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Abstract: A thin silicon oxide (SiOx) layer (thickness: 1.5–2.0 nm) formed at an Al2O3/Si interface
can enhance the interface properties. However, it is challenging to control the characteristics of
thin SiOx layers because SiOx forms naturally during Al2O3 deposition on Si substrates. In this
study, a ~1.5 nm-thick SiOx layer was inserted between Al2O3 and Si substrates by wet chemical
oxidation to improve the passivation properties. The acidic solutions used for wet chemical oxidation
were HCl:H2O2:H2O, H2SO4:H2O2:H2O, and HNO3. The thicknesses of SiOx layers formed in
the acidic solutions were ~1.48, ~1.32, and ~1.50 nm for SiOx-HCl, SiOx-H2SO4, and SiOx-HNO3,
respectively. The leakage current characteristics of SiOx-HNO3 were better than those of the oxide
layers formed in the other acidic solutions. After depositing a ~10 nm-thick Al2O3 on an SiOx-acidic/Si
structure, we measured the effective carrier lifetime using quasi steady-state photoconductance and
examined the interfacial properties of Al2O3/SiOx-acidic/Si using surface carrier lifetime simulation
and capacitance–voltage measurement. The effective carrier lifetime of Al2O3/SiOx-HNO3/Si was
relatively high (~400 µs), resulting from the low surface defect density (2.35–2.88 × 1010 cm−2eV−1).
The oxide layer inserted between Al2O3 and Si substrates by wet chemical oxidation helped improve
the Al2O3/Si interface properties.

Keywords: aluminum oxide; silicon oxide; quasi steady-state photoconductance; surface passivation;
crystalline silicon (c-Si) solar cell; plasma-assisted atomic layer deposition

1. Introduction

The surface passivation of crystalline silicon (c-Si) solar cells can be improved using various
materials such as SiO2 [1–6], SiNx [7–9], Al2O3 [10–13], TiOx [14–16], MoOx [17,18], and poly-Si [19–22].
In particular, Al2O3 thin films are most widely used for boron-doped Si surfaces (or p+ emitter surfaces)
owing to the low surface recombination velocity (SRV) [10,11]. The interface of Al2O3 films can be
characterized by a low interface trap density and a high negative charge density because of the ultrathin
SiOx and negatively charged interstitial O ions present at the Al2O3/Si interface [23,24]. The passivation
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properties of an Al2O3/Si structure can be improved by optimizing the Al2O3 thickness and annealing
temperature [25,26]. In particular, a thin SiOx layer is formed at the Al2O3/Si interface during the
deposition process and can be activated through annealing. However, it is difficult to control the
quality of this layer because it forms spontaneously.

In this work, we considered a method to improve the interfacial properties of an Al2O3/Si structure
by inserting a thin silicon oxide layer between Al2O3 and Si substrates. The widely used methods of
growing thin silicon oxides are thermal and wet chemical oxidations. In thermal oxidation, although
the quality of the silicon oxide formed is excellent, it is difficult to control the thickness (<1.5 nm) at
temperatures above 800 ◦C. If the silicon oxide layer becomes thicker, the field effect passivation of
the Al2O3/Si interface may deteriorate [27]. Therefore, a thickness of ~1.5 nm or less is required to
improve the interfacial properties of the Al2O3/Si structure and ensure a good field effect passivation.
Wet chemical oxidation is a promising method of growing thin SiOx, and the quality of thin oxides
grown using this method has been verified [28–32]. In this research, a thin oxide layer was utilized
to improve the passivation property of an Al2O3/Si structure. We applied wet chemical oxidation
to grow ~1.5 nm-thick SiOx and then deposited a ~10 nm-thick Al2O3 using plasma-assisted atomic
layer deposition (PA-ALD). To analyze the passivation characteristics and interface properties of
the Al2O3/SiOx/Si structure, the effective carrier lifetime was measured using quasi steady state
photoconductance (QSSPC), and surface carrier lifetime simulation and capacitance–voltage (C–V)
measurements were performed.

