival and departure times, it will learn to
respond correctly only during that period. Similarly, an agent trained with variables sampled from
a normal distribution would be an algorithm that is only suitable for vehicles operating within that
range. The driving pattern of users will differ for each charging station; thus, it must be trained to
reflect, effectively, its characteristics for correct scheduling. Therefore, this study proposes a RL with
data-driven approach for EV charging and discharging problem. This study aims to estimate the
probability density functions from EV charging data using kernel density estimation (KDE). Scenarios
sampled from the density function were used to train a DRL agent to reflect the usage pattern of a
specific charger so that the algorithm can be effectively deployed realistically.

The contributions of this study are summarized as follows:

1. We developed a method to train a model-free RL agent that makes decisions on charging and
discharging in a data-driven approach using nonparametric probability density estimation.
The major advantage is that it can reflect the usage pattern of a specific charger at a specific
location so that the agent can be trained to suit the characteristics of the target location. This will
be helpful when deploying the algorithm to the actual site.

2. Unlike previous studies focusing on one charger per person, we considered the case where one
public charger is used by several users, which means it trains a RL agent that can cover several
charges a day. In other words, by utilized data-driven method for a specific charger in a specific
location, this method can be applied to a public charger shared among multiple users.

The remaining part of this paper is organized as follows: Section 2 describes the scheduling
problem and a system model in detail. Section 3 presents the RL algorithm that was used to solve the
scheduling problem and also explains the data-driven probability density estimation method using
KDE. In Section 4, the simulation results are presented to show the superiority of the proposed method.
Finally, Section 5 gives the conclusion.

2. System Model

In this section, the real-time EV charging and discharging scheduling problem is formulated as
MDP from a single charger’s point of view. The goal of scheduling is to smartly charge EVs to reduce
charging costs for users while contributing to the system’s operation by responding to price signals.
Hence, decisions should be made hourly on charging and discharging according to the current state.
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This study targets a single, specific public charger, thus multiple cars can visit each single day as shown
in Figure 1. When a car is connected to a charger, the charging and discharging scheduling period
is regarded as the period from the start of charging until the completion of charging and departure.
When a car comes and starts charging, we seek an algorithm that automatically charges and discharges
in response to the price signal and eventually charges fully.
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Figure 1. A situation where multiple electric vehicles (EVs) arrive at a single charger in a specific
location and charge during the charging period under hourly pricing scheme.

We formulate this problem with finite MDP with discrete time step. At every time step t, which
is an hour in our case, the state st that contains information such as historical price, current energy
level in the EV battery, etc. is observed. A decision at is selected by the algorithm to determine the
charging and discharging rate from the vehicle’s arrival time ta to the departure time td with duration
Tc, according to the past k-step price Pt−k:t determined every hour. It is assumed that ta corresponds
to charging start time, and td also corresponds to the departure time of the EV after completion of
charging. After every at is taken, immediate reward rt and next state st+1 are observed, and the process
is repeated. The reward and the next state are given from a system called “environment” as a RL
term, and the entity that takes actions is called “agent”. A mathematical framework for modeling this
decision-making is formulated using MDP, which is defined as 4-tuple (S, A, P, R), where each term
corresponds to state, action, transition probability, and reward, respectively. The scheduling problem
defined by this tuple can be expressed as follows:

1. State: state at time step t is defined as St = (Pt−k:t, Et, Dt, Lt) where Pt−k:t represents past k-step
of hourly electricity price, Et represents current energy level left in the EV’s battery, Dt represents
the amount of energy left until the battery is fully charged, and Lt represents the time remaining
until the charge is complete.

2. Action: an action at refers to charging and discharging power. When at is positive, the EV charges;
otherwise, it discharges. This study assumes that the charging/discharging power can be set in
several levels. For instance, action space can be defined asA =

(
p1, p2, · · · , pn

)
where p is the

charging/discharging power.
3. Transition probability: transition probability denoted as p(st+1, rt

∣∣∣st, at) is the probability that
action at in state st at time t will lead to state st+1 at time t + 1. In this study, as we utilize
model-free RL algorithm, which will be described in Section 4, it was assumed that the transition
probability is unknown; hence, it was estimated through interaction with the environment.

