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Abstract: The approval and evaluation process for sustainable aviation fuels (SAF) via ASTM
D4054 is both cost- and volume-intensive, namely due to engine operability testing under severe
conditions. Engine operability tests of combustor under figures of merit (FOM) limit phenomena
are the fuel effects on lean blowout, high-altitude relight, and cold-start ignition. One method to
increase confidence and reduce volume in tiered testing is to use surrogate fuels for manipulation
of properties. Key fuel performance properties (surface tension, viscosity, density) for cold-start
ignition was determined prior to this study. Prior work regarding this FOM has not considered the
combination of these properties. A surface tension blending rule was validated and incorporated into
the jet fuel blend optimizer (JudO). A generalized surrogate calculator for N-dimensional surrogate
components and features was developed. Jet fuel surrogates developed in this study were a mixture of
conventional and sustainable aviation fuels instead of pure components. These surrogates suggested
to be tested in this study could illuminate near worst-case effects for sustainable aviation fuel in a
given configuration/rig. With those scenarios tested, we can further understand the influence on the
key properties relative to cold-start ignition. This work and supporting experimental evidence could
potentially lower the barrier for SAF approval processes.

Keywords: surrogate formulation; orthogonal reference surrogate fuel; operability testing; cold start
ignition; sustainable aviation fuel

1. Introduction

Increases in global ambient temperature and mean sea level have had adverse effects on marine
ecosystems, fishery productivity, agriculture, and the human population in coastal zones. These factors,
paired with the increase in natural disasters, have led to increased volatility of the environment due to
anthropocentric carbon emissions [1]. Reducing these carbon emissions through the deployment of
renewable energy sources has excellent potential in the transportation sector, where aviation contributes
approximately 9% of total emissions [2]. Commercial aviation must significantly reduce its greenhouse
gas (GHG) impact to continue to support global mobility and commerce as NASA is predicting a
2-fold increase in passenger flights in the next decade [3]. Through the International Civil Aviation
Organization (ICAO), the commercial aviation industry has adopted and defined a method to reduce
the global environmental impact of air travel through Carbon Offsetting and Reduction Scheme for
International Aviation (CORSIA). CORSIA sets the voluntary standards to reduce carbon emissions
during Phase 1 (through 2026) and mandatory standards during Phase 2 (2027 and beyond) [4]. By the
year 2050, under a CORSIA-type domestic emission policy, the demand for sustainable aviation fuel
(SAF) will need to increase to more than 10% of total jet fuel consumption [5].

Commercial deployment of SAF relies on the approval and evaluation of the fuel via ASTM
D4054. This specification ensures the safe usage, fungibility, performance, and compatibility of the SAF
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under standard usage and severe operability conditions. Specifically, Tier 3 engine operability tests
focus on fuel effects under the so-called figure-of-merit (FOM) limit phenomena, namely, lean blowout
(LBO), high-altitude relight, and cold-start ignition [6-8]. Because of the broad range of potential
physical and chemical properties of a new SAF, extensive combustor testing is needed to overcome
uncertainty and ensure safety for FOM operability issues. Estimations for the direct testing for a
candidate SAF in cost and volumes are approximated to be in the range of $5 million and 28,000 to
115,000 gallons, respectively [9], with more contemporary approvals requiring still tens of thousands
of gallons. These estimates do not include overhead costs for all parties involved in the process or the
cost of supplying large quantities of potentially expensive test fuel [10]. Because of the nature of this
costly and volume-intensive testing process, the National Jet Fuels Combustion Program’s (NJFCP)
mission is to streamline the SAF approval process and, in turn, reduce the carbon intensity of aviation
transportation by ensuring a broad and diverse portfolio of SAF fuels, feedstock, and processing
technologies [10-12].

