
energies

Article

Multi-Step Short-Term Wind Speed Prediction Using
a Residual Dilated Causal Convolutional Network
with Nonlinear Attention

Kumar Shivam * , Jong-Chyuan Tzou and Shang-Chen Wu

Department of Mechanical Engineering, Kun Shan University, No.195, Kunda Rd., Yongkang District,
Tainan City 710, Taiwan; anthony@mail.ksu.edu.tw (J.-C.T.); scwu537@mail.ksu.edu.tw (S.-C.W.)
* Correspondence: s106002443@g.ksu.edu.tw; Tel.: +886-6-205-0021

Received: 8 March 2020; Accepted: 31 March 2020; Published: 7 April 2020
����������
�������

Abstract: Wind energy is the most used renewable energy worldwide second only to hydropower.
However, the stochastic nature of wind speed makes it harder for wind farms to manage the future
power production and maintenance schedules efficiently. Many wind speed prediction models exist
that focus on advance neural networks and/or preprocessing techniques to improve the accuracy.
Since most of these models require a large amount of historic wind data and are validated using
the data split method, the application to real-world scenarios cannot be determined. In this paper,
we present a multi-step univariate prediction model for wind speed data inspired by the residual
U-net architecture of the convolutional neural network (CNN). We propose a residual dilated causal
convolutional neural network (Res-DCCNN) with nonlinear attention for multi-step-ahead wind
speed forecasting. Our model can outperform long-term short-term memory networks (LSTM),
gated recurrent units (GRU), and Res-DCCNN using sliding window validation techniques for
50-step-ahead wind speed prediction. We tested the performance of the proposed model on six
real-world wind speed datasets with different probability distributions to confirm its effectiveness,
and using several error metrics, we demonstrated that our proposed model was robust, precise,
and applicable to real-world cases.

Keywords: wind speed forecasting; wind energy; machine learning; convolutional neural network;
deep learning architectures; time series; residual networks

1. Introduction

With increasing concern about global warming and pollution caused by over usage of fossil fuels,
the leading world organizations and countries are encouraging renewable energy sources like wind and
solar power. According to the U.S. Energy Information Administration, renewable energy contributes
to over 18% of total energy production with solar and wind energy contributing almost 10% [1]. Wind
energy is mostly generated at on-shore or off-shore clusters of wind turbines also known as wind farms.
These wind farms in order to manage the future production of total electrical power efficiently require
prior knowledge of future wind conditions. We can classify the wind speed prediction problem into
several temporal ranges. According to [2], there are four temporal ranges for forecasting: (1) long-term,
with a range of a week to a year or much ahead; (2) medium-term, for two days to a week ahead;
(3) short-term, for one hour to two days ahead; (4) very short-term, from a few seconds to one hour.
Accurate short-term prediction is used for economic load dispatch planning, such as increase and
decrease in wind power supply and is used to preplan distribution from the wind farms. Short-term
wind speed prediction is also vital for advanced scheduling of the cleaning, maintenance, and safety
check of wind turbines during low-wind conditions.
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Generally, numerical and statistical approaches are used to predict wind speed. Numerical
models require a large amount of historical multivariate data of terrain to make accurate forecasts;
also, large processing power is required to assemble such a method, thus not being recommended for
short-term forecasting [3]. Statistical approaches consider the relationship between input and output
data to create a prediction model. Conventional statistical methods proposed by Jenkins [4] can be
categorized as follows: autoregressive mode (AR), moving average model (MA), autoregressive moving
average (ARMA), and auto-regressive integrated moving average model (ARIMA). ARIMA models
are used to predict and model high-frequency wind speed data. In [5], the authors proposed a nested
ARIMA model that uses non-stationary features of wind speed data for forecasting and generates
surrogate data for wind speed. In [6], a stochastic differential equation approach (Langevin model)
was used to model the normal behavior of wind turbine towers’ vibration using wind speed using
high-frequency sampling data. This method outperformed the deterministic neural network (NN)
methods for high frequency data; however, the authors also suggested that NN models are just as good
for 10 min sampling time series.

Several studies also used artificial intelligence models such as neural networks for the wind
prediction problems. In [7], the author used a back-propagation (BP) algorithm to train a neural
network on two previous wind speed data points to predict the next wind speed data point, which
outperformed statistical models in terms of prediction accuracy. The work in [8] used a complex-valued
recurrent neural network (RNN) to train the model on a complex wind speed signal (wind speed
+ wind direction) to perform multi-step ahead predictions. In [9], the authors proposed a linear
model for predicting one-day-ahead wind speed and direction by developing a linear model and
using the least-squares method for parameter estimation. These studies confirmed that wind speed
can be predicted by using historical data in the absence of a numerical model that requires several
environmental variables such as the pressure gradient, air temperature, and orography. In [10],
the results also confirmed the assumption that one can train a model only using historical data and
still get reasonable accuracy. Using a different approach, the work in [11] used a hybrid approach
by combining the numerical model with a Gaussian process-based probabilistic model. The authors
applied a Gaussian process model to the wind speed data output of the numerical weather model
(NWP) to make one-day-ahead wind power forecast.

In more recent studies, the research has been focused on finding better neural network architectures
to improve the wind speed prediction accuracy. Many of these focused on the aspects of deep learning
or advanced preprocessing techniques. In [12], principal component analysis (PCA) was used to
reduce the input dimension and search the optimal input sample size for the deep-LSTM architecture.
This architecture combined with PCA achieved better accuracy compared to support vector machines
(SVM), the back-propagation neural network (BPNN), and the LSTM model without PCA analysis.
This model was validated using the classic training and testing split method, also known as the
holdout method [13,14], where they trained the model on a part of a historic dataset and validated the
performance on another. Using the SVM regression method combined with the evolutionary algorithm,
the work in [15] presented a novel approach for hyperparameter estimation of SVM models using
evolutionary programming (EP) and particle swarm optimization (PSO), which in turn outperformed
a multi-layer perceptron (MLP)-based regression model. The training and testing split of data was
80% and 20%, respectively, and training set was divided into 10 subsets. In a similar research proving
the capabilities of LSTM, the work in [16] presented the results showing that the LSTM model could
outperform SVM while predicting wind speed using multiple environmental attributes like previous
wind speed, pressure, relative humidity, temperature, and solar radiation. While this study showed
very supporting results for LSTM, also claiming that the requirement of training data was low, the study
did not explain the training procedure of these models. Some studies used advanced preprocessing
or data preparation methods. In [17], targeted and adjacent wind turbines with related time-lag
characteristics were exploited using wavelet coherence transformation analysis (WCT) preceded by
continuous wavelet transformation (CWT) to establish the spatial-temporal correlation. An LSTM
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model was trained on the CWT of wind speed signals, which clearly outperformed the conventional BP,
extreme learning machine (ELM), and SVM models. Models in this research were trained and tested
on a data split of training, validation, and testing sets. In general, the LSTM model is very popular for
wind speed prediction. The work in [18] introduced a modification to the LSTM structure to better
predict the weather contextual data and decrease the naive character of generic LSTM. By introducing
an adaptive compression algorithm, cell regulation, and rectified linear units (ReLU) units to generic
LSTM, the improved model was able to increase the prediction accuracy for wind power. The model
was validated using an 80% training split and 20% testing split. Discrete wavelet transformation
(DWT) was used as a data preprocessing method in [19], and several LSTMs were trained on the
z-score normalized values of different decomposition levels of the DWT of the original wind signal.
The z-score denormalized values of each predicted value for each decomposition level were added
to get the final prediction. The DWT method was also tested with recurrent neural networks (RNN),
BP, generic LSTM, RNN, and BP with a training, validation, and testing set of 70%, 20%, and 10%,
respectively. The models were optimized using Adam, a first-order optimization algorithm. Results
confirmed that the LSTM model trained with DWT decompositions performed better than the rest of
the models on short-term prediction of wind speed. The deep learning method proposed in [20] used
the wavelet packet decomposition, CNN, and CNN-LSTM models for wind speed prediction. A hybrid
model was reported in [21], by incorporating the double decomposition and error correction with the
LSTM model to improve one-step-ahead prediction of short-term wind speed. In [22], the authors used
different configurations of artificial neural networks (ANN) to predict the hourly wind speed time
series. In a different approach, ELM with kernel mean p-power error loss [23] was used to improve
the wind speed prediction accuracy. The author claimed that ELM based on second-order statistics
was not suitable for a non-linear and non-Gaussian dataset, so a new loss function was introduced,
and PCA was applied to reduce some of the redundant data components. In a more recent paper [24],
a direct multi-step-ahead prediction model was by combining LSTM with ensemble empirical model
decomposition (EEMD) and fuzzy entropy and compared against the SVM, BP, and generic LSTM
models. Another ensemble forecasting method based on a multi-objective optimization algorithm
was proposed in [25] for wind speed forecasting that included the back-propagation neural network
(BPNN), RBF, general regression neural networks (GRNN), and the wavelet neural network (WNN)
with singular spectrum analysis for data preprocessing.