4. Reward: reward rt is the immediate reward obtained after the state transitions from st to st+1 due
to action at. The reward in this study is defined as
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rt =

{
−Pt·at − σ(Emax − Et), t = tl
−Pt·at, t , tl

(1)

where tl is the time when the EV disconnects from the charger and departs, and Emax represents the
capacity of the EV’s battery. The reward consists of two terms: the first term pt·at is the benefit or cost
of charging or discharging. The negative sign denotes that at is positive when charged and negative
when discharged. The second term is the penalty for not charging to the required amount of energy.
This penalty applies only at the last hour, and σ is a coefficient to match the units of the two terms.

An interaction between an agent and an environment is shown in Figure 2, where f̂ta, Tc , f̂Einit

represent random variables that follow the probability distribution of ta, Tc, and Einit (an initial amount
of energy left on an arrival of EV) derived by KDE, which will be discussed in Section 3.1.
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Figure 2. An interaction between a reinforcement learning (RL) agent and an environment.

3. Proposed Method

In this section, we propose a method to solve the real-time EV charging/discharging scheduling
problem under dynamic pricing that reflects the usage pattern of a specific charger in a specific location.
We used the KDE to model the probability distribution of the usage pattern of a specific charger in a
specific location. Then, the scheduling problem was solved using the DQN, which is a model-free RL
algorithm. In the training process of the DRL agent, the variables related to the usage pattern sampled
from the probability distribution made by KDE were cast.

3.1. Data-Driven Modeling of Charger Usage Patterns

KDE is a nonparametric method of estimating the probability distribution of an unknown random
variable. In other words, KDE estimates the distribution of a population from a data sample and
can also be considered as a method of smoothing the histogram. The method is to create a kernel
function for the observed data values, add them together, and then divide the sum by the number
of data points. The popular kernel functions are uniform, triangular, and Gaussian. In this method,
the density function estimated based on KDE can be mathematically expressed as follows:

f̂ =
1
n

n∑
i=1

Kh(x− xi) (2)

where f̂ is the probability density function estimated using KDE, xi is the data sampled from the
probability distribution we want to know, n is the number of samples, Kh is a kernel function and h is
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a smoothing parameter called bandwidth, and h represents the thinness and thickness of the kernel
function (the thinner it is, the more precisely it will fit into the observed data distribution, but it may
not be generalized). Therefore, it is important to set h to an appropriate value.

In this study, based on the charging data of the electric vehicle charger installed in the target
location, the joint probability distribution f̂ta, Tc for the tuple of arrival time and charging duration
(ta, Tc) was generated using KDE as shown in Figure 3. Additionally, for simplicity, we assumed
that the user always wants the battery to be fully charged, and the amount of energy remaining in
the battery at the start of charging was estimated by considering the end time td of charging and the
efficiency of the charger. The estimated amount of energy was modeled as a probability distribution
f̂Einit using KDE as well.
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3.2. Solving Scheduling Problem using DRL

As mentioned in Section 3, the transition probabilities of MDP model are unknown. The only
known thing about the hourly electricity price or the usage pattern of the target charger is their
realization, not their true distribution. In other words, the model of the MDP is unknown, but the
experience can be sampled. Model-free RL algorithm can be used in this situation as it can obtain optimal
policies by continuously updating action-value functions. The action-value function numerically
expresses how much reward is expected when taking action at according to policy π in any state st.
That is, it tells how good it is to take action at in state st, and it is expressed mathematically form as
follows:

Qπ(s, a) = Eπ[
T∑

k=0

γk
·rt+k|st = s, at = a] (3)

where Qπ(s, a) is an action-value function when it follows policy π, and γ is a value that determines
the discount rate for future rewards. γ ranges between 0 and 1. The closer it is to 1, the future
reward is converted to a value closer to the immediate value, and the closer it is to 0, the lower the
value. The action-value function can be updated repeatedly using the Bellman equation, which is
shown below.

