
 

Energies 2020, 13, 1892; doi:10.3390/en13081892 www.mdpi.com/journal/energies 

Article 

An Analysis of Energy Use Efficiency in China by 

Applying Stochastic Frontier Panel Data Models 

Xiaoyan Zheng 1 and Almas Heshmati 2,* 

1 Department of Economics, Sogang University, 35 Baekbeom-ro (Sinsu-dong #1), Mapo-gu,  

Seoul 04107, Korea; hyaoyan6002@gmail.com 
2 Jönköping International Business School, Jönköping University, Room B5017, P.O. Box 1026,  

SE-551 11 Jönköping, Sweden 

* Correspondence: almas.heshmati@ju.se; Tel.: +46-36-101780 

Received: 6 March 2020; Accepted: 1 April 2020; Published: 13 April 2020 

Abstract: This paper investigates energy use efficiency at the province level in China using the 

stochastic frontier panel data model approach. The stochastic frontier model is a parametric model 

which allows for the modeling of the relationship between energy use and its determinants using 

different control variables. The main control variables in this paper are energy policy and 

environmental and regulatory variables. This paper uses province level data from all provinces in 

China for the period 2010–2017. Three different models are estimated accounting for the panel 

nature of the data; province-specific heterogeneity and province-specific energy inefficiency effects 

are separated. The models differ because of their underlying assumptions, but they also 

complement each other. The paper also explains the degree of inefficiency in energy use by its 

possible determinants, including those related to the public energy policy and environmental 

regulations. This research supplements existing research from the perspective of energy policy and 

regional heterogeneity. The paper identifies potential areas for improving energy efficiency in the 

western and northeastern regions of China. Its findings provide new empirical evidence for 

estimating and evaluating China’s energy efficiency and a transition to cleaner energy sources and 

production. 
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1. Introduction 

After the 2008 economic crisis, the situation in the world stabilized in 2010. According to the 

yearly China Economic Report [1], China’s annual GDP increased from 6.066 trillion US dollars in 

2010 to 8.271 trillion US dollars in 2017, with a total growth rate of 36.35 percent showing the highest 

growth among the top 15 large global economies. But the China Energy Statistics Yearbook 2018 [2] 

shows that the GDP growth rate gradually decreased from 10.7 percent in 2010 to 6.9 percent in 2017. 

In 2017, the global primary energy consumption was 13.5 billion tons of oil equivalent. The annual 

consumption growth rate in 2010–2017 was 1.4 percent. The economic growth rate slowed down in 

China. 

According to the BP World Energy Statistics Yearbook [3] during 2010–2017, the gap between 

China’s energy demand and energy supply increased over time. As China continues to promote 

urbanization and industrialization and gradually upgrades its consumer energy consumption 

structure, inequalities between China’s energy supply and energy demand will remain severe until 

2020. This gap will play an increasingly important role in energy security. In the face of rigid growth 

in energy demand, China’s energy supply is expected to face severe challenges with increased supply 

pressures. 
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The BP Energy Outlook [4] predicts a radical energy transition. The ongoing transition to a 

lower-carbon fuel mix is led by renewables and natural gas which account for 85 percent of the 

growth in energy and are gaining in importance relative to traditional primary sources of oil and 

coal. It is forecast that the consumption of liquid fuels will grow over the next decade, but it will 

plateau as efficiency improvements in the transport sector are realized. A reduced use of the 

abundant global oil resources is likely to lead to a more competitive market and lower oil prices that 

will boost oil demand. The use of natural gas has grown dramatically and this growth is driven by 

its use in industry and power generation. Europe and China are two of the largest importers of gas. 

The growth in renewable energy is faster than that in oil and dominated by the developing world 

with China, India, and other Asian countries accounting for almost half the growth in global 

renewables. China and India drive global economic growth and together with other developing 

countries account for over 80 percent of the expansion in world output. Improvements in living 

standards in developing countries lead to an increase in energy demand. 

The BP Energy Outlook [4] further suggests that the pattern of energy used within industry is 

expected to shift as a result of China’s changing economic role. The process leading to the growth in 

energy used in industry will shift from China to other developing countries. By 2040, renewables are 

expected to overtake coal as the largest source of power generation. Global coal demand flatlines, 

with the fall in China and the OECD, but will be offset by gains in India and other emerging Asian 

countries; however, the growth in coal consumption will still slow down. By the mid-2020s, India 

will be the world’s largest economic growth market. China and India both started with relatively 

coal-intensive fuel mixes. In a scenario of energy transition, China’s coal share will fall from 60 

percent in 2017 to around 35 percent in 2040 and will be offset by increasing shares of renewables, 

natural gas, and nuclear energy to match the growth in Chinese energy demand over the Energy 

Outlook’s period, which is 2017–2040. 

Two transition scenarios are predicted—evolving and rapid transition. According to the 

evolving transition scenario, the energy consumption for 1995, 2017, and 2040 is estimated at 891, 

3132 and 4017 Mtoe (million tons of oil equivalent). The transition (from 1995 to 2017 and from 2017 

to 2040) will lead to changes in consumption estimated at 2241 and 885 Mtoe. This corresponds to a 

252 and 28 percent change which, on an annual basis, is 5.9 and 1.1 percent, respectively. In a rapid 

transition scenario, the estimated energy consumption is 891, 3132, and 3700 Mtoe. The changes are 

estimated to reach 2241 and 568 Mtoe with 252 and 18 percent total changes or 5.9 and 0.7 percent 

changes annually (BP Energy Outlook [4] pp. 135–137). 

China’s energy consumption per unit of GDP is twice that of the world average and four times 

that of developed countries. In recent decades, industrialized countries have invested in and 

developed energy saving and alternative energy technologies. It is difficult to meet the fast-growing 

energy demand simply by increasing energy supply. Saving energy and improving energy efficiency 

are extremely important and effective ways for China to meet its energy related challenges and the 

challenges of climate change. In such a situation one can ask, what is the status of energy efficiency 

in China specifically at the province level? 