Since most of the recent research for wind related prediction is focused on the LSTM-based
architecture or improving the traditional models, another type of machine learning architecture known
as the convolutional neural network (CNN) is also an alternative for time series forecasting. Unlike
LSTM or the conventional model, CNN requires little to no data preprocessing. The work in [26]
introduced a 1D CNN-based forecasting model for direct multi-step-ahead prediction for short-term
wind speed data. The model was trained on 75% of the dataset and tested on 25% and outperformed
the SVM, radial function (RF), decision tree (DT), and MLP models on 11 datasets. Apart from wind
speed prediction, CNN architectures have traditionally been used in time series classification. In [27],
it was shown that the CNN model could extract a suitable internal structure to produce deep features
automatically and outperform state-of-the-art methods on real-world datasets. CNN architectures,
unlike other feature-based models, do not require sophisticated feature engineering [28–30]. These
papers provided supportive results and reviews showing that 1D CNN could be used as an automatic
feature extraction mechanism for one-dimensional data. Several studies have presented the innovations
in CNN to improve its suitability for time series data. Some hybrid models of the CNN architecture
with the gated recurrent unit (GRU) are also used for wind speed predictions. In [31], a CNN-GRU
model was introduced for short-term wind prediction that used CNN as a feature extraction method
for multivariate weather data and then fed the features to the GRU model to make predictions.
A model called the dilated causal convolutional neural network (DCCNN), also known as the deep
temporal convolutional network (DTCN), has been used in multiple time series applications, including
multivariate prediction [32], real-time water level prediction [33], and seismic event prediction [34].
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Moving a step further, WaveNet was proposed in [35], a network comprised of the residual unit
of DCCNN for raw audio generation. Another CNN architecture, widely used in medical image
segmentation, is called U-net. U-net is named after its U-shaped structure, where low-level features
are fused with high-level features to learn cross-context information. The works in [36,37] gave us
an insight into the success of U-net in image segmentation. Attention modules are sometimes also
used to improve the performance of U-nets. The works in [38–40] propose attention modules for U-net
architectures in medical image applications.

The application of attention modules in time series models is also an active field of research.
The works in [41,42] proposed the application of attention in the LSTM architecture for time series
prediction. Attention models have also been used with CNN and time series data. The work in [43]
proposed an attention gated CNN for sentence classification, and the work in [44] introduced a temporal
causal discovery framework (TCDF) for learning causal relationships in time series data. However,
many innovative CNN architectures mentioned above have not yet been explored for renewable energy
applications. Studies are often focused on learning linear causal relationships from training data.

We exploited the time series feature extraction power of DCCNN and the computational efficiency
with the low data requirement of U-net to discover the complex underlying relationship in time series
wind speed signals. We used a nonlinear attention module to merge the low-level features of residual
DCCNN U-net (ResUnet) to high-level features. We used a sliding window training method to train our
models, using eight hours of wind speed data with a sampling frequency of 10 min to predict the next
eight hours’ wind speed. We also compared our model against the naive prediction method, LSTM,
GRU, residual DCCNN (SeriesNet), and residual DCCNN U-net (ResUnet) architectures. In summary,

• We present “ResAUnet”, a residual dilated convolutional network based on U-net that uses
nonlinear attention to merge the causal features of low-level residual blocks with high-level
residual blocks to learn the nonlinear causal relationship in wind speed data for short-term
wind prediction.

• We evaluate the performance of our proposed model and several other time series prediction
models on six real-world wind speed datasets with different probability distributions using
multiple time series error metrics.

We organize the remainder of this paper as follows. Section 2 presents the details of LSTM,
GRU, residual dilated CNN, ResUnet, and the proposed model (ResAUnet). It also provides detailed
information of the hyperparameters used for each model. In Section 2.6, we describe the wind speed
dataset used for the evaluation of the model. Section 3 presents the model training method used in the
presented research and the performance metrics used for the accuracy comparison of different models.
We detail the results of this research at the end of Section 3. Conclusions of this study are given in
Section 4.

2. Prediction Models and Method

In this section, we describe the different wind speed prediction models used for benchmarking, as
well as the proposed model. We start with the brief introduction of LSTM, GRU, DCCNN, and attention.
Then, we move on to the details of the proposed model.

2.1. Long-Term Short-Term Memory and Gated Recurrent Unit

Long-term short-term memories (LSTM) are a variation of RNN modules introduced to overcome
the long-term dependencies problem of RNN. LSTM, introduced by [45], are capable of learning
long-term dependencies and are used by state-of-the-art time series prediction models. The concept
behind the LSTM model is a memory cell that maintains its state over time and non-linear forgetting
units that regulate the information in and out of the memory cell. In order to utilize all the information
present in the time series data, the dataset is normally chronologically arranged before feeding
into LSTM.



Energies 2020, 13, 1772 5 of 29

Energies 2020, 13, x FOR PEER REVIEW 5 of 30 

 

Long-term short-term memories (LSTM) are a variation of RNN modules introduced to 
overcome the long-term dependencies problem of RNN. LSTM, introduced by [45], are capable of 
learning long-term dependencies and are used by state-of-the-art time series prediction models. The 
concept behind the LSTM model is a memory cell that maintains its state over time and non-linear 
forgetting units that regulate the information in and out of the memory cell. In order to utilize all the 
information present in the time series data, the dataset is normally chronologically arranged before 
feeding into LSTM.  

