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Abstract: This study makes a novel attempt to analyse the effect of the bypass control and room
control modes on ventilation energy saving in an 84 m2 housing unit, which is the most frequently
constructed unit-type among newly constructed apartment buildings in Korea. A heat recovery
ventilation system was installed. The fan power consumption was measured via field experiments
and analyses were made for potential energy savings. Experiments to confirm the power-saving
effect owing to the application of the room control mode were performed under the heat recovery
and bypass modes, using three air flow rates (0.5, 1.0 and 1.5 ACH). Additionally, the annual energy
saving based on the application of the mixed mode (both bypass and room control modes) was
calculated. The results obtained showed that when the mixed mode was employed, ventilation
energy saving up to 10.76%–16.56%, which is greater than that obtained using only the heat recovery
mode, was realized. Additionally, compared with all-room-ventilation, 26.69%–61.84% of ventilation
energy could be saved if the mixed mode was applied only to the living room.
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1. Introduction

Building permit requests for the construction of residential apartment buildings accounted for
approximately 72% of the total number of building permits that were applied for within the first half of
2019 in Korea [1]. According to the policy report of the Ministry of Land, Infrastructure and Transport
in Korea, it is required that new apartments buildings that can accommodate 30 or more households,
that are to be constructed as from 2025, should be designed as zero energy buildings with over 20%
energy self-sufficiency [2].

Previously constructed buildings have low insulation levels, which result in a high rate of heat
loss via the skin of the building, high heating and cooling energy consumption [3]. However, recent
buildings were constructed in compliance with new regulations regarding the thermal performance of
the building skin. For this reason, the thermal performance of the buildings reach the level of a passive
house of which airtightness is very high [4]. Additionally, owing to the introduction of heat recovery
ventilation systems (HRVS) which minimise heat loss resulting from the inflow of outdoor air, energy
loss from heating and cooling has further reduced [5], even though these HRVS require an additional
power supply for the operation of the fan.

Given that residential buildings are considered to be in use 24 h a day, the energy consumed
by the fan throughout the day by the ventilation system may be higher than expected. Furthermore,
owing to its characteristics, when electrical energy is converted to other forms via primary energy
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consumption, the proportion of the total primary energy consumed is relatively higher than in the case
of a heating facility that uses a gas heating source [6]. Given that the deterioration of air quality owing
to ultra-fine dust particles is now a major social issue [7], high-performance filters are installed in the
ventilation unit to remove ultra-fine dust particles. This results in a further increase in the amount of
energy used to power the fan [8].

One possible strategy that can be employed to reduce fan power consumption using HRVS is the
application of a bypass control mode, which allows outdoor air to flow directly into the supply duct
inlet without passing through the heat exchanger element and air filter. The volume of air removed by
the HRVS decreases as the pressure loss in the system increases. Therefore, the choice of the fan is
based on the internal and external static pressure and usually, the internal static pressure is greatly
influenced by the heat exchanger element as well as the air filter inside the HRVS [9].

Due to the distinct seasonal characteristics of Korea, significant power saving can be achieved by
implementing a heat recovery mode and a bypass control mode. Thus, the use of HRVS with a separate
air flow path for the bypass mode is legally recommended in Korea [10]. Since early 2010, newly
constructed apartment buildings in Korea have been equipped with HRVS, which reduce heating and
cooling energy losses via ventilation. However, residents are often unaware of the existence of the
bypass control mode [11]. Moreover, to reduce HRVS production cost, manufacturers often minimise
the size of the air flow path for the bypass control mode. Thus, in reality, the application of the bypass
mode of most HRVS is challenging and substantial power saving is not achieved [12].

Another strategy for the reduction of fan power consumption is the application of a room control
mode. For apartment buildings with mechanical ventilation systems, the ventilation system is usually
operated for the entire apartment unit regardless of actual use. Given that not all the rooms are in use at
all times, significant amounts of energy are lost, owing to fan power consumption. Therefore, operating
the ventilation system such that it operates only in rooms that are in use by residents can result in a
considerable decrease in fan power consumption. Additionally, if a mode with low static pressure
drop, such as bypass control mode, is applied in appropriate cases, it will significantly contribute to
fan power energy saving.