The Chinese government’s interventions in energy use and energy efficiency mainly include 

government investments in the energy industry and the enforcement of energy policies targeting the 

energy industry. However, from the perspective of energy utilization and environmental protection, 

government interventions should also consider such incentives as encouraging and punishing 

different energy consumption industries. These include various programs such as tax incentives and 

subsidies for the introduction of environmentally friendly energy-saving products. 

In 2013, the State Council of China issued the ‘Action Plan for Air Pollution Prevention and 

Control’ called ‘Atmosphere Ten’ which clearly states that the overall improvement in air quality in 

the country in five years led to a reduction in heavy air pollution in Beijing-Tianjin-Hebei, Yangtze 

River Delta, and Pearl River Delta of 15–25 percent. In 2017, the government’s work report proposed 

to win the ‘blue sky defense war’ and speed up the resolution on coal-fired air pollution. As a 

relatively efficient and clean energy source, natural gas is favored by the government and the market. 

The policy of ‘coal to gas’ is an important substitution measure for improving air quality and it has 
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been widely promoted in the past. This requires Beijing, Tianjin, Hebei, Shanxi, Shandong, and 

Henan provinces and other cities to complete 3.55 million units of ‘coal to gas’ and ‘coal to electricity’ 

transformations in energy technology.  

However, due to China’s large regional heterogeneity as compared to other countries, the 

feedback on energy efficiency policies in its regions is different. Therefore, energy market reforms 

conductive with environmental policy must be actively promoted, and, in parallel, reduce 

government interventions in the energy market. Regional heterogeneity in energy consumption is 

evident in the demand for energy and its impact on economic growth. Giving full flexibility to the 

endowment of energy factors improving energy efficiency can effectively promote economic 

development. Given these conditions it will be interesting to know whether China’s energy efficiency 

has improved with technological innovations, and what kind of typical regional heterogeneity exists 

in China’s energy efficiency. 

Based on existing research, the methods for measuring efficiency mainly include the data 

envelopment analysis (DEA) and the stochastic frontier analysis (SFA). The former does not need to 

estimate the specific production function form, thus avoiding the problems caused by the choice of a 

wrong functional form. DEA uses information on inputs and outputs, but it does not describe the 

production process fully. Conversely, SFA describes individual producers’ production processes by 

estimating the production function, thus controlling efficiency estimates. In addition to inputs and 

outputs, SFA also uses production and market environmental factors. Thus, this approach assumes a 

functional form.  

At present, most scholars adopt the DEA method for efficiency analyses, while the SFA method 

is less frequently used. Only a few scholars have used it for empirical research related to energy use 

efficiency. The simple Cobb-Douglas production function is also a commonly used functional form 

for describing a regional economy. Considering the heterogeneity of China’s economic regions, it is 

appropriate to use the SFA approach for measuring regional energy efficiency. Unlike DEA, SFA is a 

parametric method which allows for modeling the relation between energy use and its determinants 

and in addition to the inputs and outputs that one can control for firm, industry, province, and other 

environmental and policy characteristics. Further, the importance of extra information can be tested 

statistically. 

Literature and evidence on inefficiencies and differences in regional level energy use in China is 

vast. By analyzing panel data for 30 provinces in 2005–2014 using the DEA efficiency model to 

measure total factor energy efficiency in China, [5] showed that total factor energy efficiency was 

high in the East and low in the West of the country. The eastern region had higher total factor energy 

efficiency and characteristics of lack of energy resources. However, the western region had the 

characteristics of lower total factor energy efficiency while it was rich in energy resources. The 

allocation of production elements of ‘more input and less output’ also existed in the central region, 

leading to an enormous waste of energy resources in these areas.  

[6] points out that the government should and can solve the problems and inefficiencies of 

energy allocation in the market and enforce these using mandatory energy policies. By studying the 

relationship between government interventions, natural resources, and economic growth, [7] found 

that appropriate government interventions can reduce the negative impact of pollution of natural 

resources on economic growth. One can ask, what are the energy policies that China has adopted for 

improving energy efficiency during the development process? 

It is evident that production in China is very energy intensive. Energy sources are mainly fossil 

fuel based with extremely negative health, environmental, and climate effects. This paper evaluates 

energy use efficiency as a tool for reducing energy consumption and air emissions. This research does 

a panel data analysis of energy use efficiency in China at the province level. The method is at the 

forefront of research and allows for accounting province heterogeneity and temporal changes in 

energy use efficiency, making the results informative and useful.  

In analyzing energy use efficiency, this paper uses three different models—[8], the true fixed-

effects model [9,10], and four components of the stochastic frontier model. The stochastic frontier 

panel model approach is parametric and allows for modeling the relationship between energy use 



Energies 2020, 13, 1892 4 of 17 

 

and its determinants conditioned on different control variables. The main control variables are energy 

policy, and environmental and regulatory variables. The data is from the province level and covers 

all provinces in China (except Tibet due to lack of data availability) observed over the period 2010–

2017. Three different models are estimated accounting for the panel nature of the data; province-

specific heterogeneity and province-specific energy use inefficiency effects are separated. The models 

differ because of their underlying assumptions but also complement each other considering the 

directions that literature has developed in, namely assumptions about the distribution of inefficiency 

effects, estimation methods, and time-variance of inefficiency and its separation from province 

heterogeneity. The degree of inefficiency in the use of energy is also explained by its possible 

determinants including those related to public energy policy and environmental regulations. This 

research supplements existing research from the perspective of energy policy and regional 

heterogeneity. It shows that there is enormous potential for improving energy efficiency in the 

western and northeastern regions of China. These findings provide new empirical evidence for 

estimating and evaluating China’s energy use efficiency and transition to cleaner energy sources. 

The rest of the paper is organized as follows. After this brief introduction, Section 2 presents a 

literature review on energy efficiency. The evolution of methods for estimating energy efficiency and 

the approaches used are also discussed in this section. Section 3 outlines the methodologies of the 

three different models used. Section 4 describes the data and the specifications of the empirical model. 

Section 5 discusses the results both by comparing the models and by distinguishing between regional 

heterogeneity in China. Section 6 gives the conclusion and implications of the findings of the study. 

2. Literature Review 

This section is divided into two sub-sections elaborating on the significance, concept, meaning, 

and evolution of the methods of measuring and estimating energy efficiency. 