Figure 1 shows the structure of an LSTM network, where every cell’s output, also known as the 
control state, h, is connected to the next cell’s input, x. The cell state C is also shared with the next 
LSTM cell in the chain. An LSTM cell contains an input gate, i, which decides the information 
originating from the new observation at current timestep t, and the output of the previous timestep 
t-1 will be stored in the unit state or not. Then, a forget gate, f, selectively forgets some of the past 
trends and other time series factors. Later, the output gate, o, determines the output and cell state for 
the current timestep observation. All the gates have their separate weight matrix, W, and bias vector, 
b. The training process of LSTM can be written as the following equations. ݅௧ = )ߪ  ௜ܹ · ሾℎ௧ିଵ, ௧ሿݔ + ܾ௜) (1) 

௧݂ = ൫ߪ  ௙ܹ · ሾℎ௧ିଵ, ௧ሿݔ + ௙ܾ൯ (2) ܥሚ௧ = )ℎ݊ܽݐ ஼ܹ · ሾℎ௧ିଵ, ௧ሿݔ + ܾ஼) (3) ܥ௧ =  ௧݂ ⊙ ܥ௧ିଵ + ݅௧ ⊙ = ௧݋ ሚ௧  (4)ܥ )ߪ  ௢ܹ · ሾℎ௧ିଵ, ௧ሿݔ + ܾ଴) (5) ℎ௧ = ⊙ ௧݋  tanh (ܥ௧) 
 

(6) 

In the above equations, the ⊙ operator represents the Hadamard product [46], also known as 
element-wise multiplication of two matrices. In Equations 1, 2, and 5, σ represents a sigmoid 
activation. Similarly, in Equations 3 and 6, tanh represents a hyperbolic tangent activation. The 
equations for the sigmoid and hyperbolic tangent activations are as follows.  σ(x) =  ݁௫(1 + ݁௫) (7) 

  tanh(ݔ) = 1 − 21 + ݁ିଶ௫ (8) 

Figure 1. Structure of an LSTM network, where LSTM cells are linked as a 
chain. For each LSTM cell, x and h are the input and output, respectively. 

Figure 1. Structure of an LSTM network, where LSTM cells are linked as a chain. For each LSTM cell, x
and h are the input and output, respectively.

Figure 1 shows the structure of an LSTM network, where every cell’s output, also known as
the control state, h, is connected to the next cell’s input, x. The cell state C is also shared with the
next LSTM cell in the chain. An LSTM cell contains an input gate, i, which decides the information
originating from the new observation at current timestep t, and the output of the previous timestep t-1
will be stored in the unit state or not. Then, a forget gate, f, selectively forgets some of the past trends
and other time series factors. Later, the output gate, o, determines the output and cell state for the
current timestep observation. All the gates have their separate weight matrix, W, and bias vector, b.
The training process of LSTM can be written as the following equations.

it = σ(Wi·[ht−1, xt] + bi) (1)

ft = σ
(
W f ·[ht−1, xt] + b f

)
(2)

C̃t = tanh(WC·[ht−1, xt] + bC) (3)

Ct = ft � Ct−1 + it � C̃t (4)

ot = σ(Wo·[ht−1, xt] + b0) (5)

ht = ot � tanh(Ct) (6)

In the above equations, the � operator represents the Hadamard product [46], also known as
element-wise multiplication of two matrices. In Equations (1), (2), and (5), σ represents a sigmoid
activation. Similarly, in Equations (3) and (6), tanh represents a hyperbolic tangent activation.
The equations for the sigmoid and hyperbolic tangent activations are as follows.

σ(x) =
ex

(1 + ex)
(7)

tanh(x) = 1−
2

1 + e−2x (8)

The length of the LSTM chain can be determined by the length of the output/prediction steps.
A fully-connected (FC) layer follows the LSTM chain to output step temporal features. The equation
for each neuron in an FC layer with linear activation can be written as follows.

yk =
∑m

i=0
wkixi (9)
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where yk is the output of the kth neuron, xi is the ith input x, wki is the weight for the ith input, and m
is the total number of input variables. The FC layer at the end of the LSTM chain finds the complex
relationship between the LSTM outputs and training variables to further improve the accuracy of the
architecture. The model used for comparison in this paper uses the backpropagation algorithm for
training. The backpropagation algorithm is also known as the backpropagation of errors [47] and
is a chain rule method. Using an optimizer (often, a gradient-based one), after each forward pass
through the network, the algorithm applies a backward pass to adjust the model’s parameters, such as
weights and biases. For the LSTM architecture, we made use of the first-order gradient-based stochastic
objective optimization algorithm, Adam [48]. The name of the Adam optimization algorithm is derived
from adaptive moment estimation because it uses estimations of the first and second moments of the
gradient to adapt/adjust the learning rate for each weight of the neural network. For more details on
how the Adam optimization works, one may refer to the referenced paper.

Gated recurrent units (GRU) were first proposed by [49] as a simplified and efficient modification
of traditional RNN and LSTM cells. GRU models have successfully been applied to sequence modelling
problems in the past [50,51], which makes them good candidates as a benchmark model for our paper.
Unlike LSTM, GRU only has two gates, the update gate and the reset gate; since there is no output
gate, GRU has no control over the memory content of the unit. Due to simple gating units and less
modulation of the flow of information inside the unit, GRU has less training parameters than LSTM.
Furthermore, the lack of a forget gate gives GRU the ability to keep information from distant past
steps, without discarding it through time or forgetting information that is irrelevant to the prediction.
A simple GRU block is presented in Figure 2 below.
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An update gate zt , for timestep t, helps the model determine the amount of previous information
that needs to be passed to the next unit. The advantage of the update gate is that it copies all the past
information and eliminates the vanishing gradient problem. The reset gate, rt, is a replacement of the
forget gate from LSTM that determines the amount of information to forget/reset. The equations of
GRU can be written as follows.

zt = σ(Wz·[ht−1, xt] + bz) (10)

rt = σ(Wr·[ht−1, xt] + br) (11)

h̃t = tanh(Wh·[rt � ht−1, xt] + bh) (12)

ht = (1− zt ) � ht−1 + zt � h̃t (13)
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In Figure 3, the LSTM and the GRU models are illustrated, which are used as the benchmark
models for our proposed model. The LSTM model is comprised of two hidden layers of the LSTM chain
of 50 LSTM cells each (the number of cells corresponds to the number of input timesteps; please refer
to Section 2.5 for more information). Finally, an FC layer consisting 50 neurons with linear activation
was used as the output layer. Similarly, we also used a GRU model with two hidden layers of the
GRU chain with 50 units each followed by an FC layer of 50 with linear activation. The number of
hidden layers for the LSTM layer was determined using the Tabu search method; please refer to [52]
for more details about the architecture search using the mentioned method. The complete parameter
information of LSTM and GRU models is listed in Tables 1 and 2, respectively.
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Table 1. LSTM model hyperparameters.

Layer Name Activations Kernel Initial
Distribution

Number of
Neurons/Cells

Number of
Trainable Parameters

LSTM Sigmoid + Tanh Normal 50 20,200
LSTM Sigmoid + Tanh Normal 50 20,200

FC Linear Normal 50 2550
Total 150 42,950

Table 2. GRU model hyperparameters.