Qk+1(s, a) = E
[
rt + γmax

at+1
Qk(st+1, at+1)

∣∣∣∣∣st = s, at = a
]
=

∑
st+1, rt

p(st+1, rt
∣∣∣st, at)[rt + γmax

at+1
Qk(st+1, at+1)] (4)
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By iteratively calculating this equation as k approaches infinity, it converges to the optimal
action-value function Q∗(s, a) = max

π
Qπ(s, a). The priority here is how to calculate the expected value

E[·]. To perform iterative calculations, p(st+1, rt
∣∣∣st, at) is required in the above equation. In other

words, the model of the environment should be known. If the model of the environment is unknown,
the action-value function should be updated iteratively with samples obtained from random actions.
If the optimal action-value function is obtained, the Q-value of all possible actions in all states is known.
Once the optimal action-value function is obtained, the value of every possible action in every state is
known; thus, following the action with the highest Q-value becomes the optimal policy. The optimal
policy π∗ is expressed mathematically as follows:

a∗ = argmax
a∈A

Q∗(s, a) (5)

As the superiority has been demonstrated in previous studies [25,26], we approximate the
action-value function Q(s, a) as a neural network, which is the DQN. Using this, it is possible to use the
price data without discretization, which is not possible in tabular form, and update the action-value
function more efficiently. DQN also uses the experience memory and the target network. The samples
obtained from the action are stored in the experience replay and then randomly sampled to train the
Q-network. This way, the data usage efficiency can be improved by using data samples multiple times,
and the high-correlation problem between successive states can be solved. Further, using the target
network, we can solve the problem of non-stationary target when training the neural network. (Refer
to [26] for a detailed description of DQN).

The process of developing the scheduling algorithm using the above method is the same as
Algorithm 1. First, create an experience replay memory D of size N and initialize the network
parameters θ and θ− of the Q-network and the target Q-network. Next, repeat M epochs and play K
episodes per epoch. Episode here refers to one complete charging process. For each episode, (ta, Tc)

and Einit are sampled from the density functions f̂ta, Tc and f̂Einit that were produced by the process
discussed in Section 4.1. Afterward, the charging/discharging action is selected based on the ε-greedy
algorithm for each time step of the episode. The ε-greedy algorithm refers to a policy that selects a
random action with a probability of ε or selects an action based on an action-value function with a
probability of 1-ε. This is to properly balance exploration and exploitation. ε is designed to decrease
gradually as the epoch progresses. When an action at is taken, the agent receives reward rt and
next state st+1. Then a tuple (st, at, rt, st+1) is stored in the replay memoryD as a sample. Further,
a minibatch of #B samples is extracted from the experience replay memory to update the Q-network.
Minibatch samples are used to calculate the target using Equation (6) below.

y j = r j + γmax
a

Q̂
(
s j+1, a;θ−

)
(6)

The error between the Q-value predicted by the action-value function and the calculated target
for the sample is expressed as follows using mean squared error (MSE).

L(θt) =
#B∑
j=1

{
y j −Q

(
s j, a j;θ

)}2
(7)

The gradient descent method is used to update the network parameter θ in minimizing the
error function below, where η refers to learning rate or step size and ∇θt L(θt) means gradient of the
loss function.

θt+1 = θt − η∇θt L(θt) (8)

Finally, at the end of each episode, copy the parameter θ− of the target network to the parameter
θ of the current local network. When the training of the agent is completed, Equation (5) can
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be used to select the charging/discharging action at every time step, thereby yielding the optimal
scheduling results.

Algorithm 1 Training of EV scheduling agent

1: Initialize replay memoryD to capacity N.
2: Initialize action-value function Q with random weight θ.
3: Initialize target action-value function Q̂ with weight θ− = θ.
4: For epoch = 1, M do
5: For episode = 1, K do
6: Get ta, Tc from f̂ta,Tc and get Einit from f̂Einit .
7: Get initial state s1 from the environment
8: For t = ta, ta + Tc do
9: Select charging/discharging action at based on ε-greedy algorithm.
10: Execute action at in environment and observe reward rt and next state st+1.
11: Store transition sample (st, at, rt, st+1) inD.

12: Sample random minibatch of transitions B =
{(

sj, a j, r j, s j+1
)}#B

j=1
fromD.

