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Abstract: Weather variables are an important driver of power generation from renewable energy
sources. However, accurately predicting such variables is a challenging task, which has a significant
impact on the accuracy of the power generation forecasts. In this study, we explore the impact of
imperfect weather forecasts on two classes of forecasting methods (statistical and machine learning)
for the case of wind power generation. We perform a stress test analysis to measure the robustness of
different methods on the imperfect weather input, focusing on both the point forecasts and the 95%
prediction intervals. The results indicate that different methods should be considered according to
the uncertainty characterizing the weather forecasts.
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1. Introduction

Forecasts are an integral part of the decision-making process. They can take the form of
judgmental, human-made forecasts or statistical, machine-made, formal forecasts. Forecasts are
used at different levels of decision-making, from the very granular, operational level to the very
aggregate, strategic level. The most common form of forecasting is a set of point forecasts (most likely
estimates). However, the efficient estimation of uncertainty, in the form of prediction intervals or
probabilistic/density forecasts, is also crucial [1]. This is especially true when one deals with highly
volatile environments. While oftentimes univariate time series forecasting techniques are appropriate
for making extrapolations, in some instances, the observed past patterns are not the best predictor for
the future, with the dependent variable being affected by external, independent factors. In such cases,
regression-like forecasts are required.

When using independent variables (predictor or exogenous variables) to forecast the dependent,
target variable of interest, one common challenge is related with the accuracy of the future values
of these predictors. In some settings, this might be trivial to tackle. For instance, if promotional
indicators are used to produce demand forecasts, then information regarding future promotions
should be (at least internally) readily available. However, when predictors such as gross domestic
product or unemployment are used to predict demand, then one needs to accurately extrapolate these
independent variables before producing the forecasts for the target variable. An analysis of the results
of recent Kaggle forecasting competitions showed that when an independent variable is not trivial to
forecast, then its added-value to forecast accuracy is minimal [2].
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The increased costs and environmental impacts associated with fossil fuels, combined with the
increased global energy demand, led many countries to invest heavily in renewable energy sources.
Wind energy is probably the most popular renewable energy source, experiencing an exponential
increase in cumulative capacity over the last 25 years, and being rapidly integrated in national
energy policies. Wind power forecasting is important to a variety of stakeholders, such as grid
system operators, electricity traders, and wind farm operators, with accurate forecasts being crucial
for efficient energy storage management [3] and microgrid scheduling [4]. While some researchers
suggest bypassing the wind speed forecasts and using direct (univariate) approaches to forecast
wind power [5], it is very common for researchers and practitioners alike to use numerical weather
predictions (e.g., wind speed and/or direction forecasts) as inputs in their algorithms [6–9].

However, numerical weather predictions can be inaccurate for several reasons. First, weather
stations may be located relatively far from the wind farm [10,11]. As an example, [12] proposed local
recurrent neural networks for three-day-ahead wind speed and power forecasting using numerical
weather predictions from stations as far away as 30 km. Second, forecasts may be required for further
into the future than the short term, making any weather predictions uncertain [12,13]. Third, wind is
very volatile in nature, making its prediction difficult [14,15].

Researchers have investigated several techniques to improve wind power forecast through
wind speed numerical predictions. Indicatively, these include the use of Kalman filters [16], neural
networks [17], and combinations of machine learning (ML) methods [18]. Another example of using
imperfect weather forecast towards wind power forecasting is the study by [19], who used wind
speed and its standard deviation as inputs to machine learning algorithms. Instead of relying on
imperfect meteorological weather predictions, some researchers focused on directly estimating the
wind speed using variations of autoregressive integrated moving average models [20,21] or artificial
neural networks [22]. However, even in these cases, the wind speed estimates are associated with
some volatility (uncertainty), which is also taken into account when estimating the wind power.

In this paper, instead of attempting to correct the biasedness and apply error corrections on
the numerical weather predictions, we accept their uncertain nature. Given this uncertainty, we
perform a comparison across multiple methods used to forecast wind power in order to understand
the effects of weather uncertainty on their forecasting performance. We consider both statistical, linear
regression models as well as several nonlinear ML methods [23]. Our research question is as follows:
How does weather forecast uncertainty affect the relative performance of statistical and ML methods for wind
power forecasting?

Focusing on the case of wind power generation and numerical weather predictions (in terms of
wind speed and direction), our contributions are threefold:

• We measure the impact of imperfect weather forecasts on the wind power forecasting accuracy
and the estimation of uncertainty through the evaluation of the point forecasts and the prediction
intervals produced by various types of forecasting methods;

• We compare the suitability of statistical versus ML approaches in the task of estimating highly
volatile variables when the accuracy of external information varies;

• Assuming varying levels of inaccuracy in the independent variable, we perform a sensitivity
analysis with varying distributional assumptions to conclude on the robustness [24] of the
forecasting approaches considered and make relevant recommendations.