Layer Name Activations Kernel Initial
Distribution

Number of
Neurons/Units

Number of Trainable
Parameters

LSTM Sigmoid + Tanh Normal 50 15,300
LSTM Sigmoid + Tanh Normal 50 15,300

FC Linear Normal 50 2550
Total 150 33,150
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2.2. Convolutional Neural Networks

Convolutional neural networks (CNN) are known for their outstanding performance on image
(2D data) related machine learning tasks, such as image segmentation, object recognition, and super
resolution. A modified version of CNN, known as 1D CNN [30,53], has been developed for time
series and other 1D data (sound, vibration, sentences, etc.). CNN layers as shown in Figure 4a are
comprised of filters that capture the local correlation of nearby data points, instead of the conventional
full connection. The filters are made up of convolutional kernels that share the same weights. Each 1D
CNN layer can be mathematically represented as follows:

yk
i j = f

((
ωk
∗ x

)
i j
+ bk

)
(14)

where ∗ is the convolution operation, y is the output, x is the input, ωk is the weight matrix, and bk
is the bias matrix of the kth layer. In Equation (14), i and j are the number of filters and neurons,
respectively. In the above equation, f is the activation function. The rectified linear unit (ReLU) is one of
the widely utilized activation functions for CNN layers. A modified version of ReLU known as scaled
exponential linear unit (SELU) was proposed by [54], which induces self-normalization properties
on CNN layers. Furthermore, SELU avoids the vanishing gradient problem while normalizing the
network and speeding up the training process. The equations for ReLU and SELU are as follows,

ReLU(z) = max(0, z) (15)

SELU(z) = λ·max(αez
− α, z) (16)

The authors of [54] calculated the values for λ and α as 1.05070098 and 1.67326324, respectively.
Causal convolution [55] is a restrictive variation of CNN, in which the timestep order must not

be violated. In causal CNN, the output at any timestep t only uses the information from previous
steps. Figure 4b illustrates the flow of information in a causal CNN structure. Because of this time
dependency characteristic, causal CNN are used for time series classification and prediction tasks.
Mathematically, we can represent a layer of causal CNN as follows,

yk
i j = f

((
ωk

j ∗ xk−1
)
i
+ bk

)
(17)

where ∗ is the convolution operation, y is the output, xk−1 is the input to the layer, ωk is the weight
matrix, and bk is the bias matrix of the kth layer. In Equation (17), i and j are the number of filters
and neurons, respectively. Unlike standard convolution, causal convolution guarantees that only
instantaneous data are used, and future features are excluded during the training process. Thus,
the final prediction of the causal architecture p(xt+1|x1, x2, . . . , xt) is independent of xt+1, xt+2, . . . , xT.
Causal convolution models make predictions in a sequential manner, and predictions of a layer are fed
back into the next layer to predict the next sequence. Unlike RNN, causal convolution models do not
have recurrent connections, and all the conditional predictions can be made in parallel, hence being
faster to train than RNNs.

A dilated causal convolution also known as à trous convolution is a variant of CNN, where the
filter is applied to a larger area than its kernel length by skipping inputs at certain steps. This technique
was introduced by [56] to expand the size of CNN’s receptive field of images without modifying the
data structure. The same technique can be applied to the time series data [57,58] to expand the data
length effectively without increasing the neural network structure, as shown in Figure 4c. Due to its
sparse connection and weight sharing mechanism, dilated convolution networks can automatically
learn translationally-invariant features from longer input time series while having fewer trainable
parameters than conventional CNN.
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Figure 4. One-dimensional CNN structure with (a) standard convolution, (b) causal convolution,
and (c) dilated causal convolution.

2.3. Residual Dilated Convolutional Neural Network

Residual convolutional neural networks were first proposed by [59] to tackle the problem of
training deep learning models. Intuitively, by adding more layers, a CNN architecture should learn
more complex functions and improve the prediction accuracy. However, the authors in [59] noted
in their paper that deeper CNN models are not necessarily better at learning features. During the
training of deeper models, a degradation problem was uncovered. The paper reported that such
degradation was not due to overfitting, because adding more layers to the network counterintuitively
increased the training error. With the increasing depth of the CNN model, the accuracy of the model
becomes saturated and then starts degrading. This identifies the underlying problem of how the
gradient descent-based optimization algorithm works. The authors proposed a shortcut connection by
skipping a few layers of convolution and copying an identity matrix to the input of the following layer.
The shortcut identity connections were designed in a way that all the information from the previous
layer was always passed through to the next connected layer. In the residual learning method, for the
mapping function (output) of a few stacked convolution layers H(x), the shortcut connections force
the network to learn residual function H(x) − x instead. Thus, the underlying mapping function for
stacked layers with an identity shortcut, also known as the residual block, becomes f (x) = H(x) − x.
Therefore, for a residual block, the mathematical formulation can be written as follows,

y = f (ω ∗ x) + x (18)

where x and y are the input and output of the residual block. According to the above function,
the dimensions of x and f (ω ∗ x) must be the same, else a linear projection can be applied to match
the dimensions. The above modification to the traditional CNN architecture for image data was also
experimented on time series data by replacing the 2D convolution layers with 1D convolution layers.
WaveNet was proposed by [35] to generate raw audio waveforms. The WaveNet architecture consists
of conditional residual blocks and skipped connections. Dilated convolution layers are used instead of
standard convolution layers to expand the receptive field of networks. Several variations for the residual
blocks for time series data have been proposed for different time series tasks. The work in [34] proposed
a CNN-LSTM hybrid network with dilated convolution residual blocks (Figure 5a). The residual block
proposed for the CNN-LSTM model is comprised of a dilated convolution layer followed by a ReLU
activation and a dropout layer for better generalization. Another variation with skipped connection
and the self-normalizing SELU activation function was proposed by [60]. The author proposed the
residual block (Figure 5b), and ReLU activation was replaced by SELU activation to remove bias
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from the network and also improve generalization due to SELU’s self-normalization properties [54].
As noted by the author, unlike other time series prediction models, this architecture does not require
data preprocessing to improve performance.
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We used a generative time series forecasting model SeriesNet proposed by [60] as one of our
benchmark models, a variant of residual-DCCNN. We also tested the CNN-LSTM hybrid model during
our experiments, but the model was not able to converge using our sliding window training method
(refer to Section 4), therefore being excluded from our benchmark list. The complete architecture of the
SeriesNet is shown in Figure 6, and residual blocks and the complete architecture’s hyperparameters
are listed in Tables 3 and 4, respectively. As illustrated in Figure 6, the final predictions of SeriesNet
were made using parameterized skipped connections of the residual block. As noted by the author,
the model uses skipped connection instead of only using the final output of residual blocks to ensure
that the latent representation of dilated convolution layers is not overly influenced by past trends
that may not be relevant to the present prediction. The L2-norm was applied to every convolution
layer to further improve the generalization, and a truncated normal distribution was used for kernel
initialization of each layer for faster convergence. In this architecture, dilated convolution layers
have a fixed number of filters (i.e., f: 32) with a constant kernel size of three (s:3), but an increasing
number of dilations (d) in the order of 1, 2, 4, 8, 16, 32, and 64 for 7 residual blocks. Furthermore,
an 80% dropout rate was added for the last two residual blocks’ skipped connections. As listed in
Table 3, the residual block had two output layers, residual connection a, and skipped connection
b. In Table 4, the connection column corresponds to the layer id, and a and b are the residual and
skipped connections of the residual blocks. Layer id 7 had only 96 trainable parameters as the residual
connection of the seventh residual connection was not used during training. The element-wise sum of
the skipped connection of each residual block was followed by a ReLU activation. The output layer
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was a 1 × 1 convolution layer with linear activation. Thus, the length of the input and output data was
the same and forecasts were made in a direct manner.
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Table 3. Residual block hyperparameters.

Layer ID Layer Name Connection Activations Kernel Initial
Distribution

Parameters
(Filter, Kernel
Size, Dilation)

Number of
Trainable

Parameters

1 Dilated
Conv1D Input SELU Truncated Normal (32, 3, d) 64

a Conv1D 1 Linear Truncated Normal (1, 1, NA) 32
b Conv1D 1 Linear Truncated Normal (1, 1, NA) 32

Total 128

Table 4. SeriesNet hyperparameters.

