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Abstract: A fractal discrete fracture network based model was proposed for the gas production
prediction from a fractured shale reservoir. Firstly, this model was established based on the fractal
distribution of fracture length and a fractal permeability model of shale matrix which coupled
the multiple flow mechanisms of slip flow, Knudsen diffusion, surface diffusion, and multilayer
adsorption. Then, a numerical model was formulated with the governing equations of gas transport in
both a shale matrix and fracture network system and the deformation equation of the fractured shale
reservoir. Thirdly, this numerical model was solved within the platform of COMSOL Multiphysics
(a finite element software) and verified through three fractal discrete fracture networks and the field
data of gas production from two shale wells. Finally, the sensitivity analysis was conducted on
fracture length fractal dimension, pore size distribution, and fracture permeability. This study found
that cumulative gas production increases up to 113% when the fracture fractal length dimension
increases from 1.5 to the critical value of 1.7. The gas production rate declines more rapidly for a
larger fractal dimension (up to 1.7). Wider distribution of pore sizes (either bigger maximum pore
size or smaller minimum pore size or both) can increase the matrix permeability and is beneficial
to cumulative gas production. A linear relationship is observed between the fracture permeability
and the cumulative gas production. Thus, the fracture permeability can significantly impact shale
gas production.

Keywords: fractal discrete fractal network; fractured shale reservoir; fractal dimension; pore
size distribution

1. Introduction

Horizontal well drilling and hydraulic fracturing are two key technologies to the economic
production of unconventional oil and gas reservoirs [1,2]. Hydraulic fracturing can create a complex
fracture network in unconventional shale oil or gas reservoirs for significant enhancement of oil or
gas production. Therefore, more attentions should be paid to the gas flow in a complex fracture
network [3–5]. However, an accurate and efficient numerical simulation model for a fractured shale
reservoir is still a challenge.

Complex gas transport mechanisms and fracture networks may interact in a fractured fractal gas
reservoir. The complex gas transport mechanisms include the slip flow, Knudsen diffusion, multilayer
adsorption/desorption, surface diffusion, and adsorbed gas porosity. These flows occur in nanopores
and organic matter of shale matrix [4,6–10]. Many permeability models have been proposed to consider
the gas transport mechanisms and the distinct fractal characteristics of pore size distribution in shale
matrix [11–14]. However, they did not consider the impacts of a fractal fracture network in fractured
shale gas reservoirs.
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Shale formation has many fractures in both microscopic and field scales [15–18]. These fractures
form a discrete fracture network and govern the permeability of the fractured shale reservoir.
In permeability modeling, Miao et al. [19] derived a fracture permeability model based on the
cubic law and the fractal distribution of fracture length. Hu et al. [12] proposed a new fracture
permeability model to further consider the fracture tortuosity and the coupling of Knudsen diffusion
and slip flow. Their fracture permeability models were used in reservoir simulations to explore key
parameters to shale gas production. However, these permeability models did not explicitly reflect the
effects of a complex fracture network since they were unable to simulate the non-ideal, complex, and
realistic fracture flow in fractured shale reservoirs. The interaction between complex gas transport
mechanisms and a complex discrete fracture network is a key scientific issue to accurate and efficient
evaluation on gas well performance in fractured shale reservoirs. However, so far, how the interaction
occurs is still unclear.

Two continuum-based models have been used to simulate the gas flow behaviors in a fractured
shale reservoir. One is the dual porosity model originally proposed by Warren and Root [20]. In this
model, the shale matrix is the main gas storage space. The shale gas flows into fractures and then
hydraulic fractures and the horizontal well. The dual porosity model has been used to explore the key
factors in gas production from a fractured shale reservoir [4,11,12,21,22]. However, the dual porosity
model is only limited to the fractured matrix system or a small number of large fractures (hydraulic
fractures). Its simulation results can only reflect the average flow in fractured gas reservoirs, it cannot
describe the details of gas flow in a specific fracture [23]. Another model is the discrete fracture
network model. This model explicitly describes the influence of an individual fracture on gas flow, thus
providing more practical representation of a fractured shale reservoir [24–26]. Akkutlu et al. [27,28]
developed a fracture network model to simulate the gas transport behaviors in a fractured shale
reservoir and analyzed the interaction between the matrix and fracture network. The effects of fracture
geometry on the gas flow and the gas–water flow of the shale gas wells were investigated [3,25].
However, these complex fracture network models cannot consider the uncertainty of the length,
position, and dip angle of fractures. Therefore, an accurate characterization of fracture distribution is
the second key scientific issue to accurate and efficient evaluation of gas well performance in fractured
shale reservoirs.