2.1. Significance and Concepts of Energy Efficiency 

Energy experts and research scholars in China and elsewhere have reached a general consensus 

about the important role that energy plays in an economy and in society. It is believed that 

improvements in energy efficiency can significantly reduce energy consumption and environmental 

pollution and help in gradually achieving sustained and steady economic growth. In 1995, the World 

Energy Commission defined energy efficiency as reducing energy inputs to provide equal energy 

services interpreted as producing the same amount of goods and services. However, this definition 

is broad and does not accurately define the concept of energy efficiency. 

[11] defines energy efficiency on the basis of its traditional meaning, that is, the production of 

the same amount of services or desirable outputs but with less energy inputs and undesirable 

outputs. [12] define and separate energy efficiency through economic and technical perspectives. By 

summarizing and analyzing existing energy efficiency measurement indicators, [13] divide energy 

efficiency into a number of categories—energy macro efficiency, energy physical efficiency, energy 

factor utilization efficiency, energy element allocation efficiency, energy value efficiency, and energy 

economic efficiency. Similarly, [14] point out that energy efficiency means producing the same 

amount of effective outputs or services with less energy. They believe that the key to defining energy 

efficiency is scientifically identifying effective outputs and inputs. 

Based on different research fields, energy efficiency uses various quantitative indicators. Based 

on an analysis of the theoretical framework, energy efficiency in this paper is defined as the overall 

efficacy of energy economic efficiency and energy environmental efficiency. 
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2.2. Evolution of Methods for Estimating Energy Efficiency 

Looking at relevant literature on energy use efficiency, we see that the research methods used 

for analyzing energy use efficiency are mainly divided into two types: ‘single factor efficiency’ 

without considering other factors and ‘all-factor energy efficiency’ with multiple inputs and multiple 

outputs. The former’s results only consider the proportional relationship between energy input and 

production output, while the latter adds the results of all other input factors including energy in the 

calculation.  

Because the method of measuring single factor energy efficiency is simple and intuitive and it 

has strong operability, it has been favored by many scholars both in China and elsewhere, and it has 

been the main method for studying energy efficiency problems over time. However, with the 

continuous progress in research in the area of energy efficiency, the traditional single factor energy 

efficiency measurement method has been questioned and replaced with multi-factors energy 

efficiency measurement methods.  

[15] evaluated various indicators of traditional energy efficiency and maintained that traditional 

indicators did not describe the essence of ‘energy efficiency’ because they have many defects. Using 

a single-factor approach and three full-factor methods, [16] compared the energy efficiency of various 

regions in China based on data for 2005. They found that the total factor approach was promising, as 

it revealed the impact of a regional factor endowment structure on energy efficiency. 

Because of the shortcomings and limitations of single factor efficiency research, scholars started 

investigating more systematic and scientific methods for evaluating and studying energy efficiency. 

[17] proposed the concept of total factor energy efficiency based on the total factor productivity 

framework and measured the total factor energy efficiency of 29 provinces in China. Their results 

showed that total factor energy efficiency was a more realistic measure of energy use efficiency. The 

approach used in this research differs from the single factor efficiency approach, by conditioning the 

model on other factors such as GDP, exports, education investments, R&D investments, 

environmental protection, population, and urbanization, all of which influence energy use. Thus, the 

derived demand for energy is conditional on other factors accounting for the multiple factor nature 

of energy use.  

Researchers agree that two papers by [18] and [19] mark the birth of the stochastic frontier 

methodology. Subsequently, [20] proposed a new method for effectively dividing the error terms of 

the production and cost functions into technical inefficiency terms and random error terms and using 

these for measuring enterprises’ technical efficiency. However, these methods are based on cross-

sectional data and cannot be technically efficient for multiple production unit observations. In short, 

the measure of energy efficiency is time-invariant and restrictive. [21] applied the fixed-effects model 

and the random-effects model for estimating enterprises’ technical efficiency. However, their model 

assumed that the technical efficiency of each enterprise was fixed or time-invariant. To make up for 

this shortcoming, [22] and [8] developed different models for estimating the time-varying technical 

efficiency of enterprises. 

3. Methodology 

The stochastic frontier (SF) approach for estimating technical efficiency is based on the idea that 

an economic unit may operate below its production potential or frontier due to low performance, 

errors, and some uncontrollable factors. A study of the frontier approach started with Farrell [23] 

who suggested that efficiency could be measured by comparing realized or actual output with the 

maximum or potential attainable output. Other than comparing output, we can also compare the 

actual input use with the minimum required input use. The two methods are called output oriented 

and input oriented approaches. Their aim is maximizing output with available inputs and technology 

or minimizing costs for given outputs and technology. The former is more adaptable for 

industry/firm data and the latter for services data. The empirical part of this study is based on three 

different models— [8], the true fixed-effects model [9,10], and four error components of the SF model 

with determinants of inefficiency (following [24] and [25]). 
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Most theoretical stochastic frontier production functions have not explicitly formulated a model 

for technical inefficiency effects in terms of appropriate determinants. By using panel data, one can 

remove the limitations of depending on the distributional assumption of noise and inefficiency 

components and observing each unit at several different points of time. However, the extended 

dimension in time adds to the complexity, as it requires the modeler to take into account some 

heterogeneity effects that may exist beyond what is possible to control using a cross-sectional 

approach, which lumps individual effects with random errors. This can be achieved by introducing 

an ‘individual (unobservable) effect,’ say, α, that is time-invariant but individual-specific. The 

limitation of such a model is eliminated when using panel data methods. 

We can examine whether inefficiency has been persistent over time or whether a unit’s 

inefficiency is time-varying since we have information about units over time. One component of 

inefficiency may have been persistent over time while another may have varied over time. Regarding 

time-invariant individual effects, we also need to consider whether an individual effect represents 

persistent inefficiency or persistent unobserved heterogeneity, as well as whether individual effects 

are fixed parameters or are they realizations of a random variable [26]. Thus, it is important that 

policies promote an efficient use of resources that are scarce, and it can serve as an effective policy 

tool by separating unobserved heterogeneity and inefficiency components. 