2. Literature Review

The implementation of HRVS for the purpose of heating and cooling energy reduction, which
started in Sweden in the 1970s [13], has since become an active research focus. Particularly, HRVS
for residential buildings have recently emerged as an important research focus [14] that emphasises
energy conservation in the building sector [15]. In this light, several studies on heating and cooling
energy saving in residential buildings via the use of HRVSs have been conducted [16,17]. The extent
of energy saving resulting from the use of HRVSs varies depending on the composition of the HRVS
as well as the field conditions [18–20]. For example, the heat recovery performance of an HRVS may
depend on the airtightness and insulation of a building [19]. It may also depend on variables, such
as local climate, outdoor temperature and ventilation air flow rate [20,21]. However, given that it is
impossible to arbitrarily control the external environment, analysing heat recovery performance using
real field experiments is time consuming and requires great effort. Therefore, many studies on HRVS
performance evaluation have been conducted in test chambers or via simulations.

In Korea, a considerable number of studies on the performance HRVS in relation to outdoor
air conditions have been conducted given that the climate in Korea is different from that of Europe,
where HRVS were originally developed. Experiments conducted in a chamber to evaluate the heat
recovery performance of HRVS based on various outdoor air conditions have been reported [22,23].
Additionally, several simulation studies on the evaluation of the heat recovery performance of HRVS
have also been reported [24–26]. Even though a few field studies have been reported [27], such field
studies are restricted by the limitations associated with the field condition.

Currently, several on-going studies [28–35] are focused on fan energy saving via the control of
fans use in HRVS as follows:
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1. Energy saving using a hybrid system that combines HRVS with natural ventilation [28],
2. CO2-based demand control ventilation systems (DCVS) [29],
3. Occupancy-based DCVS [30],
4. Temperature-based DCVS [31], and
5. Systems that combine two or more of the above [32–35].

According to the above-mentioned methods, separately applying CO2-based DCVS,
occupancy-based DCVS or temperature-based DCVS only can result in fan energy saving in HRVS
up to 15%–26% [28–31] and combining two or more of these abovementioned control techniques can
result in energy saving up to 60%.

Thus, a variety of studies on ventilation energy saving in residential buildings in diverse fields have
been reported. However, the drawback associated with these studies is that the analyses were based
on computer simulations [28–35]. Very few field experiments have been conducted to analyse the fan
energy savings of HRVS applied in Korean apartment building [27] and based on existing literature, no
field experiments have been conducted to investigate fan energy saving via the combination of a bypass
control mode and a room control mode in the HRVS that are installed in Korean apartment buildings.

The use of performance tests on HRVS in chambers to verify their actual field performance is
associated with several drawbacks. The HRVS installed in apartment buildings consist of several
components, including an outdoor air supply inlet and an exhaust outlet, a ventilation unit, a supply
duct and an exhaust duct, which all have an effect on internal and external static pressure. Thus, a
comprehensive analysis from the perspective of the entire ventilation system is needed.

Thus, the aim of this novel study was to analyse ventilation energy saving in apartment buildings
in Korea using data derived from on-site experiments performed to investigate the use of the bypass
and room control modes in HRVS.

3. Materials and Methods

3.1. Bypass and Room Control Modes

The bypass control mode is a control strategy that directly introduces outdoor air into the supply
fan unit, without allowing the air to pass through a heat exchanger so as to reduce the frictional
resistance introduced by the different components of the ventilation system (Figure 1b). This is useful
during season changes when outdoor air must be introduced into indoor spaces without heat exchange,
unlike the heat recovery mode (Figure 1a).
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Figure 1. Air flow by (a) heat recovery mode and (b) bypass control mode.

The room control mode is a control strategy that allows the occupants to ventilate only the rooms
of their choice by operating air diffusers. Figure 2 shows a conceptual diagram of a system that uses
a wall pad to make the room control mode possible. Regarding apartment buildings in Korea with
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installed HRVS, most often, the only control mode option that is available is the “On/Off” control for
all rooms. Thus, this results in unnecessary consumption of energy given that the ventilation system
operates all the time even in unoccupied rooms.
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Figure 2. Diagram explaining the concept of a room control mode.