The remainder of the manuscript is organized as follows. Section 2 presents the statistical and ML
forecasting approaches used to forecast wind power. Section 3 describes the wind data used in this
study, provides the details of the experimental setup, and presents the results. Section 4 discusses the
empirical results and provides implications for practice. Section 5 concludes the paper.
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2. Forecasting Methods Considered

In this study, we consider seven forecasting methods: a statistical method (Linear Regression, LR)
and six ML methods, namely, Multi-Layer Perceptron (MLP), Bayesian Neural Network (BNN),
Random Forest (RF), Gradient Boosting Trees (GBT), K-Nearest Neighbor Regression (KNNR),
and Support Vector Regression (SVR). The methods were chosen so that the results are representative
for the major ML regression algorithms considered in the forecasting literature, i.e., Neural Networks
(NNs), Regression Trees (RTs), Support Vector Machines (SVMs), and other nonparametric approaches.

2.1. Training and Testing

The forecasting methods are trained by correlating the wind power (target variable) with the
weather forecasts (predictor variable) provided for the same period. Thus, all methods have a single
output and as many inputs as the weather variables being forecasted (e.g., wind speed and wind
direction). Note that since forecasting is performed through regression, the forecasting horizon and
the period at which the forecasts are produced are irrelevant. In other words, the relationships learned
are time-independent and used for predicting wind power at any period of interest for which weather
forecasts are available.

In order for our results to be more indicative, we implement a fivefold cross-validation procedure
which resamples the available data sample and effectively approximates how the considered model
is expected to perform when utilized to generate forecasts for periods not used for training [25].
According to this procedure, we first shuffle the dataset randomly and split it into five groups. Then,
we use the first four groups for training the method and the last group for testing its performance.
We repeat this process for the remaining four combinations of groups and summarize our results by
averaging the individual scores.

2.2. Scaling

Given that the majority of the ML methods considered utilize nonlinear activation functions, such
as sigmoid ones, the data must be scaled before training so that computational problems are avoided,
algorithm requirements are met, and faster learning is facilitated [26]. To that end, we scaled both the
target and the predictor variables between 0 to 1 by considering a linear transformation, v′, as follows:

vi
′
t =

vi t − vimin
vimax − vimin

, (1)

where vi t is the value of the ith variable of the dataset at point t, and vimin and vimax denote the
minimum and maximum value of the variable, respectively, computed for the sample used for training
the forecasting methods. The reverse transformation was used to rescale the forecasts derived by the
methods so that predictions are expressed in the same scale as that of the wind power.

Given that the major objective of this study was to evaluate the forecasting performance of various
methods under conditions of imperfect weather forecasts, which may include extreme, abnormal
values, no other types of preprocessing were considered (e.g., trimming and power transformations).

2.3. Statistical and Machine Learning Methods

Below, we summarize the statistical and ML methods used for forecasting wind power, also
providing information about the model architectures and hyperparameters used per case.

• Linear Regression (LR): LR is a linear method for modeling the relationships between the target
and the predictor variables. The parameters of the forecasting model are estimated directly from
the data using closed forms. LR was the first type of regression method to be studied rigorously,
and is therefore widely used because of its simplicity, low computational cost, and intuitiveness.
Since in this study we consider N weather variables as predictors, LR is implemented in the form
of multiple linear regression, as follows:
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ŷt = a + b1 × v1 + b2 × v2... + bk × vk, (2)

where a is the intercept of the model, and bj is the coefficient of the jth weather variable used for
predicting the wind power. Note that LR methods, in contrast to ML methods, assume additive,
linear relationships between the target and the predictor variables. Thus, it was expected to result
in suboptimal forecasts when used for modeling complex, nonlinear data patterns;

• Multi-Layer Perceptron (MLP): A simple, single hidden layer NN of N input and 2N input nodes,
constructed so that accurate, yet computationally affordable forecasts are provided [27]. The Scaled
Conjugate Gradient method is used for estimating the weights [28] which are initialized randomly.
The learning rate is selected between 0.1 and 1 using a tenfold cross-validation procedure (mean
squared error minimization), while the maximum iterations are set to 500. The sigmoid activation
function is used both for the hidden and the output layers given the lack of trend in the data.
We trained 10 models and use the median of their forecasts to mitigate possible variations due
to poor weight initializations [29]. The method was implemented using the RSNNS R statistical
package [30];

• Bayesian Neural Network (BNN): This method is similar to the MLP method but optimizes the
weights according to the Bayesian concept, as suggested by [31,32]. The Nguyen and Widrow
algorithm [33] is used to assign initial weights and the Gauss–Newton algorithm to perform
the optimization. Once again, an ensemble of 10 models was considered with a maximum of
500 iterations each. The method was implemented using the brnn R statistical package [34];