This study outlines three panel data models which differ in terms of the underlying assumptions 

made for the temporal behavior of the inefficiency components. All the models treat inefficiency as 

being individual-specific. This is consistent with the notion of measuring the efficiency of decision-

making units. Model 1 allows for inefficiency to be both individual-specific and time-varying and 

explains the determinants of inefficiency. Model 2 separates inefficiency effects from unobserved 

individual non-inefficiency heterogeneity effects. Model 3 separates persistent inefficiency and time-

varying inefficiency from unobservable individual heterogeneity effects. Thus, the three models are 

complementary and jointly provide information on province heterogeneity, province inefficiency, the 

random error term, and the variations in inefficiency in energy use. The three models are now 

outlined. 

3.1. Model 1: The Time-Variant Efficiency Model 

[8] considered a production model wherein technical inefficiency effects were modeled in a 

stochastic frontier function for panel data. In this paper, we specify a factor demand version of the 

model. The objective is to minimize the use of a factor in the production of a given output, factor 

price, and technology. This is similar to [27] who analyzed labor use efficiency in the banking 

industry. Here we use the same approach but in the context of energy use. Separability between 

energy and other inputs is assumed. The assumption is supported by the fact that we use aggregate 

output and aggregate individual inputs. A cost function is appropriate for the current case as energy 

use is cost for producing a given output, which is desirable to be minimized. Provided the inefficiency 

effects are stochastic, the model permits the estimation of both technical change or a shift in function 

over time and time-varying technical inefficiencies. The model is estimated using the maximum 

likelihood method which allows for estimating the effects of inefficiency’s determinants. In this case 

inefficiency is a function of time.  

In Model 1 we use the following generic formulation to discuss the various components in a 

unifying network:  

����� = �(���, �) +∈��, ∈��= ��� + ���, 

��� = �(�)��, ���~�(0, ��
�), ���~��(�, ��

�), �(�) = [1 + exp (��� + ����)]�� 
 

where ENE is energy use and �(�) > 0 is a function of time (t); in this model, inefficiency (���) is not 

fixed for a given individual, instead it both changes over time and across individuals. Inefficiency is 

composed of two distinct components: the nonstochastic time component, G(t) and a stochastic 

individual component, ��. The stochastic component, ���, uses the panel structure of the data in this 

model. The ��  component is individual-specific and the G(t) component is time-varying and is 

common for all the individuals. We consider some specific forms of G(t) used in [28] model which 
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assumes �(�) > 0, given that �� > 0, and thus ��� ≥ 0 is ensured by having a non-negative G(t). G(t) 

can be monotonically increasing (decreasing) or concave (convex) depending on the signs and 

magnitude of ��  and �� . Inefficiency changes in this model are time driven and a nonlinear 

exponential function of time. However, the trend pattern is similar for all individuals; the differences 

in performance among individuals are due to the ��  component. The random and nonlinear nature 

of the model requires iterative estimation by the maximum likelihood (ML) estimation method. Cost 

efficiency is estimated assuming truncated normal distribution using the product of the individual 

specific �� and the time variant G(t). The product of the two is in the interval between 0 and 100 

where 100 represents a full cost-efficient unit.  

3.2. Model 2: The True Fixed-Effects Model  

Model 1 is a standard panel data model where �� is an unobservable individual effect. The 

model can be estimated using the standard panel data fixed and random-effects estimators to 

estimate the model’s parameters to obtain the estimated value of ��. The highest estimated value of 

���, namely ���, is used as a reference for the frontier. 

However, there is a notable drawback in Model 1′s approach as it does not allow individual 

heterogeneity to be distinguished from inefficiency. In other words, all time-invariant heterogeneity 

such as enterprise infrastructure that is not necessarily inefficient is included as inefficiency [9,29]. 

Also, the time-invariant assumption of inefficiency is a potential issue with Model 1. If T is large, it 

seems implausible that the inefficiency in energy use will stay constant for an extended period of 

time, since the technological progress will eventually replace less efficient technologies. So, should 

one view the time-invariant component as persistent inefficiency or as individual heterogeneity? The 

optimal choice lies somewhere in between, that is, a part of the inefficiency might be persistent, while 

another part may be transitory. 

To solve the problem that the two parts cannot be separated from time-invariant individual 

heterogeneity effects, we have to choose either a model wherein �� represents persistent inefficiency, 

or a model wherein �� represents an individual-specific heterogeneity effect.  

Following Kumbhakar and Heshmati [29] we consider both specifications in this paper. Thus, 

the models we examine can be written as:  

����� = �� + ���
� � +∈��, ∈��= ��� + ���, 

���~�(0, ��
�), ��� = ℎ���� , ℎ�� = �(���

� �), ��~��(�, ��
�), 

 

The key feature that allows for the model’s transformation is the multiplicative form of 

inefficiency effects, ���, in which individual-specific effects, �� , appear in multiplicative forms with 

individual and time-specific effects, ℎ�� . As ��
∗  does not change with time, the within and first-

difference transformations leave this stochastic term intact. Thus, the difference between Model 1 and 

Model 2 is that inefficiency in Model 2 is explained by its observable determinants (z), while in the 

former, the time patterns of inefficiency are explained by a trend, but inefficiency is not explained by 

any determinants. Thus, cost efficiency is obtained based on the separated ��� components of the 

residual.  

3.3. Model 3: Four Components of the Model with Determinants of Inefficiency 

To fully satisfy the assumptions made in the model, we introduce a final model by [24] and [25] 

that overcomes some of the limitations of the earlier models. In this model, the error term is split into 

four components. The four components in this paper’s context capture:  

 Provinces’ latent heterogeneity [9], which has to be disentangled from provinces’ persistent 

inefficiency effects;  

 Short-run time-varying transitory inefficiency;  

 Persistent or time-invariant inefficiency as in [30,31] and [29]; and Random shocks. 

Then, our final model based on these characteristics is the Kumbhakar et al. [25] model which is 

specified as:  
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����� = �� + �(���; �) + �� + ��� + �� + ���  

where �� is two-sided individual province heterogeneity, ���  is a two-sided random error term, ��  

is one-sided time-invariant individual inefficiency, and ��� is one-sided time-variant inefficiency. In 

production models, the signs on the front of the inefficiency components are negative, reflecting 

production below the frontier output, while in cost or energy use models they are positive, suggesting 

higher cost or energy use above the minimum or frontier.  