A complex discrete fracture network model confronts the complex computational issue. A complex
discrete fracture network consists of hundreds of fractures. Their lengths range from tens of centimeters
to thousands of meters and their widths range from a few microns to tens of meters [5]. Several
field studies found that the fracture length distribution often follows a power law [29,30]. Parashar
and Reeves [31] generated a discrete fracture network whose fracture lengths, orientations, and
locations follow a power law distribution, the von Mises–Fisher distribution and uniform distribution,
respectively. Geng et al. [10] established a discrete fracture network based on the normal distribution
of the fracture length and further developed a gas production prediction model for a fractured shale
reservoir. Recent studies have found fractal characteristics in the geometric distribution of fractures
in a fracture network, especially the fracture length [11–13,19,32–34]. Thus, fractal theory provides a
promising alternative approach to the quantitative evaluation of fracture distribution. Liu et al. [34]
proposed a discrete fracture network model based on the fractal theory and used the fractal dimension
of fracture length to represent the geometric distribution of fractures. Zhang et al. [5] found that
the fractal discrete fracture network model represents fracture characteristics well when the well
performance of a shale oil reservoir is evaluated. However, the fractal discrete fracture network model
is seldom applied to shale gas reservoirs. Hence, an accurate fractal discrete fracture network model is
necessary to explore the key factors affecting the gas production of fractured shale gas reservoirs.

In order to investigate the effects of a fractal discrete fracture network on gas production in
a fractured shale reservoir, a fractal discrete fracture network model was established based on the
fractal distribution of fracture length and incorporated into our coupling numerical simulation
model. This simulation model further combines the complex gas transport mechanisms in shale
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matrix to describe the interaction of flow mechanisms and geometrical distribution in each fracture.
The complex gas transport mechanisms include slip flow, Knudsen diffusion, surface diffusion,
multilayer adsorption/desorption, and adsorbed gas porosity. The proposed simulation model is
validated by the field data of gas production from two shale wells. After verification, parametric analyses
are performed to investigate the impacts of fracture length fractal dimension, pore size distribution,
fracture permeability, and aperture on the well performance of this fractured shale reservoir.

2. Model Development

2.1. Creation of Fractal Discrete Fracture Network

The fractal geometry theory is widely applied to study fluid flow in the fracture network of
fractured rocks. For a fractal distribution of fracture length, both fracture number and length of
fractures observe the following fractal scaling law [19]:

Nl(L ≥ l) = (lmax/l)Dl , (1)

where l is the length of fractures, m; lmax is the maximum length of fractures, m; Nl is the number
of fractures with their length L not smaller than l; and Dl is the fractal dimension of fracture length.
This fractal dimension ranges from 1 to 2 (or 3) in a 2D (or 3D) fracture network. The total number of
fractures Nt with their length range from minimum lmin to maximum lmax is

Nt(L ≥ lmin) = (lmax/lmin)
Dl . (2)

The number of fractures in the interval of [l, l + dl] is thus obtained as

− dN = Dll
Dl
maxl−(Dl+1)dl. (3)

Thus, the probability of fractures in the interval of [l, l + dl] is calculated as

−dN/Nt = Dll
Dl
minl−(Dl+1)dl = f (l)dl, (4)

where f (l) = Dll
Dl
minl−(Dl+1) is the probability density function of the fracture distribution. Based on

the probability theory, this function satisfies the following normalization condition:∫ +∞

−∞

f (l)dl =
∫ lmax

lmin

Dll
Dl
minl−(Dl+1)dl = 1− (lmin/lmax)

Dl ≡ 1. (5)

Equation (5) is valid only if the term (lmin/lmax)
Dl ≈ 0. This is a necessary condition for the fractal

characteristics of fracture length distribution, implying lmin << lmax. In order to apply the fractal
theory in the analysis of fluid flow properties in the 2D fracture network, lmin/lmax ≤ 10−2 is assumed
in this study. The cumulative probability Ra of fractures with their length in the interval of [lmin, l] is

Ra =

∫ l

lmin

f (l)dl = 1− (lmin/l)Dl . (6)

This Ra is a random number between 0 and 1. When l→ lmin , Ra = 0 and when l→ lmax , Ra = 1.
For the ith fracture, the length li can be back-calculated if the random number Ra = Ri:

li =
lmin

(1−Ri)
1/Dl

(i = 1, 2, · · · , Nt). (7)
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In order to create a fracture network, the position and orientation of fractures should also be
identified. A uniform distribution is usually assumed for the center points of fractures. The orientation
of fractures follows the Fisher distribution [35]. Thus, the angle of deviation ϑ is expressed as

ϑ = cos−1
{

ln[exp(K) − F(exp(K) − exp(−K))]
K

}
, (8)

where K is the Fisher constant, a measure of clustering degree, or the preferred orientation. The angle
of deviation ϑ decreases with the increase of K. K is usually greater than three in practice and F is the
random number ranging from 0 to 1.