2. Experimental

After the Radio Corporation of America (RCA) cleaning developed by Werner Kern to remove
ionic and organic impurities in the polished 4~5 Ω·cm p-type Si(100) substrate [33], we performed wet
chemical oxidation using three acidic solutions: (i) HCl:H2O2:H2O = 1:1:5, (ii) H2SO4:H2O2:H2O =

1:1:5, and (iii) HNO3 (68%) [28–30]. The wet chemical oxide layers formed in the acidic solutions are
hereinafter abbreviated as SiOx-HCl, SiOx-H2SO4, and SiOx-HNO3, respectively. The process temperature
was 85 ◦C for SiOx-HCl and SiOx-H2SO4 and 121 ◦C for SiOx-HNO3. The immersion time was varied from
10 to 60 min. The thickness and refractive index of the silicon oxide (SiOx-acidic) layers formed on Si
surface was measured using spectroscopy ellipsometry (SE) and transmission electron microscopy
(TEM). The quality of SiOx-acidic was evaluated in terms of the leakage current density, which was
measured by conducting a current–voltage (I–V) analysis with mercury probe and Keithley 238
current source meter under dark conditions. To measure the surface passivation characteristics, an
approximately 10 nm-thick Al2O3 film was deposited on a SiOx-acidic/Si substrate using PA-ALD.
The reaction sources for Al2O3 deposition were trimethylaluminum (Al(CH3)3, TMA) and O2 (purity
99.999%) gas; the purge gas was Ar (purity 99.999%). The deposition process was performed at a
substrate temperature of 250 ◦C, a process pressure of 1.0 torr, a plasma power of 200 W, an O2 exposure
time of 0.5 s, and a distance of 20 mm between the showerhead and the substrate. Annealing was
then conducted in an electric furnace at 425 ◦C for 15 min to activate the Al2O3 layer. After annealing,
the carrier lifetimes of the samples were measured using QSSPC to evaluate the surface passivation
characteristics. For a detailed analysis of the interface properties of Al2O3/SiOx-acidic/Si, a surface
carrier lifetime simulation and C–V measurement were performed by mercury probe with Agilent
E4980A LCR meter.

3. Results and Discussions

Figure 1 shows the thickness of the silicon oxide (SiOx-acidic) formed in the acidic solutions with
various immersion times. The film thickness was measured by SE. The measured wavelength range
was 300–100 nm and the incident beam angle was 75◦ in the SE measurement. With the increase in the
immersion time, the thickness increased, saturating in the range of 1.32–1.50 nm. The thicknesses of
SiOx are ~1.48 nm for SiOx-HCl, ~1.32 nm for SiOx-H2SO4, and ~1.50 nm for SiOx-HNO3. These results are
similar to those reported previously [28–30]. The thickness of SiOx-HNO3 was also confirmed by TEM



Energies 2020, 13, 1803 3 of 10

measurement, as shown in Figure 2. In the TEM measurements, silicon nitride (SiNx) was used as the
capping layer to avoid additional thin oxide growth in the Al2O3 deposition process. The SiOx-HNO3

thickness was in the range of 1.43–1.54 nm, consistent with SE measurements. As the thicknesses of
SiOx formed in each acidic solution saturated after approximately 15 min, the immersion time was fixed
at 15 min (Table 1). To evaluate the characteristics of the SiOx-acidic layer, the leakage current densities
were measured by I–V curves under dark conditions. As shown in Figure 3, the leakage current
density of SiOx-HNO3 was the lowest (~9.1 × 10−3 A/cm2 at 1 Vforward-bias and ~0.92 × 10−3 A/cm2

at −1 Vreverse-bias), indicating that the quality of SiOx-HNO3 is relatively better than the other oxides.
The leakage current density results are similar to those reported by Kobayashi Asuha et al. [30].
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Table 1. SiOx layer thickness and refractive index (n) at an immersion time of 15 min. The data are
averaged with ten samples.