Layer ID Layer Name Connection
(to Layer ID)

Parameters
(Dilation)

Number of Trainable
Parameters

1 Residual Block Input 1 128
2 Residual Block 1a 2 128
3 Residual Block 2a 4 128
4 Residual Block 3a 8 128
5 Residual Block 4a 16 128
6 Residual Block 5a 32 128
7 Residual Block 6a 64 96
8 Dropout 6b NA 0
9 Dropout 7b NA 0

10 Sum 1b, 2b, 3b, 4b, 5b, 8,
9 NA 0

11 ReLU 10 NA 0
12 Conv1D (1 × 1, Linear) 11 NA 1

Total 865

2.4. Residual U-Net Architecture

The U-net architecture was proposed by [61] for biomedical image segmentation. The key
feature of this architecture is the ability to use low-level features while retaining high-level semantic
information. The idea behind U-net is similar to residual networks. In U-net, the low-level features
are copied to corresponding high-level features to create a path for information to propagate between
low- and high-level convolution layers. This method allows backpropagation of errors between layers
and makes training deep learning models easier. Using the idea from U-net and residual networks,
some researchers have proposed a hybrid model by replacing the plain convolution layers of U-net
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with residual blocks. The work in [62] proposed a deep residual U-net architecture (ResUnet) for
extracting road from aerial images. In the ResUnet architecture, residual blocks are used to ease
training, and the skipped long connection facilitates the flow of information between low levels and
high levels without degradation. ResUnet architectures are also robust to the noise present in training
data, as shown by [36], where ResUnet outperformed the residual networks. In [37], the authors
showed some experiments with the ResUnet architecture and residual block structure to improve
semantic segmentation of satellite images. In time series data applications, U-net architectures are
applied to model traffic information [63]. Spatio-temporal U-net (ST-UNet) was proposed for modeling
graph-structured time series. By using dilated recurrent skip connections, the ST-UNet architecture
can extract multi-resolution temporal dependencies.

In this paper, we investigated a ResUnet architecture, consisting of the residual blocks from
SeriesNet. As shown in Figure 7, we used the bottom 6 residual blocks similar to SeriesNet, then
used the 7th block (the one with the highest dilation rate) as a bridge to transfer information to the
upper 6 residual blocks. This architecture resembled an encoder-decoder network [64] with increasing
numbers of dilation units; the highest dilation reached a value of 64 steps, then a decreasing number of
dilations was applied to residual blocks. The number of residual blocks before and after the bridge was
kept the same. Long skipped connections were applied to the corresponding top residual blocks from
bottom residual blocks. The output of bottom blocks was copied and concatenated with the input of
top blocks with the same number of dilations; thus, the temporal information due to dilation could be
recovered or enhanced by top level residual blocks. Similar to SeriesNet, we used the sum of skipped
connections of each residual block followed by ReLU activation to make the final prediction. Dropout
was applied at the skipped connection of the sixth residual block to decrease the influence of past
trends. Using the 1 × 1 convolution layer with linear activation at the output layer, the output steps
were equal to the input steps, and the predictions were made in a direct manner. After some tests,
we found a dropout rate of 80% to be suitable for the ResUnet architecture. The hyperparameters of
ResUnet are listed in Table 5. For the residual blocks’ hyperparameters, refer to Table 3.
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Table 5. ResUnet hyperparameters.

Layer ID Layer Name Connection
(to Layer ID)

Parameters
(Dilation)

Number of Trainable
Parameters

1 Residual Block Input 1 128
2 Residual Block 1a 2 128
3 Residual Block 2a 4 128
4 Residual Block 3a 8 128
5 Residual Block 4a 16 128
6 Residual Block 5a 32 128
7 Residual Block 6a 64 128
8 Dropout 6b NA 0
9 Dropout 7b NA 0
10 Residual Block 7a 32 192
11 Residual Block [10, 5a] 16 256
12 Residual Block [11, 4a] 8 320
13 Residual Block [12, 3a] 4 384
14 Residual Block [13, 2a] 2 448
15 Residual Block [14, 1a] 1 96

16 Sum
1b, 2b, 3b, 4b, 5b, 8,

9, 10b, 11b, 12b,
13b, 14b, 15b

NA 0

17 ReLU 16 NA 0
18 Conv1D (1 × 1, ReLU) 17 NA 1

Total 2593

2.5. The Proposed Model

The ResUnet structure allows the information to flow from the lower level residual blocks to the
higher level ones. However, this alone is not enough to get a substantial gain in time series data. Since
the residual blocks proposed in SeriesNet work best for univariate time series data, we noticed a major
drawback in the ResUnet architecture. When merging the low-level features with high-level ones,
the dimension of the data becomes modified, and our consistent univariate data flow as in SeriesNet
becomes multivariate because of the concatenation of two one-dimensional outputs. We experimented
by averaging, element-wise multiplication, and addition to overcome this drawback, but the results
were poorer than ResUnet discussed in Section 2.4. Further, we focused our efforts on blocks for time
series data.

The attention mechanism is typically used in RNN architectures to improve the model performance.
The works in [65–67] are a few examples where attention blocks were proposed and used with
LSTM architectures for time series forecasting. Attention blocks have also been used with CNN
architectures [40,43,68,69] for image classification and time series data. One of the noteworthy
contributions of the attention mechanism for time series forecasting can be found in [70]. We investigated
this architecture for our application, but the results were not better than SeriesNet, so we skipped this
in our benchmark list.

The proposed non-linear attention mechanism (Figure 8) consisted of two FC layers of equal length
(50 neurons) with a dropout applied between them. The attention mechanism received a concatenated
input X with two column vectors, then a row-wise average was calculated before feeding the data to
a fully-connected layer. The row-wise average function was used to calculate the average mapping
of residual blocks for each time series element without violating their timestep order, i.e., preserving
temporal information. A dropout was applied to the output of the first FC layer before feeding into
the next FC layer to prevent the saturation of FC layers during training. Finally, the output of the
second FC layer was reshaped in order to comply with the CNN layers’ data input format. We applied
sigmoid activation to the FC layers to ensure non-linearity in the FC layer output.
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For the given input matrix xi j with i rows and j columns, we could represent our non-linear
attention block as follows,

Xm =
∑n

j=1
xi j/n (19)

h1 = σ(ω1Xm + b1) (20)

h2 = σ(ω2(h1 �Ξ) + b2), with ξmi ∼ p(ξ) (21)

O = vecn,1
1,n(vec(h2)) (22)

where Xm is the row-wise mean of input matrix xi j and n is the number of elements in the row of
the matrix. h1 and h2 are the outputs of the first and second FC layer. In Equation (21), (h1 � Ξ)
represents the dropout applied to the input of the second FC layer, where � is the element-wise
(Hadamard) product, ξmi is the elements of the mask matrix Ξ, and p(ξ) represents the Bernoulli
dropout, Bernoulli(1− p), with dropout probability p. O is the output of the attention block, where the
output vector of the second FC layer is reshaped from 1 × n to n × 1 to conform with the standard
input format of the 1D convolution layer. The dropout rate applied to the output of the first FC layers
in this mechanism was kept at 50%.

We used the proposed nonlinear attention blocks in ResUnet discussed in Section 2.4 with minor
modifications as shown in Figure 9. We applied the attention blocks to the input of higher level residual
blocks, transforming the concatenated vectors to a single output vector by applying the row-wise
average and finding the nonlinear relationship between each timestep element using FC layers with
sigmoid activation. The residual attention U-net (ResAUnet) architecture’s skipped connections were
similar to those of ResUnet with the exception being that the attention block was also used to bypass
the information by skipping the bridge connection of the residual block with the highest dilation value.
In our proposed architecture, the feature mapping of lower level residual blocks was combined with
the feature mapping of higher level one and then fed into the residual block with the same dilation
value as the corresponding lower level residual block. In order to limit the over influence of past
trends in the training of higher level residual blocks, we applied a dropout of 80% before the bridge
connection and also at the skipped output of the 7th residual block. Combined with nonlinear attention,
this mechanism of information flow allowed the architecture to learn complex relationship between
the causal outputs of different dilation levels. Similar to SeriesNet, the number of output timesteps
was equal to the input (i.e., 50 timesteps). The hyperparameters of the proposed attention block and
ResAUnet are listed in Tables 6 and 7, respectively.
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Table 6. Nonlinear attention block hyperparameters.