• Random Forest (RF): RTs can be used to perform a treelike recursive partitioning of the input
space, thus dividing it into regions, called the terminal leaves [35]. Then, on the basis of the inputs
provided, tests are applied to decision nodes in order to define which leave should be used for
forecasting. The RF method expands this concept by combining the results of multiple RTs, each
one depending on the values of a random vector sampled independently and with the same
distribution [36]. In this regard, RF is more robust to outliers and overfitting, even for limited
samples of data. In this study, we considered a total of 500 nonpruned trees and sampled the data
with replacement. The method was implemented using the randomForest R statistical package [37];

• Gradient Boosting Trees (GBT): This method is similar to RF, but instead of generating multiple
independent trees, it builds one tree at a time, each new tree correcting the errors made by the
previously trained one [38]. Thus, although GBT is more specialized than RF in forecasting the
target variable, is more sensitive to overfitting [39]. In this study, we constructed a slow learning
model with a learning rate of 0.01 and a maximum tree depth of 5. We considered 1000 trees but
pruned the constructed model by employing a tenfold cross-validation procedure to mitigate
overfitting. The method was implemented using the gbm R statistical package [40];

• K-Nearest Neighbor Regression (KNNR): KNNR is a similarity-based method, generating
forecasts according to the Euclidean distance computed between the points used for training and
testing. Given a test sample of N predictor variables, the method picks the closest K observations of
the training sample to them and then sets the prediction equal to the average of their corresponding
target values. K was selected between 3 and 300 with a step of 3 using a tenfold cross-validation
procedure. The method was implemented using the caret R statistical package [41];

• Support Vector Regression (SVR): SVR generates forecasts by identifying the hyperplane that
maximizes the margin between two classes and minimizes the total error under tolerance [42].
We considered ε-regression, with ε being equal to 0.01 and a radial basis kernel. The method was
implemented using the e1071 R statistical package [43].
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3. Empirical Evaluation

3.1. Dataset

In order to evaluate the impact of imperfect weather forecasts on wind power forecasting
performance, we considered two wind farms, namely, Aeolos and Rokas, located in Crete, Greece.
The datasets of both wind farms are hourly and have a duration of one year (8760 h) ranging from
1 January 2006 to 31 December 2006. The datasets include the wind speed (measured in m/s) and
direction (measured in degrees) recorded at the turbine hub height, as well as the wind power recorded
(measured in MW). For more information about the dataset, see [3].

Figures 1 and 2 present the wind power of the two farms versus the wind direction and speed.
In practice, the panels of the two figures represent the empirical power curves of the farms, being
subject to wind direction and speed, respectively [44]. As seen, in both cases wind power is nonlinearly
increased as wind speed becomes larger. Moreover, faster wind is required in the Aeolos wind farm for
producing the same power produced in Rokas, where wind speed intensity is typically significantly
lower than that of Aeolos. In addition, wind power is more volatile in Rokas than in Aeolos. Observe
also that each park is designed so that wind power is maximized for specific wind directions, which
are also the most frequently observed ones. In this respect, wind power in Aeolos is maximized for
a wind direction of 30 and 240 degrees, while in Rokas for a wind direction of 350 degrees. It is
mentioned that wind direction is more volatile in Aeolos than in Rokas, with the latter ranging mainly
between 300 and 360 degrees and the former covering all directions. Note also that in both farms, wind
power is correlated more strongly to wind speed than to wind direction, meaning that imperfect wind
speed forecasts are expected to have a larger impact to wind power forecasting performance. Finally,
we should note that in both wind farms there are some cases where wind power is zero or close to
zero, although the wind speed is strong. This could be either due to wrong wind speed measurements
or a scheduled maintenance.

An overview of how wind speed and direction are distributed at the two wind farms is also
provided in the wind roses of Figure 3. As can be seen, in the Aeolos wind farm, wind direction is
typically either around 30 or 240 degrees, while in Rokas it is concentrated between 300 and 360 degrees.
Moreover, in the Aeolos wind farm, wind speed typically exceeds 18 m/s, in contrast to Rokas where
wind speed does not usually exceed 10 m/s. This also becomes evident by observing the Weibull
distributions of the wind speed of the two wind farms of Figure 4.
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Figure 1. Wind power (measured in MV) compared with wind direction (degrees) and speed (m/s) for
the Aeolos farm. The panels represent the empirical power curves of the farm, being subject to wind
direction (left) and speed (right), respectively.
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Figure 2. Wind power (MV) compared with wind direction (degrees) and speed (m/s) for the Rokas
farm. The panels represent the empirical power curves of the farm, being subject to wind direction
(left) and speed (right), respectively.
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Figure 3. Wind roses providing a view of how wind speed and direction are distributed at the Aeolos
(left) and Rokas (right) wind farms.
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Figure 4. Weibull distributions of the wind speed at the Aeolos (left) and Rokas (right) wind farms.