Solution Thickness (nm) Refractive Index (n) at 630 nm

HCl 1.49 1.421
H2SO4 1.32 1.417
HNO3 1.50 1.430
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Figure 3. Current–voltage curves under dark condition for SiOx/Si formed in different acidic
solutions. The SiOx thickness is 1.49 nm for SiOx-HCl, 1.32 nm for SiOx-H2SO4, and 1.50 nm for
SiOx-HNO3, respectively.

To investigate the surface passivation properties of the SiOx-acidic, a ~10 nm-thick Al2O3 layer was
deposited on both sides of the SiOx-acidic/Si substrate using PA-ALD, and the effective carrier lifetime
was measured by QSSPC. The measured effective carrier lifetimes at 1.0 sun injection level [34] of
Al2O3/SiOx-HNO3/Si, Al2O3/SiOx-HCl/Si, and Al2O3/SiOx-H2SO4 /Si are ~400, ~317, and ~332 µs (Figure 4);
notably, the passivation quality of SiOx,HNO3 is excellent. Moreover, the reference sample, which did
not form an oxide film intentionally, exhibited a significantly lower effective carrier lifetime (~220 µs)
than the samples with wet chemical oxides. This indicates that the quality of the thin SiOx layer formed
at the Al2O3/Si interface influences the effective carrier lifetime and that the oxides formed in acidic
solutions exhibit better passivation properties than oxide films formed naturally during the deposition
process. To investigate the interfacial properties of Al2O3/SiOx-acidic/Si, the surface carrier lifetime
simulation and C–V measurement were performed. The surface carrier lifetime simulation is based on
the extended Shockley–Read–Hall (SRH) recombination equation. This equation was derived from the
SRV, expressed in Equations (1) and (2) [35,36].

S ≡
Us

∆ns
(1)

Us =
nsps − n2

i
ns+n1

Sp0
+

ps+p1
Sn0

with Sp0 = σpVthDit, Sn0 = σnVthDit (2)

where S is the surface recombination velocity, Us is the surface recombination rate, and ∆ns is the
excess carrier density at the surface, Sn0 and Sp0 are the surface recombination velocities of electrons
and holes, ns and ps are the electron and hole concentrations at the surface, σn and σp are the capture
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cross-sections for electrons and holes, n1 and p1 are parameter in the SRH recombination equation and
Dit is the number of surface states per unit area. However, if band bending exists on the Si surface by
fixed charges (such as negative or positive charges), it is difficult to evaluate ∆ns because the carrier
lifetime is determined by the carrier density in the bulk. To this end, we considered the surface of the
semiconductor region (z = 0) and the space charge region (z < dsc), as shown in Figure 5.
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Figure 5. Energy band diagram for a semiconductor–insulator interface under illumination, where
the semiconductor is p-type and the insulator is negatively charged (i.e., Al2O3). The diagram shows
the energy of the conduction band Ec, the valence band Ev, the intrinsic fermi level Ei, as well as the
quasi-fermi energy of electrons EFn and holes EFp. The distance z = 0 represents the interface between
the semiconductor and the negatively charged insulator, and z = dsc represents the distance of the space
charge region. Ψ s is the surface potential.
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Therefore, the effective surface recombination velocity (Seff) is the sum of the interface recombination
velocity and the space charge recombination velocity, as shown in Equations (3)–(9) [35–39].

Se f f =
1

∆ndsc

Us +

∫ dsc

0
U(z)dz

 = Sit + Ssc (3)

Sit can be expressed in Equation (4) based on Equations (1) and (2).

Sit =
1

∆ndsc

 (nsps − n2
i )DitVthEg

ns+n1+∆ns
σp

+
ps+p1+∆ns

σn

 (4)

Ssc can be described by Equation (5) as follows by using Equations (6)–(9) for surface potential
(Ψ s) and surface electron and hole concentrations by effective charge density (Qf) [34,35].