In this study, the fan energy saving potential of the HRVS installed in typical Korean apartments
in combination with the use of a bypass control mode and a room control mode, was analyzed in the
following order.

1. The typical apartment unit where the experiments would be carried out was selected and the
HVRS was installed.

2. Specific equipment and programs were installed for measuring and monitoring fan power
consumption and air flow rates. They are described in detail in the next section.

3. Testing, Adjusting and Balancing (TAB) was performed to achieve proper operation of HVRS. In
this study, the TAB is carried out for air flow balancing of each room.

4. Different cases according to the application of the bypass control mode and the room control
mode were designed in order to analyse the annual fan energy saving potential.

5. Fan power consumption was measured depending on the different cases under the on-site
experimental conditions.

6. The annual fan energy saving potential of the HRVS installed in typical Korean apartments was
calculated with the application of measured fan power consumption and the standard weather
data for Seoul

3.2. Experimental Methods for Fan Power Monitoring

3.2.1. Research Process for Fan Power Monitoring

A detailed description of the research process is provided below.

1. An 84 m2 housing unit, which is the most popular housing unit type constructed in Korea, was
selected for this study. This unit consists of a single living room and three bedrooms, with the
living room and two rooms on the south side and one room on the north side (Figure 3). SA, RA,
EA and OA in Figure 3 indicate Supply Air, Return Air, Exhaust Air and Outdoor Air, respectively.

2. The pilot model of the experiment was established and the sensor, the power line communication
(PLC) and the measurement program were installed (Figure 4).
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Figure 4. Conceptual diagram of the pilot model for the experiment.

The airflow rate and static pressure in the duct were calculated using the values measured by the
self-averaging multi-pitot tube. The temperature and humidity measurement sensors were composed
of capacitive polymer cells and their detailed specifications and tolerances are described in Table 1.

Table 1. Sensor specification of the experiment.

Duct Airflow Measurement Sensor PLC System

Measurement method Self-Averaging
Multi-Pitot tube Memory 10000 words data.

Measurement wind speed 1–20 m/s Calculation speed 200 ns/step.
Tolerance 2–3% Input signal DI 8 Ch., AI 4 Ch.

Measurement signal RS485 Modbus. Output signal DO 8 Ch., AO 4 Ch.

Measurement indication Air flow (m3/h), Wind speed
(m/s)

Communication RS485 & RS-232
Program SCADA System

Duct static pressure measurement sensor Duct thermo-humidity measurement sensor

Measurement range 0–500 Pa Measurement element Capacitive Polymer Cell.

Tolerance 1% Measurement range −20 to 80 ◦C.
0–100% RH

Measurement signal RS485 Modbus. Tolerance 2%.
Output signal 2 × (4–20 mA)
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In this study, a variable air volume (VAV) diffuser system was employed and it was used to
control the ventilation volume. When an external controller delivers an operation command to the
diffuser controller through the RS 485 communication line, the controller rotates the stepping motor
built into the diffuser cone (Figure 5). The stepping motor then rotates the lead screw that is connected
to the motor shaft and this feed screw, which is connected to the fixing nut in the centre of the support
moves the diffuser cone vertically. Here, the guide rod fixed to the diffuser cone prevents rotational
movement; thus, the diffuser cone moves up and down to adjust the opening rate.
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Figure 5. Structure and driving of the diffuser.

The driving part of the diffuser is driven by a pulse signal that makes precise control possible.
Thus, only the necessary amount of air is accurately supplied according to the preference of the
occupants of each space, thereby enhancing comfort. With the opening rate at 0% (the fully closed
function), airflow into unused rooms can be blocked.

The performance of the HRVS was determined using a chamber test (Figure 6) prior to the
experiments (Table 2) based on the KS B 6879: 2017 ‘Heat-recovery ventilators’ method [36]. Given
the poor outdoor air quality in Korea owing to the presence of ultra-fine particles [37], three types
of filters (pre + carbon + HEPA (H13)) were included in the HRVS and the performance test of this
filter combination was conducted according to the KS B 6141: 2002 “Air filter units for ventilation”
test method [38], the pressure drop resulting from the use of the filters was determined to be 45 Pa
(300 CMH).
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Table 2. Result of the KS B 6879 test.