13: Set yj =

 r j i f episode terminates at step j + 1
r j + γmax

a
Q̂
(
s j+1, a;θ−

)
otherwise

14: Calculate the loss function L(θt) =
#B∑
j=1

{
y j −Q

(
s j, a j;θ

)}2

15: Perform a gradient descent step on L(θt) with respect to the parameter θ.
16: based on θt+1 = θt − η∇θt L(θt).
17: Reset θ̂ = θ.
18: End For
19: End For
20: End for

4. Simulations Results and Discussions

In this section, we evaluate the effectiveness of the proposed method, i.e., DRL trained with
charger usage patterns that were sampled from the probability distribution modeled by KDE. We first
present the results of the KDE (Section 4.1) and then discuss the results of a charging/discharging
scheduling performed by DRL agent (Section 4.2). Two residential (i.e., apartments) sites with EV
chargers were tested: “Site A” and “Site B”. Simulation setup details are presented as well.

4.1. Modeling Charger Usage Patterns

To model the charger usage pattern using KDE, we used the EV charger data obtained from a
charger at a specific location. The data contains information about charging amounts (kWh), charging
duration, start time of charging, and end time of charging.

We assumed that EV owners want their vehicles to be charged fully as at when they depart.
Although different types of EVs could be charged several times a day, for simplicity we also assumed
that only Hyundai IONIQ with battery capacity 28 kWh arrives. Using this battery capacity, the charging
duration given in the data, and 7 kW typical charging efficiency of a slow charger, the initial energy
in a battery when EVs start charging was calculated. To conclude, the start time of charging and the
charging duration were both used to model f̂ta,Tc , and the calculated initial energy was used to model
f̂Einit .

In Figures 4–6, the results of the KDE on the start time of charging, charging duration, and initial
energy for Sites A and B are shown. It can be observed that the shapes of density functions in
Figures 4 and 5 are far from the normal distribution. This means that as was done in the previous
studies [26,28,31], if we had modeled the charger usage pattern variables as general probability
distributions, such as normal distribution rather than KDE, we would be unable to properly reflect the
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characteristics of the target location. Further, from Figures 4 and 5, it is evident that the distributions of
samples from the estimated density functions are almost the same as the distributions of the actual
data, which means the density functions were well estimated. Moreover, it is observed from Figure 4
that the distributions of the start time of charging in Sites A and B are nearly similar, but the charging
duration of Site B tends to be shorter. Additionally, from Figure 5, it is evident that Site A tends to
possess more battery energy than Site B when EVs arrive. In other words, the EVs arriving at Site A
have much more room to discharge during the charging duration so that they can expect more benefits.
By sampling the start time of charging, charging duration, and initial energy from density functions in
Figure 6, and using them in a training process of a DRL agent, we can develop a scheduling algorithm
that is optimized for the charger usage pattern at a specific location.
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4.2. Results of Solving Scheduling Problem Using DRL

In this section, the results of solving the scheduling problem are presented. In Section 4.2.1,
the training process and the parameter settings are discussed. Then, in Section 4.2.2, benchmarks to
compare with the proposed method are explained. The results of the scheduling of benchmarks and
the proposed method are presented in Section 4.2.3. Finally, the effect of EV scheduling on a load
profile of the target location is analyzed in Section 4.2.4.

4.2.1. Parameter Settings and Training Process of DRL

To train a DRL agent using real-world electricity price data, we used hourly electricity price data of
the 31 days in August 2018 downloaded from Korea Power Exchange. Twenty-four days were used as
the training set and the remaining as the test set. Strictly, this data is not the retail price data. However,
as ComEd stated, the hourly retail price of electricity is determined by a wholesale price with almost
the same trend. As the priority is to ascertain whether the agent can choose the charging/discharging
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action correctly for the fluctuating price, the available data will be applicable to the retail price data.
We assumed that the charger provides several levels of charging/discharging rate (−4 kW, −2 kW, 0 kW,
2 kW, 4 kW), which directly corresponds to the action space. We set the discount factor γ to 0.99 to
allow the agent to choose the current behavior considering future rewards. The neural network has
two hidden layers and input/output layers. The number of units in the hidden layers was 32, and the
number of units in the input layer is 14, which corresponds to the length of the state. The number of
units in the output layer was understandably the same as the number of possible actions. The batch
size was set to 128, and the learning rate for the neural network was set to 0.001. We allowed the agent
to take random actions during the first 1250 epochs, which is equivalent to 5% of the total epochs of
25,000. Afterward, based on ε-greedy algorithm, the agent took an action depending on the Q-value
predicted by the Q-network with probability ε, otherwise it took a random action. The value of ε was
initially set to 1 during the random action period, which means the agent totally acted randomly in
this period. After 1250 epochs, ε decays in the rate of 0.999 per epoch, which means that the agent is
less likely to choose random action as the training progresses.