Instead of using a single stage ML estimation method based on the distributional assumption of 

the four components ([32], a simpler multi-step procedure is considered and we write the model as:  

����� = ��
∗ + �(���; �) + �� +∈��  

where ��
∗ = �� − �(��) − �(���); and �� = � − �� + �(��).  

This model can be estimated in three steps. In the first step, we use the standard random-effects 

panel regression to estimate �� . This procedure also gives predicted values of �� and ∈��, which we 

denote by ��� and ∈���. In the second step, we estimate the time-varying technical inefficiency, ���, 

and in the final step, we estimate ��  following a procedure similar to that in Step 2. Lastly, we 

estimate the persistent efficiency, PE, as �� = −exp (��). The residual efficiency, RE, is obtained as 

in Models 1 and 2, assuming a half normal distribution or truncated normal distribution ���. The 

overall efficiency, OE, following Kumbhakar et al. [28], is obtained from the product of PE and RE, 

that is, OE  PE  RE. 

Table 1 gives the main characteristics of the three different efficiency models. The characteristics 

are related to the underlying assumptions of the different models, decomposition of the error 

components, time variation patterns of inefficiency, and the estimation procedure.  

Table 1. Main characteristics of the different models. 

. Model 1 Model 2 Model 3 

General firm effects are treated as: Fixed Fixed Random 

Energy use inefficiency components: 

Persistent inefficiency No No Yes 

Residual inefficiency No No Yes 

Overall energy use inefficiency: 

Mean Time-inv. Zero trunc. Zero trunc. 

Variance Homosc. Homosc. Homosc. 

Symmetric random error term: 

Variance Homosc. Homosc. Homosc. 

Estimation method: ML ML Multi-step 

Notes: Fixed-effects (Fixed), random-effects (Random), homoscedastic variance (Homosc.), time 

invariant efficiency (Time-inv.), zero truncated error term (Zero trunc.), and maximum likelihood 

(ML). 

4. Data 

The data used in this study are from the province level observed for the period 2010–2017. It is 

obtained from the National Bureau of Statistics of China [1]. The dataset is the best available and 

frequently used in research and planning. This section describes the data source and provides a list 

of key and control variables; it also gives a descriptive analysis of the data.  

4.1. Main Variables  

In this research, energy use is defined as the economic value of total energy used per capita. It 

covers all economic sectors. It is reflected in both the price and quantity of energy. It is also reflected 

in the value of production. The definition of energy used here is close to the one used by [11], who 

defined energy efficiency as the production of the same amount of services or desirable outputs but 
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with less energy inputs and undesirable outputs. In the current study, the undesirable output is 

controlled for by environmental stringency, carbon dioxide, and fine particulate matter. Provinces’ 

per capita GDP is used as the main explanatory variable. It reflects labor productivity, size or scale 

in the economy as well as opportunity for energy use or consumption.  

It should be noted that one may consider income to be endogenously determined and, as such, 

it can induce biased estimation results. One way of endogenizing income is by using predicted 

income or lag income as the explanatory variable. However, the two approaches may in turn lead to 

a bias. Here, we ignore the issue of endogeneity with the argument that we use province level data 

which is average per capita income and not endogenous to private and public users. Variations in 

income levels within the province that could be a source of endogeneity are not observed. At the level 

of aggregate income there is one-to-one correspondence between income and expenditure, and work 

is part of social life and most people, regardless of their income per hour, work 40 h per week.  

4.2. Control Variables 

A review of the factors affecting energy efficiency in existing literature shows that these are 

mainly focused on three aspects: technological progress; structural factors including industrial, 

economic, and energy consumption structures; and system factors including energy prices, the 

degree of opening up to the outside world, and the government’s environmental regulations. 

Technological changes: It is generally believed that improvements in energy efficiency are 

mainly through structural adjustments and technological progress. In the process of economic 

development, technological progress accelerates the process of eliminating backward industrial 

sectors, transforming the original industrial sectors, and improving the industry which also promotes 

establishing new industrial sectors. Progress directly improves energy efficiency through the 

transformation of traditional technologies, development of new technologies, and adoption of new 

processes. This paper uses R&D internal expenditure (in 10,000 yuan) of industrial enterprises in each 

province as a proxy for technological progress. Changes in product mix and manufacturing mix are 

partially controlled for over time through investments in R&D and education, as well as time variance 

efficiency.  

The government’s environmental regulations or environmental protection investments: [33] 

targeted 14 prefectures in Xinjiang and used three indicators of the government’s environmental 

pollution treatment investments to characterize the government’s environmental regulations. Their 

results showed that the policy on pollution treatment investments and resource tax both generated 

energy inefficiencies. [34] used Xinjiang as their research subject for measuring the intensity of 

environmental regulations using the entropy method. Their results showed that the government’s 

environmental regulations had an inhibitory effect on energy efficiency, which was not only reflected 

in the current period, but also in three periods lagged. [35] showed that environmental protection 

investments had a negative impact on energy efficiency probably because pollution treatment was 

not effective and investments in treatment were often passive. 

Openness defined as ((export + import)/GDP) characterizes foreign trade. Foreign trade is an 

important component of economic development. The structure of foreign trade products and the 

structure of foreign trade itself can affect energy efficiency. [36–39] show that the degree of openness 

is positively related to energy efficiency. Some scholars have come to different conclusions though. 

[40] shows that at the national level, economic openness is significantly positively correlated with the 

development of electrical equipment. At the regional level, economic openness is only significantly 

positively related to energy efficiency in the middle Yellow River. [14] show that for every 1 percent 

increase in the value of imports and exports in GDP, energy efficiency will decrease by 0.18 percent, 

but due to its dual effect, performance will vary in different regions. [41] research on single factor 

energy efficiency shows that the relationship between openness and energy efficiency in typical 

provinces is inconsistent, and he believes that the impact of openness on energy efficiency is a 

sufficient condition and not a necessary condition. 