Item Specification

HRV unit Air leakage rate Less than 2%

Heat exchanger Heat exchange efficiency heating 83%, cooling 73%
Material PET material (Sensible heat exchange type)

HRV fan
Motor power 72 W (150 CMH)

Fan and motor type Forward Type, BLDC
Air flow control RPM control method

Filter Type Pre + Carbon + HEPA (H13)

Unit Size - 1000 (W) × 785 (L) × 340 (D)

3. To control the ventilation in the different spaces of the building unit as well as data collection,
the experimental equipment was installed in the 84 m2 housing unit and the various data were
collected using a measurement program as shown in Figure 7. The air flow rate in each of the
diffusers in the rooms was measured using an air flow measurement transmitter (Figure 8, Airtron,
Taeheung M&C, Korea) that can measure up to 1 CMH unit per diffuser and an Automatic
Air-flow Balancing (AABS) program (Figure 9).
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Figure 9. DBS installation and balancing work.

4. By assuming possible room use patterns, the annual fan energy consumption was derived. The
data obtained from the different experiments were then compared with data on the whole unit
ventilation system.

3.2.2. Experimental Conditions

According to the ASHRAE Standard 62.2 (2019) [39], a housing unit destined for human habitation
must provide a total ventilation rate that satisfies the values in Table 3.

Table 3. Ventilation Air Requirement (L/s) [39].

Floor Area (m2)
Bedrooms

1 2 3 4 5

<47 14 18 21 25 28

47 to 93 21 24 28 31 35

94 to 139 28 31 35 38 42

140 to 186 35 38 42 45 49

In Korea, it is required that for an apartment unit, the mechanical ventilation system should
provide a 0.5 air change per hour (ACH) [40]. Additionally, it is required that the ventilation system
must have at least three steps of airflow control function (i.e., minimum, optimum and maximum or
more). Thus, to satisfy the minimum ventilation requirement in this 84 m2 housing unit consisting
of 3 bedrooms and a living room, an air flow rate of 28 L/s is required. Thus, 100.8 m3 of fresh air is
required per hour, which is similar to the 96.6 m3/h (2.3 m ceiling height applied) provided at 0.5 ACH
in the Korean standard, which is similar to the minimum requirement of the ASHREAE Standard 62.2.
In this regard, test cases were decided taking into consideration the following three combinations:

1. Three steps of air flow rate, including 0.5, 1.0 and 1.5 ACH, were configured.
2. Four kinds of Room Control cases were considered.

Given that in Korea, the living room is considered as a family gathering place and serves as a
pathway, it was assumed to be under a minimum airflow rate 24 h per day and the three other cases
were included based on the number of rooms in use, that is,
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1) Living Room only is ventilated
2) Living Room + Room 1 are ventilated
3) Living Room + Room 1 + Room 2 are ventilated
4) Living Room + Room 1 + Room 2 + Room 3 are ventilated

3. Bypass Control and Heat Recovery Modes were employed.

The heat recovery mode is used during seasons when residents need heating or cooling for the
rooms, while the bypass control mode is used during seasons when heating and cooling are unnecessary.
In this study, the fan power consumption associated with the heat recovery mode as well as the bypass
mode was examined depending on the cases mentioned above.

Before commencing the experiments, the diffuser opening was adjusted by performing TAB so
that the supply air flow into all rooms satisfied the target air change per hour for each room (Table 4).
Due to limitations associated with the field experiment, ±0.1 ACH was considered acceptable for the
target value. In order to confirm the results, room’s ACH and the power consumption were checked
three times and averaged.

Table 4. An Example of Testing, Adjusting and Balancing (TAB) Test Data.

0.5 ACH Diffuser Position* ACH
POWER(W) Fan RPM LR R1 R2 R3 LR R1 R2 R3

16.4 700 2000 0.5
21.2 850 2000 3000 0.6 0.4
23.0 900 2000 3000 3000 0.6 0.4 0.5
25.0 950 2000 3000 3000 1000 0.6 0.5 0.6 0.6

* In this table, 3000 is the maximum open position and 0 is the fully closed position.

The fan power consumptions were then measured with the diffusers of the target rooms opened,
while the others were closed based on the different cases that were tested. A total of 24 case combinations
derived as shown in Table 5 were tested in this study.