Layer ID Layer Name Connection Activations
Kernel
Initial

Distribution

Parameters
(No. of Neurons)

Number of
Trainable

Parameters

1 Row-wise
average Input NA NA NA 0

2 FC layer 1 Sigmoid Normal 50 2550
3 Dropout 2 NA NA NA 0
4 FC layer 3 Sigmoid Normal 50 2550
5 Reshape (n, 1) 4 NA NA NA 0

Total 5100

Table 7. Residual attention U-net (ResAUnet) hyperparameters.

Layer ID Layer Name Connection
(to Layer ID)

Parameters
(Dilation)

Number of Trainable
Parameters

1 Residual Block Input 1 128
2 Residual Block 1a 2 128
3 Residual Block 2a 4 128
4 Residual Block 3a 8 128
5 Residual Block 4a 16 128
6 Residual Block 5a 32 128
7 Dropout 6a NA 0
8 Residual Block 7 64 128
9 Dropout 8b NA 0

10 Attention [7,8a] NA 5100
11 Residual Block 10 32 128
12 Attention [11a,5a] NA 5100
13 Residual Block 12 16 128
14 Attention [13a,4a] NA 5100
15 Residual Block 14 8 128
16 Attention [15a,3a] NA 5100
17 Residual Block 16 4 128
18 Attention [17a,2a] NA 5100
19 Residual Block 18 2 128
20 Attention [19a,1a] NA 5100
21 Residual Block 20 1 96

22 Sum
1b, 2b, 3b, 4b, 5b,

6b, 9, 11b, 13b, 15b,
17b, 19b, 21b

NA 0

23 RELU 22 NA 0
24 Conv1D (1 × 1, Linear) 23 NA 1

Total 32,233
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2.6. Wind Speed Data

For the comparison of the models presented in Section 2, we used an open access dataset
publish by [71] under a creative commons license at https://www.sciencedirect.com/science/article/

pii/S2352340919306456. The published dataset presents the wind speed, wind direction, and wind
power data of 12 different sites in the state of Tamil Nadu in India. The measurements were recorded
using anemometers and wind vanes at a height of 100 m at a regular interval of 10 min throughout the
year. The dataset consists of the measurements for the years 2014, 2015, and 2016 for all 12 locations.
To compare the model’s performance, we chose first six locations and 6050 wind speed timesteps from
the datasets, which corresponded to the timeline of January to mid-February of 2014. The statistical
features and collection site details of the dataset used in this paper are listed in Table 8 below followed
by the probability density plot calculated using kernel density estimation [72], presented in Figure 10.

Table 8. Wind sites’ location and wind speed statistical features.

Wind Site
Location Wind Speed (m/s)

Latitude Longitude Maximum Minimum Mean Standard Deviation

1 08◦51′39.30” N 77◦53′11.40” E 11.77 0.53 6.53 1.73
2 10◦34′33.20” N 77◦41′21.30” E 10.63 0.07 4.99 2.06
3 10◦44′36.70” N 78◦08′17.00” E 11.38 0.53 5.95 2.16
4 08◦57′44.05” N 77◦43′12.73” E 11.36 0.27 5.15 1.88
5 10◦03′21.90” N 78◦42′46.00” E 10.82 0.11 6.23 1.33
6 09◦04′47.50” N 78◦17′44.30” E 11.56 0.99 7.16 1.58
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2.7. Training Method

In general, the performance of an ANN model is measured using the k-fold validation method.
This method is effective in determining the model’s performance when the data used for training are
not time-dependent, e.g., image data, non-time series regression, etc. Another method used for testing
the time series prediction model is the training and testing split, where data are split for training
and testing the model. This method requires a large historical dataset that can be used to train the
complex models at the training time. The model is then used predict on the testing data split to
validate the model accuracy. Many researches referred to in Section 1 used this method for wind
speed prediction evaluation. However, in real-world applications where historical data for a distant

https://www.sciencedirect.com/science/article/pii/S2352340919306456
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past horizon are not available, the training and testing split method cannot be applied successfully.
Furthermore, the presence of stochastic trends in time series datasets makes it difficult to verify the
performance of such model for distant future timesteps. Another method of training the time series
prediction model is known as expanding window validation. In the expanding window validation
method [73,74], the model is retrained every time new data are available. This method is popular for
validating prediction models for financial and economic time series data. We investigated this method,
but the increasing amount of data in the training pool made the training period longer, and the model
took more time to converge.

In our research, we used the sliding window technique [75–78], also known as the rolling window,
moving window, or walk-forward technique. The sliding window technique is more robust to the
stochastic changes in the data trend and can be applied to smaller datasets as the window size is
smaller. As shown in Figure 11, we used a training window of 21 sets of 50 wind speed timesteps
to train our model and then predicted the next 50 timesteps using the last set of data in the training
window. For every new prediction window, the training window used a new set of 50 timesteps and
discarded the oldest set of timesteps. The intuition behind this technique was that by discarding
old data from the training window, we could limit the influence of distant past trends during model
training and promote the learning of new trends in the data. This method also reduced the training
time of the model as the number of training sets was always fixed. The training window size of 21 × 50
timesteps was chosen after testing the incrementing window size in multiples of 3, which was also the
batch size used for training all models.
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In order to facilitate a fair comparison of all benchmark models, we also used the results of simple
the naive prediction model. The naive prediction model used in our benchmark model uses the current
set of timesteps t to predict the next set t+1 as Yt+1 = Yt. We used the stochastic optimizer Adam [48] to
train and retrain all the models (LSTM, GRU, SeriesNet, ResUnet, and ResAUnet) with a learning rate
of 0.0075, the exponential decay of the first moment equal to 0.9, the exponential decay of the second
moment estimate equal to 0.999, and an epsilon value of 10−8. Models were trained for 50 epochs
for each training window with a batch size of 3. The loss function used for training different models
was the mean absolute error (MAE). For each wind speed site, the model’s weights were reinitialized
to default weights in order to prevent the influence of trends from previous wind sites on the next
site’s prediction. The training and prediction method used for the models in this study is shown as a
flowchart in Figure 12.
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3. Results

3.1. Performance Metrics for Forecast Accuracy

Usually, the performance of a regression model is judged using the root mean squared error
(RMSE), mean absolute error (MAE), and mean absolute percentile error (MAPE). However, when it
comes to the time series prediction model, MAE, RMSE, and MAPE were not sufficient to evaluate
the model’s performance. RMSE depends on the scale of dependent variable and is sensitive to large
deviation. MAPE is a scale independent measure. However, MAPE has the limitation of being infinite
or undefined if there is a zero value in the series. Furthermore, MAPE can have an extremely skewed
distribution in the case that the actual values are very close to zero. Therefore, we also used the
“symmetric” MAPE (SMAPE) proposed in the Makridakis competition (M-3 competition) [79] for time
series prediction models. We also investigated the mean squared log error (MSLE) for our performance
evaluation. Since the MSLE measures the ratio between the actual value and the predicted value, large
errors are not penalized if the both the actual and predicted values are large numbers. Furthermore,
MSLE penalizes underestimates more than the overestimates. Another error metric we used is the
normalized root mean squared error (NRMSE). NRMSE is the normalized version of RMSE, which
facilitates the comparison between datasets and models with different scales. We also used the unscaled
mean bounded relative absolute error (UMBRAE) [80] to compare the accuracy of different models
using naive prediction results as the benchmark. UMBRAE is based on the mean bounded relative
absolute error (MBRAE), but the final result is represented in terms of a ratio, rather than relative error.
If UMBRAE is larger than one, the model has worse accuracy than the benchmark, and values smaller
than one indicate better accuracy than the benchmark. UMBRAE is less sensitive to outliers and a
is symmetric and scale-independent measure of model’s accuracy. The equations for calculating the
performance/error metrics used in this paper are as follows.