Population and urbanization: [42] show that both endogenous innovations and human 

development have a positive impact on single factor energy efficiency. [43] examined the impact of 
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urban morphology and transportation modes on national and regional energy efficiency. His results 

showed that the former had a significant negative impact on regional energy efficiency while the 

latter had no significant impact. In some previous research the impact of urban agglomeration scale 

density on urban energy efficiency is examined. The former can improve the latter, but impact on 

energy efficiency can be heterogeneous. It should be noted that in this research all explanatory 

variables and determinants of energy use inefficiency are province-specific and some, such as 

education and R&D investments, have spillover effects. In this research, we do not account for spatial 

effects of investments across provinces.  

4.3. A descriptive Analysis of the Data 

The energy consumption structure in China by sectors is very skewed (transport 8.2 percent, 

industry 29.0 percent, building 16.7 percent, electricity 40.1 percent, and others 6.1 percent) [44]. 

Concerning primary energy consumption, the problems facing China’s energy use include a very 

high proportion of coal use, low thermal efficiency, high unit energy consumption, high growth rate 

of consumption, and trade disputes with the US which influence energy efficiency with an impact on 

industry. From a spatial perspective, the level of economic development in different regions of China 

is very different. While there are differences in climate, geographical environment, and resources, 

there are also differences in energy structures in different regions.  

The model used in this study is parametric and it allows for modeling the relationship between 

energy use and its determinants conditioned on different control variables. The main control 

variables are energy policy (investments in environment protection) (���� ); the degree of trade 

openness (����); and environmental and regulatory variables including education investments (����), 

R&D investments (��&� ), population (���� ), and urbanization (���� ). The variables which may 

influence energy use efficiency are ��  (PM2.5), �� (CO2), and �� (municipal solid waste treated). 

PM2.5 refers to atmospheric fine particulate matter (PM) that has a diameter of less than 2.5 micro-

meters. We also use the log of GDP per capita (����) as a main indicator. To see the variations in 

energy use, we use the cost function approach and the log of energy use per capita (ENEcost) as the 

dependent variable. The series used in this analysis is at the province level and contains all provinces 

in China (except Tibet due to lack of data) observed yearly from 2010 until 2017.  

Table 2 shows that all the indicators are logarithmically transformed, except for investments in 

environment protection, which are defined as a percentage of regional GDP or gross regional product 

GRP (����) and urbanization (����) in the production function variables. Energy use cost per capita 

ranges between 427.638 and 5665.779 CNY among the sample provinces, with a mean of 1556.498 and 

dispersion of 1039.165 CNY. The GRP per capita varies in the interval of 1350.430 and 89,705.230 CNY 

in the provinces. The mean value is 21,652.784 with a dispersion of 16,997.766 CNY.  

Table 2. Summary statistics of input and output data (2010–2017) (30 × 8 = 240 observations). 

Variable Definition Mean Std. Dev. Minimum Maximum 

A. Energy cost function variables: 

ENE���� Energy use per capita 1556.498 1039.185 427.638 5665.779 

x��� GRP per capita 21,652.784 16,997.766 1350.430 89,705.230 

x��� Value of export 69,598,470.492 123,875,644.740 424,174.000 646,000,000.000 

x��� 
Education investments (in 

10,000) 
9,596,653.987 5,952,569.714 994,671.000 36,587,681.000 

x�&� R&D investments 2,872,909.717 3,713,827.748 57,760.000 18,650,313.000 

x��� 
Investments in environmental 

protection, as % of GRP 
2.956 0.935 1.200 6.700 

x��� Population (10,000 people) 4522.296 2705.794 563.000 11,169.720 

x��� Urbanization (%) 0.560 0.127 0.338 0.896 

B. Determinants of energy use inefficiency:  

z� PM2.5 (μg/m�) 39.903 15.703 10.487 82.379 

z� 
CO� intensity (tons/billion 

yuan) 
19.750 12.089 3.129 69.052 
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z� 
Municipal solid waste treated 

(tons/day) 
17,269.510 13,961.950 931.000 78,185.000 

Note: Monetary variables are in fixed Chinese yuan, CNY. Source: Based on data from the National 

Bureau of Statistics of China (2018). 

5. An Analysis of the Results 

The three stochastic frontier models are specified and estimated using the data described earlier, 

and the estimation results are given in Table 3. 

Table 3. Stochastic frontier models’ estimation results (NT = 240 observations). 

Variable Description Model 1 Model 2 Model 3 

x��� Log GDP per capita −0.563 ** −0.461 ** −0.583 ** 

x��� Log Exportation 0.008 −0.024 0.013 

x��� Log Education Investments 0.016 0.053 0.016 

x�&� Log R&D Investments 0.144 * 0.124 * 0.143 * 

x��� Environment Protection −0.010 0.006 −0.012 

x��� Log Population (10,000 people) −0.412 * −0.954 * −0.436 ** 

x��� Urbanization (%) 2.380 ** 3.390 ** 2.260 ** 

Note: significant at less than the 0.05 (*) and less than the 0.01 (**) percent level of significance. 

In Table 3 we present the estimation results of the three energy efficiency models. In Model 1, 

GDP, R&D investments, and environment protection are all statistically significant predictors of 

energy use. In Model 2, GDP and R&D investments are predictors of energy use. However, 

environment protection is a statistically insignificant predictor of energy use. In Model 3, GDP and 

R&D investments are significant variables that predict variations in energy use. However, 

environment protection is not found to be a significant predictor of energy use.  

Another result that can be attained from Table 3 is attributed to the use of time as a driver of 

efficiency, which reduces the inefficiency component of the overall residual.  

The Wald test is a joint test for multiple regressors. It mainly tests how much the model changes 

if the variables added are removed. In other words, the distance from the coefficient of each variable 

to zero is measured. The test results (see Table 4) show that the independent variable contributes 

significantly to the model and cannot be eliminated. The p-values of the fit of the three models are all 

less than 0.01, indicating that the models fit the data well. 

Table 4. Model fit test’s results. 

Model Fitted Model 1 Model 2 Model 3 

Wald test statistics 92.49 7684.93 109.70 

Wald test p-value <0.001 <0.0001 <0.001 

The rest of this section analyzes the results. The analysis is in the form of a comparison of the 

different model’s estimation results and an analysis of time-variance patterns as well as regional 

differences in energy use efficiency. 