Recent random forest regression (RFR) results on LBO of SAFs in four combustor rigs showed
that derived cetane number (DCN) is the most significant feature importance in both the Referee
Rig and toroidal jet-stirred reactor at elevated temperatures, and the second most significant feature
importance in the Sheffield rig [13,14]. These three rigs show the dominance of chemical timescales
near LBO, where chemical timescales are a function of the fuel chemical properties and accompanying
thermodynamic conditions. However, experiments using the Honeywell auxiliary power unit (APU)
show no sign of DCN affecting LBO [14]. Lack of a swirler and presence of a small pressure
atomizer contribute to this difference and enhance the dominance of evaporative timescales near
LBO, where evaporative timescales are a function of physical fuel properties and distillate properties.
The Honeywell APU and toroidal jet-stirred reactor represent the extreme differences with Referee Rig
and Sheffield Rig best representing main engine effects.

Recent RFR efforts into gas turbine combustor ignition and the relative impact of spray and
volatile fuel properties indicate that the down-selected properties of viscosity, density, surface tension,
vapor pressure, and specific heat capacity nearly capture the variance in ignition probability [15].
Ignition probability, a metric to determine successful ignitions, is used in gas turbine combustion where
turbulence and stochasticity exist. Furthermore, viscosity, density, and surface tension have a larger
impact than vapor pressure and specific heat capacity on ignition behavior for both the Referee Rig and
Honeywell APU [15]. At higher fuel temperatures, surface tension is the most important property to
predict relative ignitability in the Honeywell APU. The current certification process for SAF via ASTM
D4054 has no specification limit for surface tension. However, surface tension is strongly and positively
correlated with density, and there is a specification limit for density in all Category A fuels [11,12].

Historically, surrogates have been used for the manipulation or prescription of fuel properties to
mimic the properties of target fuels. Surrogates have been used to mimic autoignition, ignition delay,
extinction strain rate, and emissions. The usage of surrogate formulation to understand the combustion
phenomenon has been explored by Dooley et al. [16] and Kim et al. [17,18]. Dooley et al. outlined a
method for fuel-specific surrogate formulation through empirical correlation. The surrogates were
designed to emulate the chemical kinetic behavior of a target, real fuel. In the work of Kim et al,,
two surrogates were developed with empirical correlations to emulate chemical and physical properties
that affect spray and ignition within the diesel combustion process. These surrogate studies have
transformed, confirmed, and in some cases transcended the fundamental understanding of combustion
theory. SAF approvals could benefit from the manipulation, instead of mimicking, of properties to
illustrate the complex physical competitions of properties at limit points, namely, LBO and ignition.

This work combines, modifies, and extends the work of Bell et al. [19] on the general surrogate
calculator with the incorporation of recent surface tension results and the ability to create surrogates to
manipulate properties without empirical correlation, and, more importantly, reports several blends of
fuels that can establish a basis set for cold operability testing in aviation turbine applications. This effort
further integrates NJFCP reference fuels and engine scalable blend components, instead of pure
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compounds, to report orthogonal basis set fuels. Orthogonal surrogate compositions are reported from
a 6-dimensional Pareto front. These compositions and properties represent the maximized variance of
the reported results for hydrocarbon molecules in the jet fuel distillation range. No previous work
has reported results of a comparable number of fuel properties, number of fuels, and the broader
implication of their findings at once. Experimental results from testing such fuels can illustrate the
maximum FOM sensitivity, aiding in the prescreening and formal evaluation of novel SAFs [10,13,20].
These tests, moreover, can be utilized to advance computational fluid dynamics modeling.