3.2. Experimental Setup

Given that the examined dataset includes two predictor variables, i.e., wind speed and direction,
we trained the forecasting methods presented in Section 2 using N = 2 inputs. We split the dataset
of each wind farm into five training and test samples (see Section 2.1), scaled the training data
(see Section 2.2), and used the trained models to predict the wind power. For every group of the
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fivefold cross-validation procedure, we recorded the average performance of the forecasting methods
and estimated their overall performance by averaging the individual records.

Since forecasting performance is reported for each wind farm separately, we use the mean absolute
error (MAE) for measuring the average forecasting accuracy of the examined methods, as follows:

MAE =
1
5

5

∑
i=1

(
1
li

li

∑
j=1
| Yij − Ŷij |

)
, (3)

where i denotes the number of the cross-validation group, li is the observations of the test sample
of group i, and Yij and Ŷij are the actual and predicted wind power of the jth observation of
group i, respectively.

Note that the predictor variables included in the dataset do not represent weather forecasts,
but the actual wind speed and direction recorded at the turbine hub height. Thus, using them
directly as inputs to the examined forecasting methods is equivalent to predicting wind power under
conditions of perfect foresight, i.e., zero uncertainty about the future weather conditions. On the other
hand, if the original values of the predictor variables were distorted to some extent, this would be
equivalent to predicting wind power under uncertainty, with its level being relative to the extent of the
distortion considered.

The aforementioned process can be simulated by injecting noise into the two predictor variables of
the dataset. Thus, we built on this concept so that imperfect weather forecasts were created, considering
various types of noise, as well as different noise intensities. Without loss of generality, we considered
the uniform and the Gaussian noise, given that these types of noise have been considered in past
studies for performing similar simulations [45]. In the first case, it was assumed that forecast errors
may range anywhere between a lower and an upper limit, while in the second case, we assumed that
forecast errors were normally distributed around a mean forecast error, µ, with a standard deviation
of σ.

We simulated the weather forecast of normally distributed errors by adjusting the original values
of the two predictor variables by a factor which is normally distributed around µ = 1 and µ = 0 for
wind speed and direction, respectively, with a standard deviation of σ varying from 0 to 1 with a step
of 0.05. Similarly, we simulated the weather forecast of uniformly distributed errors by adjusting the
original values of the two predictor variables by a factor which is randomly selected from [1 − s ,
1 + s] and [−s , s] for wind speed and direction, respectively, with s varying also from 0 to 1 with a
step of 0.05. Essentially, higher values of σ and s indicate higher noise intensity, and as a result, more
uncertainty about the future.

Note that in order for the derived forecasts to be meaningful, we customized the simulation
performed per weather variable, as follows:

• Wind speed. Given that wind speed must be positive, the adjustment was performed by
(i) multiplying the original values of the variable with the computed factors and (ii) setting
all nonzero forecasts (if any) to zero;

• Wind direction. Given that wind direction must range between 0 and 360 degrees, the adjustment
was performed by (i) adding the computed factors, multiplied by 360, to the original values of the
variable, and (ii) adding or subtracting 360 to all forecasts that were lower than zero or higher
than 360, respectively.

In order to evaluate the impact of imperfect weather forecasts on wind power forecasting
performance on a regressor variable level, we considered the following three simulations: (a) noise is
injected only to wind direction forecasts; (b) noise is injected only to wind speed forecasts; (c) noise is
injected both to wind direction and speed forecasts. This setup allowed us to determine which weather
variables are important to be accurately forecasted and if there are any variables for which accurately
predicting their future values is irrelevant.
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Note that apart from linear regression, which allows for prediction intervals to be computed
directly, the rest of the forecasting methods considered do not allow for such theoretical-based
approximations [46]. This is due to the nonlinear nature of the ML regression models and the lack of
an underlying statistical model [47]. To that end, we considered the bootstrap method, that allows
prediction intervals to be empirically, yet precisely estimated [48,49]. The adopted bootstrap approach
is summarized as follows:

1. Given the sample used for training the forecasting methods when producing point forecasts,
the random samples are created without replacement (observations used for validation purposes
remain unobserved while training);

2. For each of the ten random samples, 90% of the observations are used for training the forecasting
methods and 10% for estimating the corresponding errors of the point forecasts;

3. The empirical distribution of the errors (actual-forecast) is computed using a Kernel density
estimator, and the 0.025 and 0.975 quantities of the distribution are determined;

4. The forecasting methods are retrained using the complete training sample so that point forecasts
are produced for the test sample of interest;

5. The 95% prediction intervals are computed by adding the 0.025 and 0.975 quantities to the point
forecasts produced in the previous step.