Ssc =
1

∆ndsc

∫ dsc

0

(ns(z)ps(z) − n2
i )NstVthEg

ns(z)+n1+∆nsc
σp

+
ps(z)+p1+∆nsc

σn

dz (5)

∫ dsc

0
ns(z)dz = βλD

∫ 0

Ψs

n(Ψ)

F
dΨ ,

∫ dsc

0
ps(z)dz = βλD

∫ 0

Ψs

p(Ψ)

F
dΨ (6)

Q f = ∓ εs
F
(
Ψs,Φp,Φn

)
qβλD

(7)

F
(
Ψs,Φp,Φn

)
=

√
2

pb + nb

[
pb

(
e−βΨ s + βΨ s − 1

)
+ nb

(
eβΨ s − βΨ s − 1

)]
(8)

pb = nie
βΦp , nb = nieβΦn (9)

Here, Sit is the interface recombination velocity between the Si surface and the dielectric layer
(z = 0), Ssc is the recombination velocity in the space charge region (z < dsc), dsc is the distance of the
space charge region, and z is the coordinate perpendicular to the semiconductor surface and increases
toward the bulk of Si, Vth is the thermal carrier velocity, Eg is the energy band gap of Si, Ψ is the
surface potential, Qf is the fixed charge density, Φn and Φp are quasi-fermi level for electrons and
holes, pb and nb are the carrier concentration for electrons and holes, ni is intrinsic carrier concentration.
With Equation (3), we can calculate the theoretical effective surface carrier lifetime using Equation (10).

1
τe f f

=
1
τit

+
1
τsc

=
W
2

(
1
sit

+
1

ssc

)
(10)

where τeff is the effective surface carrier lifetime, τit is the carrier lifetime in the interface region between
the Si surface and the dielectric layer, τsc is the carrier lifetime in the space charge region, and W
is the thickness of the wafer. The surface carrier lifetime simulation was performed by comparing
the effective carrier lifetime (τmeasured) measured using Equation (10). Assuming that the capture
cross-section of the electron and hole is σn = σp = 1 × 1015 cm2, we analyzed the interface trap density
(Dit) and the fixed charge density (Qf) as variable parameters so that the curves of τsimulated and
τmeasured matched well. Figure 6 shows the τsimulated and τmeasured curves.
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Figure 6. Measured and simulated effective carrier lifetime curves at Al2O3/SiOx-acidic/Si structures as
a function of excess carrier density (∆n). The solid line indicates the simulated effective carrier lifetime
(τsimulated), the dash line indicates the effective carrier lifetime via interface state (τit), and the dotted
dash line indicates the effective carrier lifetime via surface space charge region (τsc). The electron and
hole capture cross-sections are assumed to be equal, σn = σp = 1 × 1015 cm2.

The surface carrier lifetime analysis results show that the Al2O3/SiOx-HNO3/SiOx sample exhibits a
lower Dit (2.35 × 1010 cm−2eV−1) than the other samples (Table 2). The effective charge densities are
similar regardless of the acidic solution used. Considering the lifetime of the SiOx-HNO3 layer and
values of Qf and Dit extracted from the surface carrier lifetime analysis, the passivation properties
would be more influenced by Dit than Qf. C–V measurements were also performed to compare
the values of Dit and Qf with those obtained from the surface carrier lifetime analysis. The C–V
measurement results show that VFB (flat band voltage) of the silicon substrates with wet chemical
oxide layers shifts by 1.77–2.08 V toward the positive bias, as shown in Figure 7.

Table 2. Results of capacitance–voltage (C–V) and surface carrier lifetime analyses.