2. Materials and Methods

2.1. Materials

Thirteen fuels were used as the basis for maximizing fuel property variance. Three conventional,
or Category A, fuels representing a “best” (A-1, POSF 10264), “average” (A-2, POSF 10325), and “worst”
(A-3, POSF 10289) were used. Ten fuels composed of blends or neat alternative fuels were available
with the relevant properties under the desired condition. The fuels utilized here were the basis of
the NJFCP to investigate a wide range of chemical and physical fuel characteristics. Edwards [21,22]
contains explanations of the specified reference fuels. Table A1 of Appendix A contains property
information about the fuels. In Figure 1, a plot presents the fuels used in this work with key properties,
revealing the variance of these properties amongst these neat blend components.

o(-30°C),
mN/m

p(-30°C),
g/cm?3

H(-30°C)
mm?/s

T10
T90, °C
T50, °C
Legend:
A-1 v A3 e C3 ¢ C7 ® Syntroleum S-8 ® POSF 12943 #  POSF 12945
> A2 m C1 e C4 C-9 ¢ Camelina HEFA & POSF 12944

Figure 1. A plot of the 13 fuels and their respective normalized properties. Category A fuels are shown
in the color gradient on the map, where yellow is the “best” case and purple is the “worst” case for
each property. The rest of the fuels are plotted according to their normalized properties and respective

to their marker.

2.2. Blending Rule

The blending rules used to predicting the proprieties of the optimized surrogates were applied
to molecular weight (MW), atomic hydrogen-to-carbon ratio (H/C), derived cetane number (DCN),
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density (p) at =30 °C, kinematic viscosity () at —30 °C, distillation curve (T10, T50, T90), and surface
tension (o) at =30 °C. Blending rules were incorporated from the efforts of Bell et al. [19] from the
general surrogate calculator, and additional validation was performed in the work of Bell et al. to ensure
proper usage [19]. Surface tension blending rule for non-pure components was seldom considered and
never included in the surrogate calculator. Therefore, for this effort, a surface tension blending rule
will be integrated into the surrogate calculator.

The surface tension of the fuel blends was calculated using the Macleod-Sugden correlation as
indicated in Equation (1) [23]. In the equation, oy, is the surface tension of the mixture, where py,,
and pyy, are the liquid and vapor mixture density, respectively. [Pr,] and [Py,,| are the parachor
of the liquid and vapor mixture. At low pressures, the term Py, involving vapor density could be
neglected [23]. For this study, all jet fuels were blended at ambient conditions: thus, Py, is neglected.
With this simplification to Equation (1), the equation can be rewritten as shown in Equation (2).
Equations (3) and (4) are used to calculate the parachor of the liquid. [P,']'} is the parachor of the mixture,
where [P;] and [P ]-] are the parachor of pure component i and j. A;; is the binary interaction coefficient
determined from experimental data; in the absence of experimental data, Aij could be set to 1. Parachor
values of each fuel was calculated using surface tension, molar mass, and density of each fuel in this
study. Parachor is an intermediate step before calculating surface tension of jet fuel mixture and is
calculated for every intermediate step.

Om = HPLm]PLm - [PVm]PVm]n (1)
Om = [[PLm}PLm]n )
[PLm] = Z Z xixj[Pij] 3
ij
Pi| 4+ |P;
[Pij] = /\ij[]zJ (4)

When n in Equation (2) is set to 4, the equation could be reduced to the Weinaug-Katz equation [24].
In this study, A;; in Equation (4) is given a value of 1 with supporting experimental material provided in
Appendix A. Althoughin a previous application, this blending rule was used for pure component mixing,
here it was used for complex jet fuels mixtures with supporting material provided in Appendix A.

2.3. Jet Fuel Blend Optimizer (JudO)

The Bell et al. general surrogate calculator [19] was shown to be effective with the aforementioned
blending methods, with the exception of surface tension. However, the general surrogate calculator
only minimizes overall error rather than reducing the error of each property relative to their targets
individually. The JudO can optimize user-defined properties at an N-dimensional scale (with 6
dimensions explored here). The goal of this optimization is to keep other user-specified properties
constant and stress certain properties to create orthogonal surrogate fuel sets. Blending rules were
integrated into objective functions to achieve desired property values.