Figure 1 presents four fractal discrete fracture networks. Their fractal dimensions are between
1.5 and 1.8. The parameters used in these models are listed in Table 1. It is clearly seen that the total
number of fractures increases rapidly and more fractures with longer fracture length appear when the
fractal dimension Dl increases.
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Figure 1. Four fractal discrete fracture networks with different fractal dimensions: (a) fractal length
dimension Dl = 1.5, and total fracture number Nt = 1000; (b) fractal length dimension Dl = 1.6, and
total fracture number Nt = 1585; (c) fractal length dimension Dl = 1.7, and total fracture number
Nt = 2512; (d) fractal length dimension Dl = 1.8, and total fracture number Nt = 3982.
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Table 1. Parameters used in creation of fractal fracture network model.

Parameter Value

Fracture network size (m ×m) 50 × 50
Fracture length fractal dimension, Dl 1.5–1.8
Maximum fracture length, lmax (m) 30
Minimum fracture length, lmin (m) 0.3

Fisher constant, K 5

2.2. Governing Equations for Multi-Physical Processes in Fractured Shale Reservoirs

The governing equations for the multi-physical processes in fractured shale reservoirs are based
on the following assumptions: (a) rock mass is linearly elastic and its strain is infinitesimal [4]; (b) the
shale gas is ideal gas; (c) single-phase gas flows in the shale reservoir.

2.2.1. Deformation Equation of the Fractured Shale Reservoir

In our previous studies [11,13], we observed that the effective stress in the shale reservoir and the
gas adsorption properties change with the decrease of gas pressure during gas extraction. The variations
of effective stress and matrix swelling induced by gas desorption result in shale rock deformation,
which alters the permeability in the matrix and fracture and significantly impacts the gas flow in the
shale reservoir. The Navier equilibrium equation for the deformation of fractured reservoirs is

µui, j j + (λ+ µ)u j, ji − αmpm,i − α f p f ,i −Kεs,i + fi = 0 , (9)

where ui is the displacement component; µ and λ are the Lamé constants which are expressed by
the Young’s modulus E (MPa) and the Poisson’s ratio ν, µ = E/2(1 + ν), λ = Eν/[(1 + ν)(1− 2ν)];
K = E/3(1− 2ν) is the bulk modulus, MPa; αm and α f are the Biot’s coefficient of shale matrix and
fractures, respectively; pm and p f are the gas pressure in matrix and fractures, respectively, MPa;
εs = αgVa is the sorption-induced swelling strain which can be calculated by the multilayer adsorption
model [12]; αg is the sorption-induced volumetric strain coefficient, kg/m3; Va is the adsorbed gas
content in matrix, m3/kg; fi is the body force component.

2.2.2. Equation of Gas Flow in Shale Matrix

The pore size of shale matrix is mainly in nanometer scale [4]. The structure of nanometer pores
makes the gas transport mechanisms in shale matrix complex. The slip flow, Knudsen diffusion,
molecular diffusion, and surface diffusion may co-exist in shale matrix [4,10,13]. Moreover, a large
number of adsorbed gases are stored in the kerogen of shale matrix. It is important to accurately
describe these properties of gas adsorption and desorption when the gas production from a shale
reservoir is simulated. The most widely used adsorption model in shale reservoirs is the Langmuir
isotherm, which is based on the assumption that there is only a monolayer of molecules on the surface
of nanopores. However, Yu et al. [9] found that gas adsorption in shale matrix behaves similarly
to multilayer adsorption. Their experimental data of adsorption was deviated from the Langmuir
isotherm but obeyed the Brunauer–Emmett–Teller (BET) isotherm. The multilayer BET adsorption
model can be expressed as

Va =
VmCx

[
1− (n + 1)xn + nxn+1

]
(1− x)[1 + (C− 1)x−Cxn+1]

, (10)

where Vm is the monolayer saturated adsorption volume, m3/kg; C is a constant; n is the number of
adsorption layers; x = pm/ps is the relative pressure; ps is the pseudo-saturation pressure, MPa.
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The mass conservation law for the gas flow in shale matrix can be expressed as [4,12]

∂mm

∂t
−∇

(
ρgm

km

η
∇pm

)
= −Qm, f , (11)

where η is the gas viscosity in shale matrix, Pa·s; ρgm is the gas density in shale matrix, kg/m3; Qm, f is
the mass exchange term between shale matrix and fracture network, kg/(m3

·s). The negative sign of
Qm, f denotes the gas migration from shale matrix to fracture network.

The mass exchange term Qm, f is expressed as

Qm, f =
ρgmkmδ

η

(
pm − p f

)
. (12)

For ideal gas

ρgm =
M
RT

pm =
ρga

pa
pm, (13)

where δ is a geometry factor of shale matrix; M is the average molar mass of methane, kg/mol; R is
the universal gas constant, J/(mol·K); T is the reservoir temperature, K; ρga is the gas density at the
standard atmospheric pressure pa (= 101.325 kPa), kg/m3.