Note that this process is repeated five times, according to the fivefold cross-validation procedure
described in Section 2.1. The performance of each of the forecasting methods in terms of prediction
intervals is then computed using the Mean Interval Score (MIS) [50], as follows:

MIS =
1
5

5

∑
i=1

(
1
li

li

∑
j=1

(
Uij − Lij +

2
α
(Lij −Yij)1{Yij < Lij}+

2
α
(Yij −Uij)1{Yij > Uij}

))
, (4)

where Uij and Lij are the upper and lower bounds computed for the jth observation of group i,
respectively, and a = 0.05 (95% confidence). Note that MIS evaluates prediction intervals taking into
consideration both their coverage, i.e., the percentage of times when the true values lie inside the
prediction intervals, and their spread, i.e., the distance between the upper and lower bounds [51].
Thus, in order for a prediction interval to be effective, it must provide the nominal coverage with the
minimum possible width [52].

The experimental setup can be summarized as follows:

1. We randomly split the original dataset of each wind farm into five samples of equal sizes;
2. Four out of the five samples are used for constructing a training dataset, which is then scaled;
3. The training dataset is randomly split into ten subsamples;
4. Nine out of the ten subsamples are used for training the seven forecasting methods considered

in this study, with the last one used for producing forecasts and computing the corresponding
forecast errors of each method;

5. Step 4 is repeated for all the ten possible combinations of subsamples;
6. A Kernel density estimator is used to approximate the 0.025 and 0.975 quantities of the error

distribution of the methods, as specified through Steps 3, 4, and 5;
7. The forecasting models are retrained using the complete training dataset, as specified in Step 2,

so that point forecasts are produced for the respective test sample;
8. 95% prediction intervals are computed by adding the 0.025 and 0.975 quantities to the point

forecasts produced in Step 7;
9. Point forecasts and prediction intervals are evaluated using the MAE and MIS measures,

respectively;
10. Steps 2 to 9 are repeated for all the five possible combinations of samples;
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11. The results are summarized by averaging the forecasting performance of the forecasting methods
for all five samples considered.

3.3. Results

Figures 5 and 6 summarize the performance of the forecasting methods considered in this study in
terms of point forecast accuracy. From left to right, the three panels on the top display the MAE of the
forecasting methods for the case of the Gaussian noise of various intensities σ, applied to wind speed
forecasts, wind direction forecasts, and both, respectively. Similarly, the three panels at the bottom
display the MAE of the forecasting methods for the case of the uniform noise of various intensities s.
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Figure 5. Forecasting performance in terms of wind power point forecasts (mean absolute error (MAE),
measured in MW) of the statistical and machine learning (ML) methods considered in this study for the
Aeolos wind farm when different types of noise and noise intensities are considered. The three panels
on the top display the accuracy of the methods for the case of the Gaussian noise of various intensities,
σ, applied to wind speed forecasts, wind direction forecast, and both, respectively. The three panels at
the bottom display the same results for the case of the uniform noise of various intensities s.

The results look similar for both wind farms, with MAE being gradually increased as wind speed
forecasts become more inaccurate, but remaining rather constant as wind direction forecasting accuracy
is deteriorated. This indicates that all methods rely heavily on wind speed forecasts for predicting
wind power, meaning that imperfect wind direction forecasts have a minor impact to overall accuracy.
However, this is not true when imperfect forecasts are provided both for wind speed and direction,
as in this scenario, none of the variables provided as predictors are reliable, and therefore, forecasting
accuracy is decreased even more.

Another interesting finding is that Gaussian noise seems to have a larger impact on forecasting
accuracy than the uniform one. For example, in the Aeolos wind farm, under conditions of both
wind speed and direction imperfect forecasts, MAE reaches 2.72 MW and 2.95 MW for uniform and
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Gaussian noise, respectively. Similarly, in the Rokas wind farm, MAE reaches 3.60 MW and 3.74 MW
for uniform and Gaussian noise, respectively. Moreover, the growth rate of MAE differs when different
types of noises are considered, with MAE following a linear-like trend for the case of the uniform noise
and a sigmoid-like one for the case the Gaussian noise. In this respect, we conclude that imperfect
weather forecasts of different particularities may result in different levels of point forecast accuracy.
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Figure 6. Forecasting performance in terms of wind power point forecasts (MAE, measured in MW) of
the statistical and ML methods considered in this study for the Rokas wind farm when different types
of noise and noise intensities are considered. The three panels on the top display the accuracy of the
methods for the case of the Gaussian noise of various intensities, σ, applied to wind speed forecasts,
wind direction forecast, and both, respectively. The three panels at the bottom display the same results
for the case of the uniform noise of various intensities s.