Figure 2 presents a schematic of the optimization approach, which is based on the framework
of JudO [25,26]. JudO uses mole fractions of the fuel set as inputs to the optimization. All initial
guesses were randomly generated, where each fuel has a chance to be assigned a value for mole
fractions between 0 and 1. This strategy aids in the optimization technique to investigate a wide
range of potential compositions with accompanying potential local minima, rendering an “unbiased”
optimization final solution.
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Figure 2. Schematic of the jet fuel blending optimization tool JudO, a suite centered around a
computational tool called Mixed Integer Distributed Ant Colony Optimization (MIDACO) [27],
which is implemented to optimize a user-specified fuel set (conventional and alternative jet fuels) of
varying properties with specific “design parameters and target properties” (molecular weight—MW,
hydrogen-to-carbon ratio—H/C, derived cetane number—DCN, density, kinematic viscosity, distillation
curve, and surface tension) to illuminate Pareto front compromises for the fuels considered here.

Once the initial guess is determined, a Mixed Integer Distributed Ant Colony Optimization
(MIDACO) solver [27] starts to optimize the mole fractions based on the given random initial guess
with supplied objective and constraint functions. The objective functions were evaluated on the 12 norm
and normalized to A-2 values. MIDACO is a commercially available numerical high-performance
solver that uses ant colony optimization with multiple objective functions to obtain a near-global
optimum solution. An advantage of using this solver is the derivative-free, evolutionary hybrid
algorithm that treats the objective and constraint functions as a “black-box which may contain critical
function properties like non-linearity, non-convexity, discontinuities or even stochastic noise” [27].
A disadvantage of these types of genetic algorithm optimizations is that they do not guarantee
convergence and unique Pareto front solutions. Hence multiple initial guesses were employed to
unbias a finial cumulative Pareto front from initializations.

When the optimization is complete with the supplied compositions, functions, and thus,
fuel mixture properties, JudO outputs a range of Pareto front mole fractions for that particular
initial guess composition. Those Pareto front solutions are then compiled to form a cumulative Pareto
front, which is a culmination of all Pareto solutions from the initial guesses. For each of the three
scenarios outlined later, 10,000 initial guesses were used to generate numerous individual Pareto fronts
and one final cumulative Pareto front for each scenario. With the nature of 6-dimensional optimization,
more than one Pareto front was generated for each initial guess. Down-selection for each scenario
is then performed on the cumulative Pareto front space with discrete optimization to capture the
broadest combination of relative variance amongst viscosity, density, and surface tension. Orthogonal
surrogate fuels were then determined via down-selection from the compiled solutions presented in
the cumulative Pareto front. Orthogonality in this study was focused only on the three properties of
interest (surface tension, density, viscosity).

2.4. Orthogonal Array Testing

For this study and due to the inherent multidimensionality pertaining to the fuel properties,
blending rules, and multi-component fuels themselves, a design of experiments approach is needed.
Taguchi’s orthogonal array testing was utilized to maximize the variance in results during combustor
FOM testing and to minimize the number of tests [28,29]. Orthogonal arrays can be considered as a
template for multivariable experiments where the columns correspond to the variables, the elements
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in the columns represent the test levels of the variables, and the rows correspond to the test run [28].
This effort involves three variables (surface tension, viscosity, density) and two levels for each variable
(larger than A-2 value, smaller than A-2 value), A-2 is utilized here because it represents the ‘average’
conventional jet fuel. In a traditional sense, the orthogonality is achieved with six surrogate sets,
where each surrogate would keep all properties the same with A-2 and maximize/minimize one
property of interest (surface tension, viscosity, density). However, with Taguchi’s orthogonal array
testing, orthogonality can be achieved with four surrogate sets instead. Four scenarios were generated
in Table 1 according to the appropriate variable and level based on orthogonal array testing [28,29].

Table 1. Orthogonal array testing.