5.1. A Comparative Analysis of the Models’ Estimation Results  

Table 5 gives the descriptive statistics for mean energy use efficiency according to the three 

models. Model 1 shows that province level energy use efficiency ranged from 0.091 to 0.937 with 

large dispersions. The energy use efficiency in Model 2 ranged from 0.387 to 1.000. In Model 3 the 

residual efficiency ranged from 0.013 to 0.990, the persistent efficiency ranged from 0.179 to 0.897, 

and the overall efficiency ranged from 0.176 to 0.876. A number of 0.80 for Province A in a given year 

indicates that province A is 80 percent efficient in energy use compared to the frontier reference 
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Province B with the best energy use technology. Province A has the potential of improving its 

efficiency by 20 percent. 

Table 5. Descriptive Statistics for Energy Efficiency Measures by Different Models. 

Energy Efficiency Mean Std. Dev. Minimum Maximum 

Model 1 0.371 0.184 0.091 0.937 

Model 2 0.968 0.092 0.387 1.000 

Model 3 

Residual efficiency 0.973 0.013 0.092 0.990 

Persistent efficiency 0.625 0.179 0.209 0.897 

Overall efficiency 0.609 0.176 0.202 0.876 

Notes: Model 1: The time-variant efficiency model. Model 2: The true fixed-effects model (Greene, 

2005a). Model 3: Four components of the SF model with determinants of inefficiency. 

5.2. An Analysis of Trends in Energy Use Efficiency 

Table 6 gives the yearly mean of provincial energy use efficiency for the three models. The results 

show that, according to the time-variant Model 1, energy use efficiency decreased during the study 

period. But Models 2 and 3 show increasing energy use efficiency. However, the changes over time 

are extremely small. 

Table 6. Development of mean energy efficiency over time (2010–2017). 

Year Model 1 Model 2 
Model 3 

Residual Efficiency Persistent Efficiency Overall Efficiency 

2010 0.374 0.954 0.970 0.621 0.602 

2011 0.373 0.971 0.973 0.622 0.606 

2012 0.372 0.963 0.971 0.623 0.606 

2013 0.372 0.970 0.976 0.626 0.611 

2014 0.371 0.973 0.977 0.627 0.613 

2015 0.370 0.971 0.974 0.627 0.612 

2016 0.370 0.970 0.972 0.627 0.610 

2017 0.369 0.974 0.976 0.628 0.613 

Table 6 shows that the trends of national mean energy use efficiency over 2010–2017 were 

practically constant over time. Although energy demand increased constantly, there was a 

technological revolution and policies for improving energy efficiency were introduced continuously, 

there were no significant improvements in energy use efficiency throughout the country. The possible 

small improvements in energy use efficiency are eliminated by increased consumption of energy due 

to economic growth in energy intensive industries. 

5.3. Regional Heterogeneity in Energy Efficiency 

For investigating the performance of different provinces and their positions as compared to the 

best performing province, energy use efficiency was compared across provinces and major regions 

in China. In the latter case, the provinces were divided into East (Beijing, Fujian, Guangdong, Henan, 

Hebei, Jiangsu, Shandong, Shanghai, Tianjin, and Zhejiang), Center (Anhui, Hubei, Henan, Hunan, 

Jiangxi, and Shanxi), West (Chongqing, Gansu, Guangxi, Guizhou, Inner Mongolia, Ningxia, 

Qinghai, Shaanxi, Sichuan, Xinjiang, and Yunnan), and Northeast (Heilongjiang, Jilin, and Liaoning). 

Table 7 gives the summary of average energy use efficiency values by provinces for the period 

2010–2017. Different models’ estimated measures of efficiency show that there were differences 

between provinces in terms of energy use efficiency. 

Table 7. Average energy use efficiency by provinces (2010–2017). 

Provinces Model 1 Model 2 
Model 3 

Residual Efficiency Persistent Efficiency Overall Efficiency 
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East 

Beijing 0.724 1.000 0.986 0.857 0.845 

Fujian 0.365 0.998 0.972 0.684 0.665 

Guangdong 0.332 1.000 0.980 0.634 0.621 

Hainan 0.136 0.928 0.966 0.343 0.332 

Hebei 0.313 0.998 0.975 0.599 0.583 

Jiangsu 0.437 1.000 0.987 0.738 0.728 

Shandong 0.145 1.000 0.988 0.341 0.337 

Shanghai 0.437 0.999 0.984 0.743 0.731 

Tianjing 0.520 1.000 0.989 0.795 0.786 

Zhejiang 0.347 1.000 0.980 0.658 0.645 

Center 

Anhui 0.478 0.999 0.982 0.772 0.758 

Hubei 0.352 1.000 0.983 0.668 0.656 

Henan 0.402 1.000 0.986 0.717 0.707 

Hunan 0.417 1.000 0.982 0.731 0.718 

Jiangxi 0.437 0.994 0.977 0.750 0.733 

Shanxi 0.699 0.974 0.962 0.849 0.816 

West 

Chongqing 0.937 0.997 0.980 0.892 0.875 

Gansu 0.128 0.962 0.973 0.301 0.293 

Guangxi 0.232 0.994 0.975 0.509 0.497 

Guizhou 0.443 0.952 0.963 0.748 0.720 

Inner Mongolia 0.516 0.893 0.945 0.777 0.734 

Ningxia 0.281 0.537 0.940 0.555 0.522 

Qinghai 0.401 0.946 0.974 0.728 0.709 

Shaanxi 0.215 0.998 0.975 0.469 0.457 

Sichuan 0.309 0.999 0.971 0.617 0.599 

Xinjiang 0.093 0.987 0.972 0.216 0.210 

Yunnan 0.383 0.932 0.959 0.702 0.674 

Northeast 

Heilongjiang 0.199 0.984 0.964 0.429 0.413 

Jilin 0.320 0.980 0.969 0.624 0.605 

Liaoning 0.138 0.999 0.972 0.311 0.302 

According to the models’ results reported in Table 7, most of provinces in East China had 

relatively higher energy use efficiency as compared to provinces in the Center, West, and Northeast 

of the country. Provinces in the East such as Beijing, Chongqing, and Shanxi had high efficiency above 

80 percent. Conversely, an energy use efficiency of less than 40 percent was observed in Gansu, 

Xinjiang, Shandong, and Liaoning provinces. 