Regarding the forecasting methods used, in both cases we observe that ML methods outperform
LR, especially for small noise intensities. However, these differences become small or even insignificant
for highly inaccurate weather forecasts. This highlights the advantage of ML methods in identifying
nonlinear dependencies between the target and the predictor variables, which is diminished, however,
when weather forecasts are highly inaccurate.

Observe also that different ML methods are more appropriate for predicting wind power under
different weather forecast accuracy levels. For example, in the Aeolos wind farm, BNN is the most
appropriate forecasting method when a uniform noise of an s value up to 0.50 is considered, both
for wind speed and direction, with SVR becoming the most accurate forecasting method for higher
noise intensities. Similarly, GBT is the most accurate method for predicting Rokas’ wind power under
conditions of perfect foresight, KNNR for s values up to 0.10, BNN for s values up to 0.45, and SVR
for s values greater than 0.45. The results are similar for the case of the Gaussian noise. In the Aeolos
wind farm, MLP is the most accurate method for a wind speed and direction noise of intensity σ up to
0.30, with SVR being the most accurate method for greater σ values. Accordingly, in the Rokas wind
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farm, GBT is the best option for predicting wind power under conditions of perfect foresight, followed
by BNN for σ values up to 0.45, SVR for σ values up to 0.75, and BNN for even greater σ values.

Drawing from the above, we conclude that not only are ML methods more appropriate for
providing wind power forecasts than linear methods, but that different ML methods should be utilized
per case based on (i) the type of uncertainty characterizing the weather forecasts and (ii) the extent
of that uncertainty. To that end, NNs and GBT, which are highly specialized for solving demanding
regression problems, should be preferred when relatively accurate weather forecasts are available,
while SVR should be chosen when relatively inaccurate weather forecasts are present.

The results are quite different for the case of the prediction intervals. More specifically, according
to Figures 7 and 8, although MIS is gradually increased as wind speed forecasts become more
inaccurate, remaining also more or less constant as wind direction forecasting accuracy is deteriorated,
the performance of the LR method is comparable to that of the ML ones, especially under conditions of
highly inaccurate weather forecasts. In fact, when both wind speed and direction forecasts are highly
inaccurate, being also characterized by a Gaussian noise, LR provides the best prediction intervals for
the wind farm of Rokas for any σ value greater than 0.5, being also the best performing method for
the wind farm of Aeolos for σ values of 0.75 and 1.00. However, ML methods, and especially GBT,
perform better in general in both wind farms when a uniform type of noise is considered, regardless
of its intensity. Note also that SVR, which was the most robust approach in terms of point forecasts
accuracy, is systematically significantly worse than the rest of the methods in providing efficient
prediction intervals.
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Figure 7. Forecasting performance in terms of wind power prediction intervals (Mean Interval Score
(MIS), measured in MW) of the statistical and ML methods considered in this study for the Aeolos
wind farm when different types of noise and noise intensities are considered. The three panels on the
top display the accuracy of the methods for the case of the Gaussian noise of various intensities, σ,
applied to wind speed forecasts, wind direction forecast, and both, respectively. The three panels at the
bottom display the same results for the case of the uniform noise of various intensities s.



Energies 2020, 13, 1880 12 of 18

12

14

16

0.00 0.25 0.50 0.75 1.00

Noise Intensity

M
IS

 (
M

W
)

Method
BNN

GBT

KNNR

LR

MLP

RF

SVR

Gaussian Noise − Wind Speed

11.0

11.5

12.0

12.5

13.0

0.00 0.25 0.50 0.75 1.00

Noise Intensity
M

IS
 (

M
W

)

Method
BNN

GBT

KNNR

LR

MLP

RF

SVR

Gaussian Noise − Wind Direction

12.5

15.0

17.5

0.00 0.25 0.50 0.75 1.00

Noise Intensity

M
IS

 (
M

W
)

Method
BNN

GBT

KNNR

LR

MLP

RF

SVR

Gaussian Noise − Wind Speed & Direction

12

14

16

0.00 0.25 0.50 0.75 1.00

Noise Intensity

M
IS

 (
M

W
)

Method
BNN

GBT

KNNR

LR

MLP

RF

SVR

Uniform Noise − Wind Speed

11.0

11.5

12.0

12.5

13.0

0.00 0.25 0.50 0.75 1.00

Noise Intensity

M
IS

 (
M

W
)

Method
BNN

GBT

KNNR

LR

MLP

RF

SVR

Uniform Noise − Wind Direction

11

13

15

17

0.00 0.25 0.50 0.75 1.00

Noise Intensity

M
IS

 (
M

W
)

Method
BNN

GBT

KNNR

LR

MLP

RF

SVR

Uniform Noise − Wind Speed & Direction

Figure 8. Forecasting performance in terms of wind power prediction intervals (MIS, measured in
MW) of the statistical and ML methods considered in this study for the Rokas wind farm when different
types of noise and noise intensities are considered. The three panels on the top display the accuracy of
the methods for the case of the Gaussian noise of various intensities, σ, applied to wind speed forecasts,
wind direction forecast, and both, respectively. The three panels at the bottom display the same results
for the case of the uniform noise of various intensities s.