Scenarios 0 (=30 °C), mN/m u(=30°Q), mm?Z/s p(=30°C), kg/L Surrogate

Reference 30.0 6.1 0.837 A-2
[1] l l l 1
[2] l T T 2
[3] ) l ) 3
[4] T T l 4

3. Results and Discussions

This study focuses on creating surrogate fuels with orthogonal properties using real fuels as
surrogate components for scaled rig testing. Four scenarios were reported to elucidate the potential
operability variance by mid-distillate hydrocarbons in aviation gas turbine engines, see scenarios
reported in Table 1. For each orthogonal array test scenario, 10,000 random initial compositional guesses
to unbiased solutions and the corresponding Pareto solutions were used to generate the cumulative
Pareto front. Figures 3-6 consists of scatter plots and histograms of Pareto front solutions illustrating
converged probability densities and relative opportunities for property variance. Each scatter plot
consists of calculated properties. Each of the dots on the scatter plots represents one of the possible
best solutions found by JudO. The purple dashed line represents the properties of A-2. A surrogate
was selected using orthogonal array testing, from the total set of solutions presented initially and
represented by the orange star. The surrogates were selected to minimize or maximize the properties of
density, viscosity, and surface tension relative to A-2, according to the four scenarios. Other properties
were intended to be as close to the A-2 values as possible using the other objective functions in this
optimization. Although the selected surrogate might not have the minimum values of the solution
space, the multi-dimensionality concerning all the properties suggests the largest variance happens at
that point.

Down selected surrogate fuels for each of the scenarios are presented in Table 2 with their
respective properties, where Figures 3-6 identify the mole fractions and volume fractions of each
surrogate. Four surrogate fuels based on the scenario results were then blended and measured at —30 °C
for viscosity and density. No error beyond experimental confidence intervals was observed between
the measured and calculated density at —30 °C for the four blended fuels. Viscosity measurements
illuminated favorable error relative to the predicted values as additional variance beyond the calculated
variance was observed. Unfortunately, under the lab’s current experimental capabilities, surface
tension measurements are limited to near room temperature.



Energies 2020, 13, 1948

Scenario 1: min(o, u, p)
Cumulative Pareto front: 3,047,039
Average Jet Fuel (A-2): ---------
5) e 307
o> Surrogate 1/
me 27
Y Mole fraction | Vol fraction
s A-1 0.68 0.66
2 g 08 c1 0.03 0.04
8 ﬂ | 1 : : '
\c'i O 78 J : Cc-4 0.28 0.3
60 1 : 1~
e S Sl
o 30 #
,G o 10 A g
20
P AT s e S
gl TN 1 .ﬁD I
1 1

160 180 27 30 0.78 0.84
MW, g/mol o(-30°C),
mN/m g/cm3

30
p(-30°C), DCN

60

cSt

20 22

u( 30° C) H/C

7 of 13

Figure 3. Cumulative Pareto solutions for scenario 1 with combinations of optimized properties on

histograms and scatter plots with other properties. Scatter plots consist of calculated properties with

respect to each other. Each dot on a scatter plot represents one of the possible best solutions found using
the jet fuel blending optimization tool JudO. The dashed line indicates the properties of A-2, and the

orange star represents the properties of surrogate 1 with respect to the cumulative Pareto solutions.
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Figure 4. Cumulative Pareto solutions for scenario 2 with the chosen surrogate, indicated with the

orange star. Refer to Figure 3 for plot details.
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Figure 5. Cumulative Pareto solutions for scenario 3 with the chosen surrogate, indicated with the

orange star. Refer to Figure 3 for plot details.
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orange star. Refer to Figure 3 for plot details.
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Table 2. Properties of orthogonal fuels for all scenarios.