MAE =
1
n

∑n

i=1

∣∣∣xi − x̃i
∣∣∣ (23)
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RMSE =
2

√
1
n

∑n

i=1
(xi − x̃i)

2 (24)

MSLE =
1
n

∑n

i=1
log

(
xi + 1
x̃i + 1

)
(25)

MAPE =
1
n

∑n

i=1

∣∣∣∣∣ x̃i − xi
xi

∣∣∣∣∣ (26)

SMAPE =
2
n

∑n

i=1

∣∣∣̃xi − xi
∣∣∣

|xi|+
∣∣∣̃xi

∣∣∣ (27)

NRMSE =

2
√

1
n
∑n

i=1(xi − x̃i)
2

xmax − xmin
(28)

MBRAE =
1
n

∑n

i=1

∣∣∣xi − x̃i
∣∣∣∣∣∣xi − x̃i

∣∣∣+ ∣∣∣xi − x̃∗i
∣∣∣ (29)

UMBRAE =
MBRAE

1−MBRAE
(30)

where xi is the actual value, x̃i is the predicted value of the model, x̃∗i is the predicted value of the naive
prediction method, and n is total number of predictions.

3.2. Comparison

We trained and tested the proposed model and benchmark models on six wind speed datasets.
The models involved in this research were naive, LSTM, GRU, SeriesNet, ResUnet, and ResAUnet.
No preprocessing was applied to the wind speed data in order to test the model’s performance on raw
wind speed data. Each model’s input series length was 50, and a 50 step-ahead-prediction test was
evaluated in this paper.

In Table 9, the prediction errors including MAE, RMSE, MSLE, MAPE, SMAPE, NRMSE,
and UMBRAE of the six models are presented for different wind speed measurement sites.
The comparison for the six sites is summarized below.

Table 9. Error metrics of different models on six site’s wind speed data. SMAPE, “symmetric” MAPE;
UMBRAE, mean bounded relative absolute error.

Wind
Data Models MAE

(m/s)
RMSE
(m/s)

MSLE
(m/s)

MAPE
(×100%)

SMAPE
(×100%)

NRMSE
(1)

UMBRAE
(1)

Site 1

Naive 1.683 2.068 0.092 0.298 0.274 0.192 1.000
GRU 1.359 1.694 0.063 0.259 0.218 0.157 0.843
LSTM 1.356 1.688 0.063 0.262 0.220 0.157 0.853

SeriesNet 1.304 1.618 0.058 0.248 0.211 0.15 0.804
ResUnet 1.306 1.624 0.058 0.249 0.211 0.151 0.805
ResAUnet 1.254 1.583 0.055 0.237 0.202 0.147 0.768

Site 2

Naive 2.631 3.171 0.328 0.767 0.529 0.306 1.000
GRU 1.745 2.138 0.155 0.515 0.359 0.206 0.705
LSTM 1.629 2.016 0.142 0.483 0.340 0.194 0.698

SeriesNet 1.482 1.868 0.119 0.414 0.312 0.180 0.618
ResUnet 1.504 1.879 0.125 0.423 0.323 0.181 0.632
ResAUnet 1.353 1.707 0.107 0.389 0.296 0.165 0.584

Site 3

Naive 2.935 3.504 0.312 0.668 0.505 0.323 1.000
GRU 1.839 2.235 0.136 0.456 0.322 0.206 0.657
LSTM 1.773 2.151 0.129 0.443 0.312 0.198 0.679

SeriesNet 1.527 1.916 0.104 0.375 0.278 0.177 0.575
ResUnet 1.470 1.858 0.098 0.356 0.269 0.171 0.554
ResAUnet 1.271 1.641 0.079 0.310 0.236 0.151 0.486
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Table 9. Cont.

Wind
Data Models MAE

(m/s)
RMSE
(m/s)

MSLE
(m/s)

MAPE
(×100%)

SMAPE
(×100%)

NRMSE
(1)

UMBRAE
(1)

Site 4

Naive 1.710 2.194 0.158 0.438 0.357 0.198 1.000
GRU 1.422 1.761 0.099 0.388 0.296 0.159 0.896
LSTM 1.417 1.746 0.101 0.400 0.299 0.157 0.837

SeriesNet 1.378 1.708 0.094 0.373 0.288 0.154 0.864
ResUnet 1.390 1.717 0.095 0.375 0.290 0.155 0.873
ResAUnet 1.288 1.624 0.085 0.350 0.268 0.146 0.810

Site 5

Naive 1.453 1.88 0.105 0.359 0.264 0.176 1.000
GRU 1.073 1.402 0.061 0.287 0.193 0.131 0.779
LSTM 1.081 1.408 0.062 0.290 0.195 0.131 0.803

SeriesNet 1.059 1.374 0.060 0.282 0.192 0.128 0.773
ResUnet 1.070 1.388 0.062 0.283 0.195 0.130 0.779
ResAUnet 1.035 1.342 0.056 0.272 0.187 0.125 0.762

Site 6

Naive 1.731 2.138 0.085 0.28 0.257 0.204 1.000
GRU 1.319 1.658 0.053 0.231 0.195 0.158 0.794
LSTM 1.315 1.662 0.054 0.234 0.195 0.159 0.833

SeriesNet 1.292 1.625 0.051 0.225 0.191 0.155 0.768
ResUnet 1.295 1.630 0.052 0.226 0.192 0.156 0.771
ResAUnet 1.295 1.617 0.050 0.223 0.192 0.154 0.781

• LSTM and GRU models constantly performed better than the naive prediction model. Although
the GRU model had a much lower number of parameters than LSTM, its performance was pretty
close to LSTM. The LSTM model outperformed the GRU model on scaled error metrics like
MAE, MSE, and MSLE on Site 1, Site 2, Site 3, and Site 4 data. However, we observed varying
performance of LSTM and GRU for percentage-based metrics (MAPE and SMAPE) and scaled
error metrics (NRMSE and UMBRAE). Overall, we saw the LSTM model performing slightly
better than GRU.

• Compared to the LSTM and GRU models, we could clearly see a performance gain in SeriesNet.
SeriesNet exhibited less error on all the metrics than the previous three models, with the only
exception being UMBRAE on Site 4, where LSTM had less error by a scale of 0.027. This indicated
that SeriesNet was able to learn the wind speed trends to predict 50-step-ahead data points much
better than LSTM and GRU.

• The ResUnet model, which uses the residual blocks of SeriesNet, did not show any improvement
for error metrics for all six data sites except for Site 3. The ResUnet model outperformed SeriesNet
on all metrics for Site 3. Although the ResUnet model’s performance was not better than SeriesNet,
it was either very close to or better than the LSTM model. Since the residual blocks of SeriesNet
were designed for univariate time series data, degradation in the performance of ResUnet model
was expected.