The abovementioned phenomenon can be explained by disaggregating MIS into its two main
components: coverage and spread. Given that prediction intervals are empirically derived using
a bootstrap approach, the nominal coverage is effectively captured by all the forecasting methods
considered equally, even for high noise intensities (coverage ranges from 93% to 97%). However,
in order for the methods to achieve such a coverage, the spread of the derived prediction intervals is
continuously growing as noise intensity rises. Thus, MIS is increased as uncertainty becomes larger,
especially for methods that display extreme errors, although on average they may provide better
forecasting accuracy.

4. Discussion

In the previous section, we provided empirical results with regards to the impact of imperfect
weather forecasts (wind speed and direction) on forecasting accuracy and uncertainty estimation
of wind power generation. The results can be summarized to be dependent on three factors: the
type of independent variable, the type of performance indicator considered, and the forecasting
methods utilized.

With regards to the independent variables used to predict wind power, we observed that wind
speed has a much more significant impact compared to wind direction. Accurately predicting wind
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speed results in much better forecasts, both in terms of point forecast accuracy as well as prediction
intervals estimation. On the other hand, the provision of noisy wind direction forecasts does not
significantly affect the forecasting performance of a particular method. When both variables are
assumed to be predicted imperfectly, then the forecasting performance drops even further, as it
was expected.

The results are heavily dependent on the performance indicator that is used. When focusing
on point forecast accuracy (Figures 5 and 6), the performances of the methods show a very stable,
negative relationship with the wind speed noise intensity. On the other hand, the performance of the
prediction intervals shows a much more volatile behavior. At the same time, Figures 7 and 8 show
that the ability of the methods to estimate the wind power generation uncertainty does not always
monotonically decrease with the noise intensity; this is particularly true for the statistical model (LR)
or when Gaussian noise distributions are assumed.

The third factor relates to the nature of the forecasting methods considered. In our experimentation,
we employ both statistical, linear as well as ML, nonlinear approaches. When perfect forecasts of
the predictors are available, ML methods provide roughly 25% better predictions compared to the
LR statistical benchmark. In this situation, there is little to distinguish with regards to the point
forecast accuracy of the ML approaches, apart from the slightly worse performance of SVR compared
to other nonlinear approaches. However, the two ML methods, namely RF and SVR, are significantly
worse than the others in estimating the uncertainty, resulting in much wider intervals. The superior
performance of ML methods over LR becomes less significant as the noise intensity in predicting the
wind speed increases. The differences become smaller for higher noise intensities in point forecast
accuracy. LR even outperforms several (or all) ML approaches in estimating the uncertainty around
wind power generation given highly uncertain wind speed forecasts.

The empirical results presented here could be of particular interest to wind farm operators and
managers. Given the location and distance of a weather forecast station, decision makers can decide
on the optimal forecasting approach based on the characteristics of the typical weather forecasts that
they receive, including noise intensity and distribution. Similar to other forecasting problems, we also
notice here a “horses for courses” situation [53] with different approaches being the better options
under different conditions. Regardless of the plethora of possible optimal solutions, one common
theme seems to be that the statistical approach considered in this paper performs on par (if not better)
when the noise intensity is very high [23]. When this is doubled with the fact that LR is multiple times
faster than the ML approaches that we examined, the choice of a forecasting model under perfectly
imperfect weather forecasts becomes a no-brainer [51,54].

We now return to the research question presented in the introduction section: How does weather
forecast uncertainty affect the relative performance of statistical and ML methods for wind power forecasting?
The relative performance of statistical versus ML methods for wind power forecasting depends on
the (in)accuracy of the wind speed forecast and the performance indicator (point forecast accuracy or
performance of the prediction intervals). Increases in the uncertainty of the wind speed improve the
performance of statistical methods, relative to machine learning methods. Increases in the uncertainty
of the wind direction have a minimal impact on all methods.