In Figure 7, the training process of a DRL agent is shown. As mentioned earlier, the agent acts
randomly during the first 5% of the total number of epochs. Thus, until epoch 1250, the cumulative
reward moves near −800,000 and then rises to around −100,000 because the agent acts based on
ε-greedy algorithm, where ε gradually decreases. When ε remains at a minimum value, the training
curve converges.
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The training process takes about 8 h on the desktop computer equipped with i7-7700 CPU, NVIDIA
GeForce GTX 1070 TI, and 16 GB RAM. The simulation program was developed with Python and Keras
framework. After the training process finishes, a single schedule can be produced in about 5.2 ms.

4.2.2. Benchmarks

In this section, we introduce several benchmarks for comparisons to show the superiority of our
proposed method. Our proposed method aimed to model the usage pattern of a specific charger in a
specific location as a probability distribution. The variables sampled from this probability distribution
in the DRL agent to reflect, effectively, the local characteristics. Therefore, it is required to compare the
scheduling performance when the charger usage pattern is modeled by the existing methods that were
used in the previous studies and by the proposed method. The existing methods are listed as follows:

1. Unscheduled (V0G): This is currently the most common charging method that charges directly
from the moment the EV is connected to the charger. Sending electricity to the grid or responding
to the price signal are not considered.
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2. Charger usage pattern variables as fix values: In previous studies charging start time, charging
duration, and initial energy were assumed as fixed variables in a common case (e.g., EV arrives at
7:00 p.m. and depart at 8:00 a.m., which is a general commuting pattern of most people) [27,29,30].
In this present study, instead of making assumptions in the general case, we averaged each value
based on the charging data of a specific charger at a specific location and used that value as a
fixed variable. For convenience, this method will be referred to as ‘FIX-RL’.

3. Charger usage pattern variables as random variables follow normal distribution: In a previous
study, charging start time, charging duration, and initial energy were assumed to be random
variables that follow the truncated normal distribution with mean and standard deviation
assumed as the general case [26,31]. In our case, instead of making assumptions in the ordinary
case, the mean and standard deviation of the normal distribution were derived from those of the
data for corresponding variables. For convenience, this method will be referred to as ‘RV-RL’.

4.2.3. Scheduling Results

In this section, we evaluate the performance of the proposed method by comparing the scheduling
results with those of the benchmarks. Price data of seven days were used to evaluate the performance.
Particularly, to see if the proposed method responds well to various charger usage patterns, 20 scenarios
that reflect the usage patterns of a specific charger in a specific location were generated to evaluate the
scheduling performance. A measure to determine whether the scheduling is good is the total charging
cost for the entire period. A charging cost at each time is calculated by multiplying the electricity price
at each time by the action selected. The charging cost at each time were summed over the entire period
and compared between the proposed method and the benchmarks. The lower the total charging cost,
the more optimal the scheduling.