Shale matrix has strong gas storage capacity, in which both adsorbed gas and free gas coexist.
Therefore, the gas mass content mm in shale matrix is

mm = ρgmφm + ρgaρs
VmCx

[
1− (n + 1)xn + nxn+1

]
(1− x)[1 + (C− 1)x−Cxn+1]

, (14)

where φm is the porosity of shale matrix; ρs is the density of shale rock, kg/m3.
km is the fractal permeability of shale matrix which can be obtained from the following two steps:

Firstly, a permeability model is developed in a single nanopore based on different gas flow mechanisms,
such as molecular flow, transition flow, slip flow, and continuum flow [4,12,13]. Then, this permeability
model is extended to consider the fractal distribution of pore sizes. The fractal permeability model for
the free gas is obtained through the superposition of slip flow and Knudsen diffusion. For adsorbed gas,
the molecules transferred in the adsorption multilayer make significant contributions to gas transport
in shale matrix, referred to as surface diffusion. Therefore, a fractal permeability of shale matrix km is
obtained as

km =
πφmDλD3+Dτ

max

128LDτ+1
0 (3 + Dτ −Dλ)

1 + 4η(3 + Dτ −Dλ)
(
1− ζ2+Dτ−Dλ

)
Dmax(2 + Dτ −Dλ)pm

√
πRT
2M

︸                                                                                         ︷︷                                                                                         ︸
km,p

+
ηπφmDλD4+Dτ−Dλ

max dDλ−2
m

(
1− ζ4+Dτ−2Dλ

)
12LDτ+1

0 (4 + Dτ − 2Dλ)pm

√
8RT
πM︸                                                          ︷︷                                                          ︸

km,k

+
ηDsρspaDλDDτ−1

max φa
(
1− ζDτ−Dλ−1

)
pmLDτ−1

0 (Dτ −Dλ − 1)

[
Vaps

pm(ps − pm)
− a− b

]
︸                                                                     ︷︷                                                                     ︸

km,s

(15)

where a =
VmC

ps

n(n + 1)xn

1 + (C− 1)x−Cxn+1
and b =

Va

ps

C− 1−C(n + 1)xn

1 + (C− 1)x−Cxn+1
; km,p, km,k, and km,s are the

fractal permeability for slip flow, Knudsen diffusion, and surface diffusion of shale matrix, m2; Dλ
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is the fractal dimension of pore diameter; Dτ is the tortuosity fractal dimension; ζ is the ratio of the
minimum pore diameter Dmin to the maximum pore diameter; Dmax is the maximum pore diameter,
nm; dm is the methane molecular diameter, nm; Ds is the coefficient of surface diffusion in matrix pores,
m2/s; φa is the porosity of adsorbed gas; L0 is the straight length of representative elementary volume
(REV) in shale matrix.

By substituting Equations (12)–(15) into Equation (11), the governing equation of gas flow in shale
matrix becomes[

φm + paρs

(
Va

pm(1− x)
− a− b

)]
∂pm

∂t
−∇

(
pmkm

η
∇pm

)
= −

δpmkm

η

(
pm − p f

)
. (16)

2.2.3. Gas Flow Equation in Fracture Network

Only free gas exists in fractures. The continuity equation for gas flow in the fracture network is
expressed as

d f
∂ρg fφ f

∂t
+∇T

(
−d fρg f

k f

η
∇Tp f

)
= d f Qm, f , (17)

where φ f is the porosity of the fracture network; k f is the permeability of the fracture network, m2; d f
is the aperture of fracture, mm; ρg f is the gas density in the fracture which is expressed as

ρg f =
ρga

pa
p f . (18)

The permeability of the fracture network is sensitive to the gas pressure and effective stress in
the process of gas extraction. The decline of gas pressure results in the increase of effective stress and
rock deformation of shale reservoirs, thus altering the permeability of the fracture network with the
following formula:

k f = k f 0

{
−3c f

[
(σ− σ0) −

(
p f − p f 0

)]}
, (19)

where σ is the mean normal stress, MPa; σ0 is the initial mean normal stress, MPa; p f 0 is the initial
gas pressure in the fracture network, MPa; c f is the compressibility coefficient of the fracture network,
1/MPa; k f 0 is the initial permeability of fracture network, m2.

The decrease of gas pressure and the increase of effective stress can lead to the deformation of
shale rock. In the meantime, the rock deformation changes the fracture aperture and further enhances
the fracture permeability. The fracture aperture d f under normal stress can have contributions from
both “hard” and “soft” parts [4,36,37]. The relationship between fracture aperture and normal stress is

d f = dr + dt exp
(
−c fσn

)
, (20)

where dr is the fracture aperture of the “hard” part that does not change with stress, mm; dt is the true
aperture of the “soft” part, mm.