While we focus on a very specific context, our results inform the forecasting research with regard
to the value of explanatory variables. Our results corroborate the findings of [2]: the added-value of
explanatory variables is highly associated with their accuracy. If we are able to forecast them accurately,
then the quality of the predictions for the dependent variable increases significantly. If we are unable to
accurately forecast wind speed, then it would be probably preferable to utilize time series approaches
for forecasting wind power [55].

One limitation of this study relates to our experimental design. Having access to the real weather
conditions, we simulated imperfect forecasts under reasonable distributional assumptions. However,
it is possible that our results might not generalize if other error distributions for the noise occur.
A second limitation has to do with the context of our empirical study. Constrained by data availability,
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we examined the behavior of two wind farms that are located in similar geographical positions.
Our results might differ in other locations or if other contexts (such as photo-voltaic parks) are
considered. A third limitation of this study refers to the application of single forecasting models with
our recommendations being based on selecting the best method on each occasion. An alternative
would be the use of combinations, which has shown good performance in numerous studies [56], even
in their simplest forms [57]. Here, we could consider combining the forecasts from all or selected pools
of methods [58].

5. Conclusions

In this article, we explored the impact of imperfect weather forecasts on a by and large
weather-driven industrial function: wind power generation. In this context, forecasting is essential
as to be able to estimate when the wind turbines will work at full capacity, and when at almost no or
limited capacity. Wind power needs to be forecast at very high frequencies, and as such, point forecasts
and the respective prediction intervals are essential inputs in the broader decision-making process.
Two classes of forecasting methods were examined for addressing this task: statistical and ML. In both
cases, weather forecasts are an essential input, with their imperfection needing to be assessed in terms
of its impact on the final forecasting accuracy.

We performed such an empirical assessment by using a dataset that involves two wind farms
and considering various types of imperfect weather forecasts. Our results suggest that ML methods
outperform statistical ones in terms of point forecast accuracy, especially for low noise intensities.
However, these differences become small for highly inaccurate weather forecasts. This highlights the
advantage of ML methods in identifying nonlinear dependencies between the variables taken into
consideration, a difference that is vastly diminished when weather forecasts are highly inaccurate.
Furthermore, we found out that different ML methods should be utilized per case based on (i) the
type of uncertainty characterizing the weather forecasts and (ii) the extent of that uncertainty. To that
end, NNs and GBT, which are highly specialized for solving demanding regression problems, should
be preferred when relatively accurate weather forecasts are available, while SVR should be chosen
when relatively inaccurate weather forecasts are present. The results are quite different for the case
of the prediction intervals. Although the precision of the methods is gradually decreased as wind
speed forecasts become more inaccurate, the performance of the statistical benchmark is comparable to
that of the ML ones, especially under conditions of highly inaccurate weather forecasts. In fact, linear
regression provides better forecasts than the ML methods when Gaussian noise distributions of high
deviations are assumed.

We do not claim that we have exhaustive results and thus generalization of our findings should
be treated with scrutiny. Nevertheless, we do firmly believe that we provide sufficient evidence and
motivation in order to drive further studies in this direction. Future research could take many guises,
but we do believe that at least the following avenues should, sooner than later, be explored:

• The “forecasting horserace” should be expanded to include more methods and accuracy measures;
• Given that the examined dataset includes two predictor variables, i.e., wind speed and direction,

bivariate models, inspired by econometric approaches, like VAR models, should be explored;
• “When in doubt combine”: combinations of all (or the top-three methods) for each forecast case

should be tested (for both point forecasts and prediction intervals). Alternatively, one could
try to go for a clever selection algorithm in between those ML and statistical methods (see for
example [59]), or even hybrid approaches [60];

• Temporal aggregation is always a way to self-improve any forecasting method (times series
or cross-sectional) and this alternative should be employed in any context, especially when it
involves a lot of uncertainty or complexity [61]. This could be achieved either via selecting a
single aggregation level [62] or via combining the forecasts produced for multiple aggregation
levels [63];
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• The provided forecasts should be evaluated “on the money” with real-life (and asymmetric)
utility functions.

Author Contributions: Conceptualization, E.S., F.P. and K.N.; methodology, E.S., F.P. and K.N.; software, E.S.;
validation, E.S., F.P.; formal analysis, E.S., F.P.; investigation, E.S., F.P. and K.N.; resources, E.S.; data curation,
E.S.; writing—original draft preparation, E.S., F.P. and K.N.; writing—review and editing, E.S., F.P. and K.N.;
visualization, E.S.; supervision, F.P. and K.N.; project administration, F.P. and K.N. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: We are grateful to Nikos Hatziargyriou and George Sideratos of the National Technical
University of Athens, as well as the EU SafeWind Project for providing the data.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

BNN Bayesian Neural Network
GBT Gradient Boosting Trees
KNNR K-Nearest Neighbor Regression
LR Linear Regression
ML Machine Learning
NN Neural Network
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