In Figures 8 and 9, the cumulative charging costs of the proposed and the benchmark methods
according to the cumulative number of test days are shown, and in Table 1 the total cumulative charging
costs for all the days are presented. The cumulative charging costs are compared between the methods
in the same way as in [26]. The steeper the slope of the curve, the higher the cumulative cost. On the
contrary, the slower the curve, the lower the cost. The red line represents the total cost of charging
with the unscheduled method. Clearly, the unscheduled method is the most expensive as it does not
discharge and charges to the end as soon as it is connected to the charger, regardless of the price signal.
The green line, which represents the FIX-RL, fixes variables related to charger usage patterns to specific
values and reflects them in the training process of the RL agent. This method takes actions of charging
and discharging and schedules in response to the price signal. It costs about 75.7% compared to the
unscheduled method. Further, the blue line, which represents RV-RL, sets variables related to charger
usage patterns to normal random variables. Therefore, RV-RL can learn more scenarios than FIX-RL,
and thus can respond more adaptively to various patterns. This method costs about 74.6% compared
to the unscheduled method. However, since both FIX-RL and RV-RL take values of pattern variables
simply calculated from the data, they may not accurately reflect the pattern of the target location.
This is because the distributions of charging start time, charging duration, and initial energy estimated
by KDE are far from the normal distribution. Finally, the yellow line is the curve of cumulative cost
when the proposed method is used. By effectively reflecting the characteristics of the charger usage
pattern at the target location, it saved more money than FIX-RL and RV-RL (precisely 69.7% compared
to the unscheduled method). This demonstrates the superiority of our proposed method. However,
for Site B, our proposed method is not significantly better than the others, being only 91.1% compared
to the unscheduled method. The reason for this will be discussed in the last paragraph of this section.
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Table 1. Cumulative charging cost over total test period in numeric form.

Site Cost Unscheduled FIX-RL RV-RL Proposed

A
(₩) 136,478 103,347 101,785 95,089
% 100 75.7 74.6 69.7

B
(₩) 318,485 331,982 308,105 290,189
% 100 104.2 96.7 91.1

In Table 2, the methods are compared to one another in terms of normalized cost. This is because
the four methods charge and discharge differently, meaning the charging costs may differ. Therefore,
it is important to compare how much cost is paid per kWh as a result. As shown in Table 2, the proposed
method charges at a lower cost than the other methods for both sites.

Table 2. Normalized total cost over test period.

Site Normalized Cost Unscheduled FIX-RL RV-RL Proposed

A
(₩/kWh) 91.47 86.42 72.00 67.25

% 100 94.5 78.7 73.5

B
(₩/kWh) 89.01 85.63 84.44 83.66

% 100 96.2 94.9 94.0



Energies 2020, 13, 1950 14 of 18

In Figure 10, an example of scheduling results for several days is presented: (a) shows the actions
taken by the trained RL agent. The black line in the figure represents hourly electricity price and
the red bars represent the actions. It is observed that the agent has a tendency to charge when the
electricity price is low and discharge when the electricity price is high. Notably, that these are not the
optimal solution because the agent takes actions considering the trend of the previous price signal
rather than knowing the future price. Thus, it can be said these are the best choices to make with only
past information given. It can be observed that the actions taken by the agent in Site B are mostly
charging actions because the initial energy when EVs arrive at Site B tends to be lower than that of Site
A as seen in Figure 6. Hence, our proposed model is not significantly better than the others at Site B.
Therefore, the more energy the battery has on arrival, the more room there is a chance to discharge it,
thereby leaving more room to save on charging costs.
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4.2.4. Scheduling Effect on a Load Profile

In this section, we discuss how the proposed EV charging and discharging algorithm affects the
load profile of the site when it is deployed in chargers. We analyze the load shifting effect numerically
by calculating the load factor expressed by Equation (9). The larger load factor means that the difference
between the peak and average is small, which means that the load profile is levelized. Conversely,
a smaller load factor means that the load profile is not levelized. The calculated results in Table 3 show
that the more the number of chargers, the flatter the load profile.

Load f actor =
aveage load
peak load

(9)

We set the target day and analyze how the load profile changes when the charging and discharging
of EVs are scheduled by our proposed method with varying number of chargers. The results are shown
in Figure 11. The purple line represents the default load profile when unscheduled. The blue, yellow,
green, and red dotted lines represent the changed load profile when the number of chargers is set to 1,
5, 10, and 20, respectively. As seen in the figure, as the number of chargers increases, the load shifting
effect that can be obtained through scheduling increases also.

Next, we compare the charging methods with our proposed method. Similarly, we compare the
results with the load factor, assuming 20 chargers are deployed in the target location. The calculated
load factors are in presented in Table 4. In Figure 12, the green line represents the ordinary load
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profile of the target location without EV chargers. The orange dotted line represents the case where
the EVs charge using chargers with the unscheduled method, the blue dotted line represents the
FIX-RL method, the purple dotted line represents RV-RL, and the red solid line represents the proposed
method. Clearly, with the charging methods other than the proposed method, the EV charging loads
are added to the existing load, thus resulting in higher peaks. Otherwise, when our proposed charging
and discharging algorithm is deployed in the chargers, the peaks are shaved and the valleys are filled
as the yellow line shows. This means the load profile is flattened so that the grid operation is made
more reliable.