The porosity of the fracture network depends on fracture aperture, which is defined as

φ f

φ f 0
=

d f

d0
=

dr + dt exp
(
−c fσn

)
d0

, (21)

where d0 is the initial fracture aperture, mm.
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2.2.4. Gas Flow Equation in Hydraulic Fractures

The gas flow equation in hydraulic fractures is expressed as [13]

dh f
∂
(
ρgh fφh f

)
∂t

+∇

(
−

kh f

η
dh fρgh f∇ph f

)
= 0 , (22)

where φh f , kh f , ρgh f , dh f , and ph f are the porosity, permeability (m2), gas density (kg/m3), aperture
(mm), and gas pressure (MPa) of hydraulic fractures, respectively.

3. Implementation and Validation of Proposed Numerical Model

3.1. Geometry of Numerical Simulation Model

A multi-staged fracturing horizontal well is schematically illustrated in Figure 2a. The red
horizontal line denotes the horizontal well, and the blue vertical lines represent hydraulic fractures.
The black lines with different lengths are fractures to form a fracture network in the shale gas reservoir.
The numerical simulation is difficult due to the large size of the whole shale reservoir and the numerous
fractures. In order to reduce numerical simulation loading, half of the domain between two adjacent
hydraulic fractures is chosen as the simulation domain. Its 2D simulation model with dimensions of
50 m × 50 m is shown in Figure 2b. The fracture network is created through the previously-mentioned
fractal distribution of fracture lengths. The simulation model in Figure 2b is the same as Figure 1a
where the fractal dimension of the fracture length is 1.5. The right and left boundaries are the hydraulic
fractures and the bottom boundary is the horizontal well.
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Figure 2. Schematic of (a) fractured shale reservoir model; (b) simulation fracture network
model geometry.

3.2. Multi-Physical Coupling During Gas Extraction

The deformation equation (Equation (9)) and the gas flow equations in shale matrix (Equation
(16)), the fracture network (Equation (17)), and hydraulic fractures (Equation (22)) are fully coupled
during gas extraction. In the deformation process, the normal stress on the top boundary is 40 MPa
and the other three boundaries are roller boundary conditions (see Figure 2b), which are used to
simulate the in-situ stress state. For the gas flow in shale matrix, the four boundaries are all no flux.
Fractures are the flow boundaries in matrix. The gas pressure is continuous at the interface between
fractures and matrix. The gas flow equations of the fracture network and hydraulic fractures are
solved by the fracture flow module. The unstructured grid is used to mesh the model due to numerous
fractures. After meshing, the whole computing domain contains 18,238 elements. The solution time of
the common computer with i7-9750H CPU and 8GB RAM is 8 min and 11 s.
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3.3. Model Reliability

As the position and orientation of the fractal discrete fracture network are random, the reliability
of the numerical model should be checked first. When the fractal discrete fracture network is created,
the position and orientation of fractures are only changed at fixed other parameters. Figure 3 shows
three different types of fractal discrete fracture networks. The fractures have different positions and
directions, but the same length distribution and the total number of fractures because they are created
with the same parameters. All the parameters used in numerical simulations are listed in Table 2.
In the fracture network, the fractures are the main gas flow channels for gas production. The gas flow
rate of this fracture network model can be calculated by the line integral of discrete fractures under the
standard condition (293.15 K, 101.325 kPa):

Q = 24× 3600×
H
ρga

∫
ν f ds = 24× 3600×

H
ρga

∫
ρg f

k f

η
∇p f ds , (23)

where Q is the gas flow rate, m3/d; H is the thickness of the fracture network model, m. The cumulative
gas production can be expressed as

Vt =

∫ t

0
Q dt, (24)

where Vt is the cumulative gas production, m3.

Table 2. All parameters used in numerical simulations.

Parameters Values

Initial reservoir gas pressure, p0 (MPa) 25
Bottom pressure, (MPa) 3.0

Reservoir temperature, T (K) 330
Thickness of fracture network model, H (m) 10

Universal gas constant, R (J/(mol·K)) 8.314
Molar mass of methane, M (kg/mol) 0.016

Molecular diameter of methane, dm (nm) 0.38
Straight length of representative elementary volume (REV) in

matrix, L0 (mm) 0.1

Density of shale reservoir, ρs (kg/m3) 2580
Young’s modulus of shale, E (GPa) 20

Poisson’s ratio of shale, ν 0.3
Methane dynamic viscosity, η (Pa·s) 1.2 × 10−5

Gas density at standard condition, ρga (kg/m3) 0.717
Porosity of hydraulic fractures, φh f 0.001