Scenario
Property A-2 Surrogate 1 Surrogate 2 Surrogate 3 Surrogate 4
Reference  min (o, g, p) min (o), max (g, p) min (y), max (o, p) min(p), max (o, y)
MW, g/mol 159 156 172 156 169
0 (=30 °C), mN/m 30.0 26.7 28.1 28.5 29.4
o 0.806/ 0.832/ 0.824/ 0.827/
P (=30°C), kg/L 0.837 0.806 * 0.832 * 0.824 * 0.826 *
o 4.8/ 9.1/ 5.3/ 8.9/
(=30 °C), mum? /s 6.1 45 10.3* 52 85*
DCN 48 41 48 48 48
H/C 191 2.04 1.98 1.95 2.05
T10, °C 160 151 175 154 173
T50, °C 209 186 231 201 218
T90, °C 260 241 254 254 262
Mole fraction
A-1 0.68 0.29 0.53
A-2 1.00 0.46 0.03
C-1 0.03
C-3 0.68
C-4 0.28 0.02
C-7 0.59
C-9 0.03 0.05
S-8 0.06
HEFA 0.21

* Properties measured at —30 °C.

Figure 3 displays the total of 3,047,039 results of scenario 1. Here, the resulting surrogate,
Surrogate 1, was intended to have the lowest surface tension, viscosity, and density. Compositionally,
Surrogate 1 consists primarily of 68% A-1 and 28% C-4, where A-1 is the “best” jet fuel, with all three
properties lower than that of A-2, and C-4 has the second-lowest surface tension and relatively low
viscosity and density. C-1 has the lowest surface tension; however, with relatively high viscosity,
it was not considered in the solution of Surrogate 1. Figure 4 illuminates scenario 2, which minimizes
surface tension and maximizes viscosity and density. Each of the 3,336,938 possible best solutions
is shown on the scatter plots. The orange star represents Surrogate 2, which was the best solution
for this scenario. This mixture consists of 29% A-1 and 68% C-3, where C-3 has the highest viscosity
and relatively high density. Figure 5 shows 2,201,505 solutions for scenario 3 and, like the previous
figures, indicates the best solution for Surrogate 3 by the orange star. The goal of Surrogate 3 was to
minimize viscosity and maximize surface tension and density. Surrogate 3 consists of 53% A-1 and
46% A-2, where A-2 is the target fuel of this study. Figure 6 reports 3,937,813 solutions for scenario 4,
and the objective for Surrogate 4 was to minimize density and maximize surface tension and viscosity.
The selected surrogate consisted of a six-component mixture, very different from the other solutions:
3% A-2, 2% C-4, 59% C-7, 5% C-9, 5% Syntroleum S-8, and 21% Camelina HEFA. This is because
minimizing density, while maximizing surface tension was difficult with the fuels selected for this
work. The majority of the fuels selected in this effort had positive correlations between surface tension
and density, making it difficult to minimize density while maximizing surface tension. If a larger
variance is needed, then more novel fuel, solvents, and neat molecules need to be integrated into
JudO. Neat molecules, such as alkylbenzenes, where surface tension and density are not positively
correlated would aid Judo in capturing additional variance; thus, surface tension and density can be
more orthogonalized. Solvents such as Aromatics 100 and 150, for example, could aid in adding more
extreme high surface tensions and densities, and low viscosities.
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4. Conclusions