Table 5. Case Combinations.

Mode ACH LR
Ventilation

R1
Ventilation

R2
Ventilation

R3
Ventilation CASE

HR MODE
or

BP MODE

0.5

# 1
# # 2
# # # 3
# # # # 4

1.0

# 5
# # 6
# # # 7
# # # # 8

1.5

# 9
# # 10
# # # 11
# # # # 12

The experimental results for the 24 cases mentioned above are summarised in Appendix A.

3.3. Analytical Methods for Annual Fan Energy

The annual fan energy consumption was calculated by combining the fan power consumption
data obtained from the 24 case combinations shown in Table 5 as follows:
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1. The outdoor air temperature range was set. In the case of small buildings such as residential
apartments, a control system that uses a temperature sensor is more realistic than one that uses
enthalpy [41]. Thus, it was assumed that only an outdoor temperature sensor was needed for the
bypass control mode.

Based on existing literature, 26 ◦C is considered as the dry bulb temperature upper limit (i.e.,
the indoor set temperature) while 18 ◦C is considered as the lower limit (the minimum temperature
that does not generate cold draft) [42]. In another study, 17 ◦C was considered as the lower limit,
taking into consideration the heat gain via the duct [42]. However, in this study, such heat gain was
not considered.

2. The temperatures of Seoul’s warmest month are greater than 10 ◦C and that of the coldest month
are usually lower than −3 ◦C, which correspond to the Dwa climatic type according to Köppen-Geiger
scheme [43]. Using the standard weather data of Seoul as shown in Figure 10 [44], periods of the
year during which outdoor temperature falls between 18 and 26 ◦C and below 18 ◦C, were calculated
as shown in Table 6. This data represents standard weather data recorded over the past 10 years
(2005–2014) based on actual measurement data from 70 domestic weather stations in accordance with
ISO 15927-4 [42].Energies 2020, 13, x FOR PEER REVIEW 11 of 19 
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Figure 10. Variation of outdoor temperature over the course of the year in Seoul.

Table 6. Sum total of the duration (hours) of outdoor temperature ranges through a year.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Sum

<18 ◦C (h) 744 672 731 679 374 59 3 0 85 565 703 744 5359

18–26 ◦C (h) 0 0 13 41 346 551 532 455 548 179 17 0 2682

>26 ◦C (h) 0 0 0 0 24 110 209 289 87 0 0 0 719

Sum 744 672 744 720 744 720 744 744 720 744 720 744 8760

Based on Table 6, periods (hours) that require the use of the bypass control mode are present in all
months except between December and February. Particularly, the table shows that the application of
the bypass control mode could be necessary for even up to 400–500 h in July and August, which are
the mid-summer months.

4. Results and Analysis

4.1. Fan Power Reductions Resulting from the Bypass and Room Control modes

Primarily, the fan power saving potential based on the application of a room control mode in
the HRVS was analysed for three airflow rates and the results are shown in Figure 11. According to
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Table 7, when the LR only was ventilated under the experimental conditions, 43%–61% of the power
required for all-room-ventilation was consumed, that is, when all the residents were present in the
LR and the diffusers in the other rooms were closed, a power saving of ~39%–57% could be realised.
Additionally, when R3 only was excluded from the ventilation, it was possible to ventilate the LR, R1
and R2 with 82%–89% of the power required for all-room-ventilation, meaning that with the room
control mode, a power saving of ~11%–57% compared with all-room-ventilation, could be attained
under the experimental conditions.
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Figure 11. Fan power consumption using the room control mode in combination with the heat
recovery mode.

Table 7. Comparison of the fan power consumption resulting from room ventilation with that resulting
from all-room-ventilation in heat recovery mode.

0.5 ACH
(W) * 1.0 ACH

(W) * 1.5 ACH
(W) *

LR 26.4 61% 43.0 51% 59.1 43%
LR + R1 37.1 86% 54.4 64% 89.3 65%

LR + R1 + R2 38.3 89% 69.4 82% 117.3 85%
All 43.2 100% 84.4 100% 138.2 100%

* Ratio of the fan power consumption resulting from room ventilation to that resulting from all-room-ventilation.