The proposed ResAUnet model with nonlinear attention blocks had the lowest error and best
performance on all wind speed data sites with the only exception being Site 6, where SeriesNet showed
better MAE, SMAPE, and UMBRAE. The ResAUnet model excelled on the RMSE, MSLE, MAPE,
and NRMSE metrics for Site 6. By the evaluation of Table 8, we could conclude that nonlinear attention
used in ResAUnet was helpful to improve the prediction accuracy for wind speed data.

3.3. Prediction and Error Plots

To further verify the performance of ResAUnet, the prediction graphs of each model with
corresponding ground truth data for six wind sites are provided in Figures 13–18. Moreover, Figure 18
provides the NRMSE of the six models for each prediction step (sample set) on each wind site. The initial
21 sets of timesteps were excluded from the plots since they did not contribute to the evaluation of the
models and were only used for training purposes. The plots consist of 5000 timesteps for wind speed.
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All predictions were made using the out-of-time method, and the model was not trained on the data
on which the predictions were made.

Energies 2020, 13, x FOR PEER REVIEW 22 of 30 

 

3.3. Prediction and error plots 

To further verify the performance of ResAUnet, the prediction graphs of each model with 
corresponding ground truth data for six wind sites are provided in Figures 13, 14, 15, 16, 17, and 18. 
Moreover, Figure 18 provides the NRMSE of the six models for each prediction step (sample set) on 
each wind site. The initial 21 sets of timesteps were excluded from the plots since they did not 
contribute to the evaluation of the models and were only used for training purposes. The plots consist 
of 5000 timesteps for wind speed. All predictions were made using the out-of-time method, and the 
model was not trained on the data on which the predictions were made. 

 

 

Figure 13. Prediction results of the six models for wind Site 1. 
Figure 13. Prediction results of the six models for wind Site 1.

Energies 2020, 13, x FOR PEER REVIEW 23 of 30 

 

 

 

Figure 14. Prediction results of the six models for wind Site 2. 

Figure 15. Prediction results of the six models for wind Site 3. 

Figure 14. Prediction results of the six models for wind Site 2.



Energies 2020, 13, 1772 22 of 29

Energies 2020, 13, x FOR PEER REVIEW 23 of 30 

 

 

 

Figure 14. Prediction results of the six models for wind Site 2. 

Figure 15. Prediction results of the six models for wind Site 3. 
Figure 15. Prediction results of the six models for wind Site 3.

Energies 2020, 13, x FOR PEER REVIEW 24 of 30 

 

 
 

Figure 16. Prediction results of the six models for wind Site 4. 

Figure 17. Prediction results of the six models for wind Site 5. 

Figure 16. Prediction results of the six models for wind Site 4.



Energies 2020, 13, 1772 23 of 29

Energies 2020, 13, x FOR PEER REVIEW 24 of 30 

 

 
 

Figure 16. Prediction results of the six models for wind Site 4. 

Figure 17. Prediction results of the six models for wind Site 5. Figure 17. Prediction results of the six models for wind Site 5.
Energies 2020, 13, x FOR PEER REVIEW 25 of 30 

 

 

Figure 18. Prediction results of the six models for wind Site 6. 

This image cannot currently be displayed.

Figure 19. NRMSE of the six models for different wind sites at each prediction step (sample set). 

Figure 18. Prediction results of the six models for wind Site 6.

Through Figure 13 to Figure 18, the prediction trend of different models was observable. The LSTM
and GRU models were able to capture the overall trend of wind speed data. The SeriesNet and ResUnet
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models evolved over time on the training sets to also capture some of the local trends, which is more
visible in Figure 14, Figure 15, and Figure 16. Overall, ResAUnet was able to capture local nonlinear
trends much faster and more accurately than the other models. The evolution of ResAUnet could
be clearly seen in Figure 13, Figure 14, Figure 15, and Figure 16, where the model was able to follow
accurately the local trend of wind speed data much faster than the other models. The NRMSE of each
prediction step is plotted in Figure 19, where ResAUnet had the least NRMSE among all models used
in this study throughout the validation process.
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3.4. Training Time Evaluation

The number of parameters and the models’ architecture had a great influence on the training
complexity. For RNN-based models like LSTM and GRU, the recurrent connections increased
the training time as the data flow was sequential between the different blocks in the same chain.
CNN models, however, did not show this sequential nature of data flow, and all the predictions could
be made in parallel. Parallel dataflow enabled CNN models to train faster than their RNN counterparts.
We demonstrate the average training time of each model used in the study in Table 10 below.

Table 10. Average training time for each training window (in seconds).

Wind Site LSTM GRU SeriesNet ResUnet ResAUnet

Site 1 2.45 2.27 0.68 1.34 1.23
Site 2 2.42 2.30 1.19 1.71 1.75
Site 3 2.61 2.11 1.16 1.45 1.63
Site 4 2.45 2.28 0.75 1.25 1.39
Site 5 2.46 2.31 0.72 1.14 1.30
Site 6 2.43 2.28 0.70 1.23 1.44
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Experiments were conducted on a notebook PC with an Intel i5 7th generation CPU and 8GB
RAM. The TensorFlow API for the Python programming language was used to create and train the
models on the notebook’s Nvidia GeForce 920MX dedicated GPU.

4. Conclusions

Improving the accuracy of short-term wind speed prediction is one of the most important factors
for improving the energy conversion efficiency. By accurately predicting distant future timesteps (in
this case, 50-steps-ahead), efficient power management and planning of repair/cleaning schedules
could be done in advance. In this paper, a residual U-net architecture of dilated convolution layers
with a nonlinear attention block was proposed for 50-step-ahead prediction of wind speed data using
the previous 50 steps. The proposed model was validated using the sliding window technique and
was evaluated against several other models including naive prediction. The models were tested on the
wind speed data of six different sites. For this study, it could be concluded that:

• CNN architectures consisting of residual blocks made of a dilated convolution layer had higher
prediction accuracy than RNN-based architectures like LSTM and GRU. SeriesNet showed an
overall performance gain of 3% to 17% for MAPE compared to LSTM, which meant residual blocks
of dilated convolution layers were effective for learning wind speed trends without preprocessing
the data. Furthermore, CNN architectures required less training time than LSTM and GRU.

• Nonlinear attention blocks applied to the ResAUnet provided an advantage over SeriesNet in
predicting wind speed for all wind speed datasets used in this study. ResAUnet performed better
on each wind site’s data. A performance gain of up to 17.3% in MAPE, 14.6% in NRMSE, and 15.4%
in UMBRAE was observed over the SeriesNet model. Furthermore, ResAUnet could adapt to the
local trends in the wind speed data faster than other models used in this study.

• LSTM, GRU, SeriesNet, ResUnet, and ResAUnet could all follow the trend in complex and random
wind speed data. However, for 50-step-ahead prediction, dilated convolution-based architectures
showed better performance in following the intermediate and local trends. By retraining the
model using the sliding window technique, the ResAUnet model adapted to the intermediate
trend of the wind speed data faster than the other models.

Overall, the proposed model with nonlinear attention blocks could provide more reliable and
accurate 50-step-ahead short-term wind speed prediction for wind farm management systems and
improve the efficiency of wind turbine maintenance, cleaning, and operational planning. Even though
the proposed model had a clear advantage in 50-step-ahead prediction of short-term wind speed
data using raw wind speed data, other environmental factors such as humidity, pressure, wind
direction, solar radiation, temperature, and turbulence have great effect on wind speed. Therefore,
our future studies will incorporate these influencing factors into multi-step-ahead short-term wind
speed prediction. We will also explore other machine learning architectures in order to improve the
prediction accuracy.
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