Permeability of hydraulic fractures, kh f (m2) 5 × 10−10

Aperture of hydraulic fractures, dh f (mm) 0.3
Geometry factor, δ 1

Initial porosity of fractures, φ f 0 0.005
Initial permeability of fractures, k f 0 (m2) 5 × 10−13

Proportionality coefficient, γ 0.001
Compressibility of the fractures, c f (1/MPa) 5.0 × 10−4

Fracture aperture of the “hard” part, dr (mm) 0.1
Fracture aperture of the “soft” part, dt (mm) 0.1

Initial fracture aperture, d0 (mm) 0.1
Adsorption volume in monolayer, Vm (cm3/g) 1.63

Pseudo-saturation pressure, ps (MPa) 100
Number of adsorption layer, n 5.54

Constant, C 26.39
Porosity of adsorbed gas, φa 0.05
Porosity of shale matrix, φm 0.15

Diameter fractal dimension, Dλ 2.7
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Table 2. Cont.

Parameters Values

Tortuosity fractal dimension, Dτ 1.1
Maximum pore diameter, Dmax (nm) 1000
Minimum pore diameter, Dmin (nm) 10

Sorption-induced strain coefficient, αg (kg/m3) 0.75
Surface diffusion coefficient, Ds (m2/s) 1 × 10−10

Biot’s coefficient of matrix, αm 0.5
Biot’s coefficient of fractures, α f 0.5
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The cumulative gas production from three types of fractal discrete fracture networks is presented
in Figure 4. At the 15th year, the cumulative gas production for type a, b, and c is 2.96 × 107 m3,
2.86 × 107 m3, and 2.69 × 107 m3, respectively. Their average is 2.84 × 107 m3. These results show that
their cumulative gas production slightly varies with fracture pattern. The difference of cumulative gas
production is 3.4% between type a and b, 5.9% between type b and c, and 9.1% between type c and a.
The biggest difference compared to their average is 5.3%. This difference is acceptable for a random
medium. This means that the random process of the position and orientation of the fracture network
can induce some, but ignorable, differences. The numerical simulation results with any fractal discrete
fracture network are reliable and acceptable.Energies 2020, 13, x FOR PEER REVIEW 11 of 20 
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Figure 4. Cumulative gas production from a fractured reservoir with three fractal discrete
fracture networks.
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3.4. Model Accuracy Check

The gas production data from two shale wells in the Marcellus shale and the Barnett shale are
used to verify the simulation model. The reservoir parameters of these two shale wells are determined
based on literature [10–12,38] and listed in Table 3. The comparison between field data and numerical
simulations is shown in Figure 5 for the Marcellus shale well (90 data points over 280 days) and in
Figure 6 for the Barnett shale well (134 data points over 1630 days). For the Marcellus shale well in
Figure 5, a small difference is observed in the initial stage of gas production where the simulation
results are smaller than the field data. Liu et al. [22] also observed a similar phenomenon. However, the
simulation results for the Barnett shale well are much lower than the field data in the initial stage of gas
production (see Figure 6). This may be due to the effects of local heterogeneity of fracture deformation.
The aperture of the “soft” part can easily change with normal stress. The local heterogeneity of
deformation is from the compression of the “soft” part and reduces the aperture of the fracture. The gas
flow resistance in fractures is large due to the small aperture, which results in lower gas production
rates [4]. With the increase of extraction time, the effect of deformation on gas production rate becomes
weak. Thus, the differences between the field data and simulation results become small in the later
stage. Our simulation results match well with the field gas production data from the two shale
wells. This implies that our simulation model is feasible in describing the shale gas production with
sufficient accuracy.

Table 3. Reservoir parameters for the Marcellus shale and Barnett shale wells.

Parameters Marcellus Shale Barnett Shale Unit

Initial reservoir gas pressure 34.5 20.34 MPa
Bottom pressure 2.4 3.69 MPa

Porosity of hydraulic fractures 1 × 10−6 1 × 10−6

Permeability of hydraulic fractures 3 × 10−10 5 × 10−9 m2

Initial porosity of fractures 0.005 0.002
Initial permeability of fractures 1 × 10−20 1.9×10−13

Adsorption volume in monolayer 1.63 1.18 cm3/g
Porosity of shale matrix 0.15 0.15

Fracture length fractal dimension 1.5 1.7
Diameter fractal dimension 2.85 2.64
Tortuosity fractal dimension 1.1 1.2

Maximum pore diameter 600 1000 nm
Minimum pore diameter 10 10 nm
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Figure 6. Comparison between our simulation results and the field data from the Barnett shale well.

4. Results and Discussions

4.1. Effects of Fracture Length Fractal Dimension

Fracture length fractal dimension is a key parameter to a fracture network. This section will
investigate the effects of fracture length fractal dimension on the variation of reservoir pressure and
shale gas production.