In conclusion, the current approval and evaluation process of SAFs are both costly and
volume-intensive, for fuels that do not qualify for Fast Track (ASTM D4054 Annex A4). Extensive
combustor testing is needed to overcome the uncertainty and ensure safety under FOM limit phenomena.
Surrogates that mimic jet fuel properties have been used historically to understand combustion
phenomena, while here we report potentially worst case fuel compositions. Previous efforts from
the NJFCP program have shown that certain fuel properties (o, u, and p) have more of an impact
on predicting ignition probabilities [14,15,30]. SAF approval could benefit from the manipulation
instead of mimicking surrogate properties to illustrate the complex physical competition of properties.
Three worst case fuel property scenarios are reported that would bound combustion operability effects
and help to build confidence and building a detailed model for future analysis of the combustor
ignition problem. A generalizable surrogate calculator with the incorporation of recent surface tension
results and the ability to manipulate properties at an N-dimensional scale is created. Four scenarios
were explored computationally to create four orthogonal surrogate sets that maximize variance in
the specified fuel properties. Those four orthogonal surrogates were later measured for the given
properties of interest at desired temperature to confirm the predicted values. In this study, surrogate
compositions were able to extend the work of Kim et al. [17] and Dooley et al. [16] to create scalable
surrogates without empirical correlation and manipulating properties more important to aviation
combustor FOM operability. Now surrogates can be developed using full distillate conventional fuels
and SAF instead of pure components. The surrogate fuels suggested to be tested could illuminate the
worst-case effects for an alternative jet fuel in a given configuration/rig, which aids in bounding the
maximum impact of fuels on these critical safety metrics. This work and supporting experimental
evidence could lower the barrier for SAF approval processes and facilitate the achievement of the
carbon reduction goals. In future research, more properties need to be added to JudO to cover more
FOMSs, and more novel fuels, solvents, and neat molecules need to be considered for integration in this
tool to achieve greater variance in properties than currently estimated.
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APU Auxiliary Power Unit

CORSIA Carbon 'Offsettin.g énd Reduction Scheme for
International Aviation

DCN Derived Cetane Number (ASTM D6890)

FOM Figure of Merit

GHG Greenhouse Gas

H/C Atomic Hydrogen-to-Carbon Ratio

ICAO International Civil Aviation Organization

JudO Jet Fuel Blend Optimizer

LBO Lean Blowout

MIDACO Mixed Integer Distributed Ant Colony Optimization

MW Molecular Weight, g/mol

NJECP National Jet Fuels Combustion Program

RFR Random Forest Regression

SAF Sustainable Aviation Fuel
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Appendix A

Contained in this appendix are additional figures and tables from this research effort. Figure A1 displays

the surface tension accuracy of calculated values relative to measurement. Table A1l presents the fuels used with
the properties of MW, H/C ratio, derived cetane number (DCN), T10, T50, and T90. Surface tension, viscosity,
and density were predicted at —30 °C.

A-3/C-1 Blending, 22°C

27.0 A _
c —— Blending rule
o
m - Measurment
C g 255
==
o E
E 24.0 A
5
n
22'5 L T T T T T T
0 20 40 60 80 100

C-1 Volume Fraction, %

Figure A1. Surface tension blending rule validation. Error bar represent 95 percent confidence interval.

Table Al. All properties of the fuels used in this study.

Surface Tension —30 Viscosity —30 Density —30

Fuel, POSF MW H/C DCN T10,°C  T50,°C  T90,°C

°C* (0), mN/m °C*(),mm?/s °C* (p), kg/m?

A-1, 10264 152 1.99 48.8 271 4.6 0.814 149 193 249
A-2,10325 159 191 48.3 30.0 6.1 0.837 160 209 260
A-3,10289 166 1.89 39.2 30.1 8.9 0.859 174 225 262

C-1, 11498 178 217 17.1 25.5 6.9 0.789 172 172 240
C-3,12341 180 1.97 47.0 28.7 12.2 0.840 185 246 255
C-4,12344 162 2.15 28.0 26.4 5.1 0.792 153 172 222
C-7,12973 170 1.98 42.6 30.3 9.9 0.851 179 220 261

C-9, 12968 174 222 63.3 27.1 79 0.791 166 216 271
Syntroleum S-8, 5018 168 2.14 59.7 28.3 5.7 0.769 170 209 247
Camelina HEFA, 7720 168 2.20 589 28.3 9.0 0.794 163 228 275
12943 164 2.02 36.1 274 5.3 0.810 181 187 209

12944 160 2.02 46.4 279 5.9 0.819 181 195 230

12945 165 2.01 54.0 29.7 6.9 0.818 181 207 250

* Properties are predicted at —30 °C.
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