The fan power saving potential following the application of the bypass control mode in combination
with the four room control modes was analysed for the three airflow rates and the results obtained are
shown in Figure 12.
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Figure 12. Fan power consumption resulting from the room control mode in combination with the
bypass control mode.

As shown in Table 8, when the LR only was ventilated under the experimental condition, 61%–66%
of the power required for all-room-ventilation was consumed and when R3 only was excluded from
the ventilation, it was possible to ventilate LR, R1 and R2 with 86%–92% of the power required
for all-room-ventilation, meaning that with the room control mode, power saving up to ~8%–39%
compared with all-room-ventilation, could be attained under the experimental condition.

Table 8. Comparison of fan power consumption resulting from the room control mode with that
resulting from all-room-ventilation in the bypass control mode.

0.5 ACH
(W) * 1.0 ACH

(W) * 1.5 ACH
(W) *

LR 16.4 66% 25.0 65% 38.0 61%
LR + R1 21.2 85% 27.3 71% 50.2 81%

LR + R1 + R2 23.0 92% 33.0 86% 56.2 90%
All 25.0 100% 38.4 100% 62.3 100%

* Ratio of the fan power consumption resulting from the room control mode to that resulting from all-room-ventilation.

To evaluate the fan power saving potential of the bypass control mode, its resulting fan power
consumption was compared with that resulting from the heat recovery mode.

The bypass control and heat recovery modes showed different electrical energy consumptions
owing to the difference in their internal resistance. In the bypass control mode, outdoor air flows
directly into the supply fan without passing through the heat exchanger element or filter, resulting in a
decrease in internal resistance by approximately 12–15 mmAq under the given experimental conditions.

Figure 13 shows the different fan power consumptions resulting from the 24 experimental case
combinations. Under the experimental conditions, the higher ACH cases tended to result in graphs
with a steeper gradient, meaning that in the higher ACH cases, a higher fan power may be required for
the same air flow rate increase than the expected value. For example, the slope of 1.5 HR is steeper
than that of 1.0 HR, whilst the slope 1.0 HR’s slope is steeper than that of 0.5 HR.
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Figure 13. Fan power consumption for the 24 experimental cases.

As shown in Table 9, by applying the bypass control mode instead of the heat recovery mode,
a 0.5, 1.0 and 1.5 ACH using only 57%–62%, 45%–58% and 45%–64%, respectively, of the fan power
required for the heat recovery mode was possible under the experimental conditions.

Table 9. Comparison of fan power consumption resulting from the heat recovery mode with that
resulting from the bypass control mode with application of the room control mode.

0.5 ACH 1.0 ACH 1.5 ACH

HR
(W)

BP
(W) BP/HR HR

(W)
BP
(W) BP/HR HR

(W)
BP
(W) BP/HR

LR 26.4 16.4 62% 43.0 25.0 58% 59.1 38.0 64%
LR + R1 37.1 21.2 57% 54.4 27.3 50% 89.3 50.2 56%

LR + R1 + R2 38.3 23.0 60% 69.4 33.0 48% 117.3 56.2 48%
All 43.2 25.0 58% 84.4 38.4 45% 138.2 62.3 45%

4.2. Fan Energy Savings Resulting from the Bypass and Room Control Modes

To analyse the yearly fan power saving, the annual fan power consumption for ventilation
was calculated by combining the measured fan power consumptions from the 24 case combinations
employed in this study.

The annual fan energy consumption for ventilation purposes was analysed when the heat recovery
mode and bypass control mode were appropriately combined based on the outdoor temperature and
the four room control modes were applied.

Regarding the heating and cooling time, the application of the minimum requirement of 0.5 ACH
for energy saving is common; however, the higher air flow rate can be used based on individual
preferences. Additionally, for the rapid introduction of a pleasant indoor air, in most cases, the use of
the bypass mode is expected more than the use of 0.5 ACH.

As shown in Table 10, when the heat recovery mode and the bypass control mode were used with
the same airflow rates alternately (mixed mode), a fan energy saving of 10.76%–16.56% relative to the
use of only the heat recovery mode was obtained. Additionally, the application of 0.5 ACH_HR + 1.0
ACH_BP for a year could result in a fan energy saving of 3.35%–9.44% compared to the application of
0.5 ACH_HR, even though the total airflow rate in this case was higher than that of 0.5 ACH_HR
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Table 10. Comparison of the annual fan energy savings of the cases accompanied with the application
of the mixed mode with those accompanied with the application of the heat recovery mode only.