4.1.1. Variation of Reservoir Pressure

The variation of reservoir pressure with time is studied. Figure 7 shows the reservoir pressure
distributions in the reservoir when these four fracture networks are used, respectively. The reservoir
pressure firstly dissipates near the horizontal well and the hydraulic fractures due to their high
permeability. With the extraction time, the pressure decreases, and the drainage area increases
significantly, especially around the discrete fractures. A bigger drainage area means more gas depleted
from the shale gas reservoir. Thus, the gas flow process in the shale gas reservoir is dynamic. Shale
gas is first depleted from the hydraulic fractures, then from the fracture network. Finally, the gas
in shale matrix enters the fracture network through desorption and diffusion. The fracture network
becomes much more complex when the fracture length fractal dimension increases from 1.5 to 1.8.
The fracture network whose length fractal dimension is 1.8 has the largest total number of fractures,
the largest drainage area, and the fastest reservoir pressure drop. That is, the complex fracture network
can extend the decline of reservoir pressure to a larger drainage area.
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4.1.2. Impacts of Fracture Network on Shale Gas Production

The effects of fractal dimension on gas production rate are presented in Figure 8. The gas
production rate is the lowest at Dl = 1.5 and the largest at Dl = 1.8. The production decline at Dl = 1.8
is the fastest in the initial stage; this is because the fracture network of Dl = 1.8 is the most complex
and the total number of fractures is 3982 (see Figure 1), which is larger than those with other fractal
dimensions. The amplitude of free gas in fractures supports the gas production rate in the initial
stage. With the increase of extraction time, the free gases in the fracture network of Dl = 1.8 are soon
exhausted and the gas production rate is lower than that of Dl = 1.7. The effects of fractal dimension
on cumulative gas production are shown in Figure 9. The cumulative gas production after 15 years
increases from 4.6 × 107 m3 to 9.8 × 107 m3. When the fractal dimension increases from 1.5 to 1.7, the
increase rate is 113%. This is because a larger fractal dimension means much more flow channels to
hydraulic fractures and the horizontal well. However, there is a phenomenon worthy of attention.
The cumulative gas production of Dl = 1.8 is 9.1 × 107 m3, which is lower than that of Dl = 1.7 after
15 years. The reason is that the highest gas production rate of Dl = 1.8 in the initial stage leads to
a rapid drop in gas pressure and a fast decline of reservoir storage, which reduces the production
capacity of the reservoir. Before the fractal dimension reaches a certain value, the cumulative gas
production increases with the increase of fractal dimension. The critical fractal dimension is 1.7 in this
paper. When the fractal dimension reaches its critical value, the increase of the fractal dimension no
longer enhances gas production. It may reduce the production capacity of the shale reservoir. Thus,
properly increasing the number and fractal dimension of fractures in a certain range can effectively
enhance the shale gas recovery.Energies 2020, 13, x FOR PEER REVIEW 15 of 20 

 

 
Figure 8. Gas production rate from the fracture network with different length fractal dimensions. 

 
Figure 9. Cumulative gas production from the fracture network with different length fractal 
dimensions. 

4.2 Effects of Pore Size Distribution 

A large quantity of gas stores in shale matrix pores and plays an important role in gas 
production. Thus, the effects of pore size distribution on gas production should be investigated. 
Figure 10 shows the effects of maximum pore diameter maxD  and minimum pore diameter minD  on 
the cumulative gas production. In Figure 10a, the minimum pore diameter minD  is fixed to 10 nm 
and the maximum pore diameter maxD  is taken as 500 nm, 700 nm, 900 nm, and 1100 nm, 
respectively. These figures show that the cumulative gas production increases with the increase of 
maximum pore diameter. It may be because the larger the pore diameter, the more gas storage 
space, and the easier the gas flow. For the curves of max 900 nmD =  and max 1100 nmD = , the biggest 
difference of cumulative gas production between the two curves is 27.9% at about four years, but 
the two curves are almost identical at 12 years. The reason is that faster gas flow rate in the early 
stage leads to faster gas exhaustion of shale gas reservoir, which slows down the increase of 
cumulative gas production in the late stage. The effects of minimum pore diameter on cumulative 
gas production are shown in Figure 10b. This cumulative gas production increases with the 
decrease of minimum pore diameter. This is opposite to the effect of the maximum pore diameter. 
This is because smaller minimum pore diameter results in a larger range of pore size. Thus, the total 

0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

2.5

G
as

 p
ro

du
ct

io
n 

ra
te

 (1
05  m

3 /d
)

Time (year)

 Dl=1.5
 Dl=1.6
 Dl=1.7
 Dl=1.8

0 5 10 15
0

2

4

6

8

10

C
um

ul
at

iv
e 

ga
s p

ro
du

ct
io

n 
(1

07  m
3 )

Time (year)

 Dl=1.5
 Dl=1.6
 Dl=1.7
 Dl=1.8

Figure 8. Gas production rate from the fracture network with different length fractal dimensions.
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Figure 9. Cumulative gas production from the fracture network with different length fractal dimensions.