Sample
(Average of Five

Samples)

Capacitance–Voltage (C–V) Analysis Surface Carrier Lifetime
Analysis

Qf

(1012 cm−2)
Dit

(1010 cm−2eV−1) VFB
(V)

Qf

(1012 cm−2)
Dit

(1010 cm−2eV−1)

Al2O3/Si −1.53 7.01 1.20 −1.00 7.50
Al2O3/SiOx-HCl/Si −3.03 4.94 2.97 −3.30 5.70

Al2O3/SiOx-H2SO4/Si −3.12 4.60 3.12 −3.50 3.90
Al2O3/SiOx-HNO3/Si −3.24 2.88 3.28 −3.52 2.30

Qf was calculated using VFB extracted from the measured C–V graph, and Dit was obtained using
the Terman method (Table 2) [40,41]. The negative Qf values of the silicon oxides formed in the different
acidic solutions did not change significantly in the range of 3.03–3.24 × 1012 cm−2. However, Dit was
markedly different depending on the acid solution used (Table 2). Therefore, we confirm that the
quality of SiOx at the Al2O3/Si interface affects the passivation characteristics, and the insertion of a wet
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chemical oxide layer improved the passivation quality, compared with the SiOx layer simultaneously
formed during the deposition of Al2O3.
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Al2O3/SiOx-HCl/Si –3.03 4.94 2.97 –3.30 5.70 

Al2O3/SiOx-H2SO4/Si –3.12 4.60 3.12 –3.50 3.90 

Al2O3/SiOx-HNO3/Si –3.24 2.88 3.28 –3.52 2.30 
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chemical oxidation on an Si substrate. The thickness of the wet chemical oxides grown on the Si 
surface in different acidic solutions was in the range of 1.32–1.5 nm, which was similar to that of SiOx 
naturally formed at the interface of the Al2O3/Si sample during PA-ALD deposition. In particular, 
SiOx-HNO3 showed a relatively lower leakage current than SiOx-HCl and SiOx-H2SO4. The carrier lifetime 
of Al2O3/SiOx-HNO3/Si measured by QSSPC to evaluate the passivation characteristics was ~ 400 μs, 
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H2SO4). C–V measurement and surface carrier lifetime analysis were performed to analyze the interface 

Figure 7. Capacitance–voltage curves at 1 MHz of Al2O3/SiOx-acidic/Si structures and Al2O3/Si reference
sample for calculating the fixed charge density (Qf) and interface trap density (Dit).

4. Conclusions

In this study, we improved the interfacial properties of an Al2O3/Si structure by performing wet
chemical oxidation on an Si substrate. The thickness of the wet chemical oxides grown on the Si
surface in different acidic solutions was in the range of 1.32–1.5 nm, which was similar to that of SiOx

naturally formed at the interface of the Al2O3/Si sample during PA-ALD deposition. In particular,
SiOx-HNO3 showed a relatively lower leakage current than SiOx-HCl and SiOx-H2SO4. The carrier lifetime
of Al2O3/SiOx-HNO3/Si measured by QSSPC to evaluate the passivation characteristics was ~ 400 µs,
which was higher than those of the other SiOx-acidic layers (~317 µs for SiOx-HCl and ~332 µs for
SiOx-H2SO4). C–V measurement and surface carrier lifetime analysis were performed to analyze
the interface characteristics of the Al2O3/SiOx/Si samples. The fixed charges showed little change
with the oxides, and the Dit values changed significantly. The wet chemical oxide formed in the
HNO3 solution showed better passivation characteristics than those formed in other acidic solutions,
resulting from the low interface trap density of SiOx-HNO3. We confirmed the improvement in the
passivation characteristics of the Al2O3/Si sample by inserting a wet chemical oxide between Al2O3

and Si substrates. In addition, the values of the parameters associated with the interface properties,
such as Qf and Dit, obtained from the C–V measurement and surface carrier lifetime simulation were
similar. Therefore, this simulation can be a useful tool to analyze interfacial characteristics. Moreover,
this study lays a foundation for analyzing the interfacial properties of samples, such as poly-Si/SiOx/Si
structures with ultra-thin SiOx, that cannot be analyzed by C–V measurements.
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