LR (kWh) LR + R1 (kWh) LR + R1 + R2 (kWh) ALL (kWh)

Case 1
0.5 ACH_HR +

0.5 ACH_BP

Mixed
(HR + BP) 270.32 1O 287.55 299.84 335.67

only HR 323.96 330.19 340.87 384.48 2O
Savings 16.56% 12.91% 12.04% 12.70%

Case 2
1.0 ACH_HR +

1.0 ACH_BP

Mixed
(HR + BP) 334.42 411.48 520.04 627.79

only HR 382.70 484.16 617.66 751.16
Savings 12.61% 15.01% 15.81% 16.42%

Case 3
1.5 ACH_HR +

1.5 ACH_BP

Mixed
(HR + BP) 469.40 3O 689.90 880.10 1026.42

only HR 525.99 794.77 1043.97 1229.98 4O
Savings 10.76% 13.19% 15.70% 16.55%

Case 4
0.5 ACH_HR +
1.0 ACH_BP

Mixed
(HR + BP) 293.39 303.91 326.66 371.61

only HR
(0.5 ACH) 323.96 330.19 340.87 384.48

Savings 9.44% 7.96% 4.17% 3.35%

Particularly, when the room control mode was applied in the mixed mode, fan energy savings of
29.69% (Case1_ 1O/ 2O) to 61.84% (Case3_ 3O/ 4O) compared with the all-room-ventilation system could
be realised using only currently-applied heat recovery system. Analysis showed an increase in fan
energy savings with higher air flow rates, meaning that the energy saving techniques mentioned
above are significantly more essential in seasons when residents need more air changes such as spring
and autumn.

5. Discussion

This study was conducted to identify the energy saving potential associated with the use of the
bypass and room control modes in HRVS and to avoid overstating the potential of the study, the
analysis was conducted based on a conservative hypothesis.

1. In reality, the temperature of the incoming outdoor air may first rise due to the heat generated
by the fan. Thereafter, the heated air moves through the duct and rises a second time due to a
higher room temperature. Thus, the actual temperature of the outdoor air that can be introduced
to ensure ventilation should be less than 18 ◦C as suggested in this study. This makes more energy
saving possible.

2. In this study, the effect of the bypass control mode was limited to fan power saving owing to a
pressure drop. If the indoor air temperature was higher than the outdoor air temperature in early or
late summer, the possibility of additional energy savings, such as cooling energy saving owing to a
colder outdoor air, can be considered by increasing the air flow rate in the bypass control mode.

3. The cooling design temperature suggested by the energy-saving design standard of the building
is 26–28◦C. In this study, the upper limit temperature of the outdoor air introduced into the building
unit was considered to be 26 ◦C, which is a conservative value based on the reference. However, if
it was set at 28 ◦C, more fan energy could be saved and based on the calculations, it was found that
when the upper limit temperature was considered to be 28 ◦C, an additional 1.87%–2.89% of fan energy
could be saved.

Presently, most of the HRVS installed in apartment buildings in Korea do not consist of a bypass
flow path that can provide optimum air flow and the room control mode is applied only in a few cases.
The findings of this study indicate that a simple algorithm that can switch the HRVS between the bypass
control mode and the heat recovery mode based on temperature sensors, using occupants’ ventilation
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on-off system for each room as they do for the lights, would significantly reduce ventilation-associated
energy consumption per year.

6. Conclusions

In this study, an actual HRVS was installed in the 84 m2 type housing unit, which is the
most common housing unit type among newly constructed buildings in Korea and the fan power
consumption was measured using field experiments and potential fan energy savings were analysed.
The experiments to confirm the power-saving effect using the room control mode were performed
taking into account the heat recovery and bypass modes as well as different airflow rates, that is, 0.5,
1.0 and 1.5 ACH.

The experimental results can be summarised as follows.

1. When the heat recovery mode was employed in association with the room control mode, there
was a decrease in fan power consumption by 11% for the LR + R1 + R2 case and up to 57% for the
LR case, compared with all-room-ventilation.