It can be seen in Table 7 that there is very obvious regional heterogeneity of energy use efficiency. 

Beijing, as the main energy efficiency policy implementation region, has always maintained high 

energy efficiency. Because of hosting a large proportion of secondary and tertiary industries, 

Changsha and Chongqing have also maintained high values in terms of energy efficiency. 

Industrial cities such as Gansu, Shandong, and Liaoning have a very high proportion of 

production using coal. It can be speculated that the use of nonclean energy and the level of technology 

are the reasons for the low energy efficiency in these cities. As Xinjiang is a minority autonomous 

region that lacks resources, it has low technological levels, and slow implementation of energy 

efficiency policies which could have contributed to its low energy efficiency levels. 

In looking at average energy use efficiency by provinces it is noted that Models 1 and 3 have 

similar trend calculation results, while Model 2 shows higher results that are similar to the results of 

residual efficiency in Model 3, which cannot reflect regional heterogeneity well. What we are 

concerned with is why the cities/provinces of Fujian, Guangdong, Shandong, Zhejiang, Hubei, 

Gansu, Shaanxi, Heilongjiang, and Liaoning have different efficiency results across different models. 

The reason could be that the energy structures in these provinces are basically dominated by energy-
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intensive secondary industries and there is congestion in resource inputs for achieving economic 

growth. 

Figure 1 shows the average value of energy use efficiency by regions in the three models. It can 

be seen in the figure that the central region has higher energy efficiency, which has much to do with 

the good implementation of energy efficiency policies and human resource allocation structures in 

this region. 

 

Figure 1. Estimated energy use efficiency by regions (2010–2017). 

Notes: 

1. 1 Model 1: The time-variant efficiency model. 

2. 2 Model 2: The true fixed-effects model.  

3. 3 Model 3: Four components residual efficiency. 

4. 4 Model 3: Four components persistent efficiency. 

5. 5 Model 3: Four components overall efficiency. 

A table giving the full results (not reported here but available on request) shows all 30 provinces’ 

yearly energy use efficiency for the three models. From this table, we can compare the trends of 

energy efficiency between provinces and regions more comprehensively, and we can also see that 

energy efficiency showed slow and steady growth. 

Energy efficiency in the central region before 2010 was low, and its energy efficiency in 2005–

2010 was lower than that in the eastern and western regions, indicating that the central region had a 

weak capacity to absorb production capacity, and the industrial market had not been fully developed. 

After 2010, as the country’s ‘Central Rise’ policy entered the implementation phase, the central 

region’s industrial structure was adjusted, its capacity to absorb production was continuously 

enhanced, and energy resource utilization technology was improved, leading to continuous 

improvements in energy efficiency year by year. 

Energy efficiency in the western region declined steadily. The reason for this declining pattern 

is that the western region has abundant energy endowments and the gradual implementation of the 

western development policy enhanced its economic development, expanded its market capacity, and 

helped achieve improved energy efficiency. However, with the country’s excessive dependence on 

the western region’s policies, this region’s market could not absorb too much capacity, and energy 

productivity and energy consumption capacity did not match, resulting in serious overcapacity 

which led to energy efficiency falling for several years. 

Affected by the world financial crisis in 2008, China’s economic development, in particular the 

development of energy intensive secondary industries, was hit hard. Therefore, after experiencing a 

decline in energy efficiency, the Chinese government adopted a large-scale investment stimulus 

package to protect its high rate of economic growth. Vigorous development of infrastructural 
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investments and construction drove the development of the secondary industries. As a result, from 

2010 to 2017, energy efficiency in the eastern and central regions increased significantly and steadily. 

However, the improvements were far below the optimal level required by health and environmental 

standards. 

6. Conclusions and Implications 

This study estimated three different models accounting for the panel nature of the data and 

determined separate province-specific energy use inefficiency effects. It also explained the degree of 

inefficiency in the use of energy using its possible determinants including those related to the public 

energy policy and environmental regulations. This research supplements existing research from the 

perspective of energy policy and regional heterogeneity. We observed a large potential for improving 

energy use efficiency, particularly in the western and northeastern regions. This study provides new 

empirical evidence for evaluating China’s energy efficiency and transitioning to cleaner energy 

sources. 

Energy use efficiency in most provinces of China improved slowly after 2010 as did the trend of 

steady regional economic growth, but the magnitude of energy efficiency improvements was small 

compared to investments in technological innovations. A comparison of the results of the three 

stochastic frontier models shows that there was provincial and regional heterogeneity in energy use 

and its efficiency. The models complement each other and being based on different distributional 

assumptions and estimation methods together provide a picture of energy consumption in China at 

the province level for the period 2010–2017. 

We can also see that the impact of the government’s policies on energy efficiency were 

significant. As the country’s ‘Central Rise’ policy entered the formal implementation phase, the 

central region showed improvements in energy efficiency. This also means that there is potential for 

improving energy efficiency in the western and northeastern regions. With the ‘coal to gas’ and ‘coal 

to electricity’ policy, energy efficiency in Beijing-Tianjin-Hebei, Yangtze River Delta, and Pearl River 

Delta showed relatively high levels of progress. 

With the country’s excessive dependence on policies for the western region, this region’s market 

could not absorb as much capacity and energy productivity and energy consumption capacity did 

not result in production capacity, which led to decreased energy efficiency. The results of the western 

region’s policy imply that the government’s energy policy should be adjusted considering regional 

heterogeneity. But the low level of energy efficiency in the northeastern region still needs more 

empirical analysis to find out why this is the case. The ‘Central Rise’ policy could be modified to 

account for specific characteristics of the western and northeastern regions, such as resource 

endowments, production capacity adjustments, and infrastructure to increase their energy use 

efficiency. Further, the determinants of energy use (in) efficiency can be identified and the models be 

specified such that each model can explain possible outcomes of energy use and environmental 

protection. 

A possible and interesting extension of this study is expanding the data period to include the 

period before the 2008 global economic crisis and disaggregating the province level data to the 

industry level. This will help control for energy intensity and targeted energy saving policies and an 

evaluation of their impact. 
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