4.2. Effects of Pore Size Distribution

A large quantity of gas stores in shale matrix pores and plays an important role in gas production.
Thus, the effects of pore size distribution on gas production should be investigated. Figure 10 shows
the effects of maximum pore diameter Dmax and minimum pore diameter Dmin on the cumulative gas
production. In Figure 10a, the minimum pore diameter Dmin is fixed to 10 nm and the maximum pore
diameter Dmax is taken as 500 nm, 700 nm, 900 nm, and 1100 nm, respectively. These figures show
that the cumulative gas production increases with the increase of maximum pore diameter. It may be
because the larger the pore diameter, the more gas storage space, and the easier the gas flow. For the
curves of Dmax = 900 nm and Dmax = 1100 nm, the biggest difference of cumulative gas production
between the two curves is 27.9% at about four years, but the two curves are almost identical at 12 years.
The reason is that faster gas flow rate in the early stage leads to faster gas exhaustion of shale gas
reservoir, which slows down the increase of cumulative gas production in the late stage. The effects of
minimum pore diameter on cumulative gas production are shown in Figure 10b. This cumulative gas
production increases with the decrease of minimum pore diameter. This is opposite to the effect of the
maximum pore diameter. This is because smaller minimum pore diameter results in a larger range of
pore size. Thus, the total number of pores is much larger when the minimum pore diameter is smaller,
which further enhances the permeability of shale matrix.
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Figure 10. Effects of extreme pore diameters on cumulative gas production: (a) maximum pore diameter
Dmax; (b) minimum pore diameter Dmin.

4.3. Effects of Initial Fracture Permeability

The fracture network is the main gas flow channel and plays an important role in gas extraction
from a shale gas reservoir. The fracture permeability is the key parameter affecting gas flow resistance.
It is necessary to investigate the effects of fracture permeability on gas production.

The effects of initial fracture permeability on cumulative gas production are presented in Figure 11.
The cumulative gas production increases with the increase of initial fracture permeability and a
great influence on gas production is observed. When the initial fracture permeability increases
from 5 × 10−15 m2 to 5 × 10−14 m2 and 5 × 10−13 m2, the cumulative gas production increases from
8.9 × 106 m3 to 2.4 × 107 m3 and 4.1 × 107 m3 after 3000 days, respectively. The relationship between
cumulative gas production and initial fracture permeability is shown in Figure 12. A good linear
relationship with an R2 of 0.99 is observed. Thus, the contribution of initial fracture permeability to the
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cumulative gas production increases approximately linearly with the increases of fracture permeability.
Enhancing the initial fracture permeability is a very useful method to enhance gas production.
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5. Conclusions

A new fractal discrete fracture network model was created based on the fractal length distribution
and incorporated into a numerical simulation model to evaluate the gas well performance of a
fractured shale gas reservoir. This numerical simulation model of a fractured shale gas reservoir
fully coupled the fractal discrete fracture network model, the fractal properties of pore size, and
multiple gas flow mechanisms, such as slip flow, Knudsen diffusion, surface diffusion, and multilayer
adsorption. The reliability and accuracy of the numerical simulation model were validated by the field
gas production data from two shale wells. The sensitivity analyses were conducted on the impacts of
fractal dimension, pore size distribution, and fracture permeability on gas production. From these
studies, the following conclusions can be drawn:

Firstly, the new simulation model for the fractal discrete fracture network is proposed to evaluate
the gas production for a fractured shale reservoir. This simulation model can describe the gas
well performance of the fractured shale reservoir and is reliable and accurate in the prediction of
shale production.
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Secondly, the fractal length distribution has different effects of gas production at different stages
of gas production. In the early stage, the gas production rate and cumulation gas production increase
with the increase of fractal length dimension. After this parameter increases to a critical value of 1.7,
the production capacity of the shale reservoir decreases rapidly. This induces the rapid gas production
rate in the early stage and leads to fast depletion of reservoir storage in the later stage.

Thirdly, increasing the maximum pore diameter and decreasing the minimum pore diameter can
increase the matrix permeability, which will enhance the reservoir gas recovery. The effect of pore size
distribution on cumulative gas production is up to 27.9%, which cannot be ignored in the prediction of
shale gas production.

Lastly, the cumulative gas production increases with an increase of fracture permeability.
An obvious linear relationship can be observed between the cumulative gas production and
fracture permeability.
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