Table 3. Calculated load factor according to the number of chargers.

# of Chargers 0 1 5 10 20

Load factor 0.672 0.674 0.681 0.689 0.707
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To summarize, we analyzed the superiority of our proposed method from two perspectives.
First, we calculated the charging cost during the test period and compared that of our proposed
method and those of benchmarks. As a result, our proposed method turned out to be superior to the
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benchmarks in both cumulative charging cost and normalized charging cost. Second, we discussed
how the proposed EV charging and discharging algorithm affects the load profile of the site when it is
deployed in chargers in this section. The load shifting effect is evaluated by calculating the load factor.
We first analyzed the change of the load profile when our proposed method was deployed in chargers.
It turned out that there was a load shifting effect, and as the number of chargers increased, the load
shifting effect increased as well. Then, with the fixed number of chargers, the load shifting effect of our
proposed method was compared to those of the benchmarks. It is obvious that our proposed method
outperforms the others in terms of the load factor. Consequently, our proposed method is superior
to existing methods, in terms of cost saving and contribution to the peak reduction, if deployed in a
specific charger in a specific location.

5. Conclusions

In this study, we discussed a DRL-based algorithm for charging and discharging an EV in response
to the hourly electricity price. The proposed method aimed to model the usage pattern of a specific
charger in a specific location as a probability distribution, and then use the variables sampled from
this probability distribution in the DRL agent to reflect, effectively, the local characteristics. Hence,
we proposed a data-driven approach for this task that utilizes a nonparametric density estimation
method. We derived probability distributions for the variables related to the charger usage patterns by
applying KDE to real-world datasets, and the resulting probability distributions are used to sample
those variables to provide a DRL agent with scenarios reflecting the target location. Simulation results
show the effectiveness of our proposed method in two ways. First, the proposed method successfully
reduces the total charging cost during the test period. Second, our proposed method successfully
raised the load factor, which means the load profile of the target location is flattened. This implies
that if the proposed algorithm is deployed in many chargers, it will not only save charging costs for
users, but also increase the grid reliability. In conclusion, our proposed method is superior to existing
methods in terms of cost saving and contribution to the peak reduction if deployed in a specific charger
in a specific location. A limitation of this study exists: action space is considered as a discrete space,
but there are RL algorithms such as policy gradient that can handle a continuous space. Applying
these algorithms can be the future scope.
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Abbreviation

EV Electric Vehicle
ToU Time-of-Use
V2G Vehicle-to-Grid
MDP Markov Decision Process
LSTM Long Short-Term Memory
DRL Deep Reinforcement Learning
SOC State-of-Charge
DQN Deep Q-Network
PEV Plug-in Electric Vehicle
SARSA State-Action-Reward-State-Action
CMDP Constrained Markov Decision Process
SDRL Safe Deep Reinforcement Learning
KDE Kernel Density Estimation
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Nomenclature

st The state given from the environment at step t
at The action taken by the agent at step t
ta The arrival time
td The departure time
Tc The charging duration of EV
Pt−k:t The vector of past k-step electricity prices
rt The reward given from the environment at step t
(S, A, P, R) The 4-tuple of elements of Markov decision process
Et The amount of energy left in EV battery at t
Dt The amount of energy left until the battery is fully charged at t
Lt The time remaining until the charge is complete at t
A The action space given to the agent
pk The charging/discharging power for k-th level
Emax The capacity of the EV battery
Einit The initial amount of energy left on an arrival of EV
f̂ta, Tc The random variable of ta and Tc derived by KDE
f̂Einit The random variable of Einit derived by KDE
Kh The kernel function with smoothing parameter h called bandwidth
Qπ(s, a) The action-value function under the policy π
γ The discount factor
D The experience replay memory
N The size of the experience replay memory
θ The network parameter
η The learning rate
L(·) The loss function

E
The probability that the agent takes an action depending on the Q-value predicted by the
Q-network
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