2. When the bypass control mode was employed in conjunction with the room control mode, there
was a decrease in fan power consumption by 8% for the LR + R1 + R2 case and up to 39% for the
LR case, compared with all-room-ventilation. Additionally, 36% to 55% of fan power could be
saved with the application of the bypass control mode compared with the heat recovery mode.

3. The annual power energy savings were calculated based on the experimental results and the mixed
mode, which included Cases 1, 2 and 3 showed a power energy saving that was 10.76%–16.56%
higher than that observed with the heat recovery mode only. Furthermore, the calculations
showed that ventilation energy can be saved by up to 26.69%–61.84% when the mixed mode was
applied only to the living room, compared with the all-room-ventilation that is usually applied in
the apartment buildings in Korea.

4. The results of the experiments conducted in this study demonstrated that the bypass and
room control modes of HRVS can result in an annual fan energy saving up to ~10.76%–61.84%.
Additionally, even if the air flow rate of the bypass control mode was twice that of the heat
recovery mode (mixed mode Case 4), an annual fan energy of the bypass control mode was lower
than the fan energy used in the heat recovery mode only HR mode Case 4).

This study had the following limitations.
First, a simple on/off system was used as the control method, that is, an automatic control algorithm

was not applied to control the HRVS and this might have contributed to the slight differences between
the results obtained in this study and those observed in reality because of the many variables involved
such as the malfunctioning of sensors. Thus, the application of an automatic control algorithm will be
considered in future experiments aimed at investigating annual energy saving potential.

Second, bypass control mode can be operated in two cases; with passing filters and without
passing filters. In this study, only the case without passing filters was analyzed because the goal of this
research was to present potential fan energy savings via the use of the bypass control mode and the
room control mode. Research on energy consumption depending on the different filters will be carried
out in the next study.

Nevertheless, the results thus obtained can contribute to guide future energy-related regulations
on building ventilation. Additionally, in future, they can also contribute to the realization of the zero
energy housing policy established by the Korean government.
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Appendix A

Table A1. Summary of the results of the experiment.

CASE Mode
LR R1 R2 R3 Power

(W)ACH CMH ACH CMH ACH CMH ACH CMH

1 HR_0.5_1 HR 0.5 32 26.4
2 HR_0.5_2 HR 0.6 36 0.5 15 37.1
3 HR_0.5_3 HR 0.6 36 0.5 18 0.4 12 38.3
4 HR_0.5_4 HR 0.5 28 0.5 17 0.4 14 0.6 18 43.2
5 HR_1.0_1 HR 1.0 63 43.0
6 HR_1.0_2 HR 1.1 66 0.9 33 54.4
7 HR_1.0_3 HR 1.1 66 1.0 34 1.1 33 69.4
8 HR_1.0_4 HR 1.1 68 1.0 37 1.1 34 1.1 32 84.4
9 HR_1.5_1 HR 1.5 90 59.1

10 HR_1.5_2 HR 1.6 101 1.4 50 89.3
11 HR_1.5_3 HR 1.6 100 1.4 50 1.5 46 117.3
12 HR_1.5_4 HR 1.6 96 1.4 51 1.4 44 1.5 43 138.2
13 BP_0.5_1 BP 0.5 33 16.4
14 BP_0.5_2 BP 0.6 36 0.4 13 21.2
15 BP_0.5_3 BP 0.6 37 0.4 15 0.5 19 23.0
16 BP_0.5_4 BP 0.6 40 0.5 16 0.6 17 0.6 19 25.0
17 BP_1.0_1 BP 0.9 57 25.0
18 BP_1.0_2 BP 0.9 56 0.9 31 27.3
19 BP_1.0_3 BP 0.9 57 0.9 33 0.9 31 33.0
20 BP_1.0_4 BP 1.0 64 1.1 38 1.1 33 1.1 29 38.4
21 BP_1.5_1 BP 1.4 87 38.0
22 BP_1.5_2 BP 1.6 96 1.5 54 50.2
23 BP_1.5_3 BP 1.5 93 1.5 54 1.5 49 56.2
24 BP_1.5_4 BP 1.5 93 1.5 52 1.5 48 1.5 40 62.3
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