

Energies 2020, 13, 1772; doi:10.3390/en13071772 www.mdpi.com/journal/energies

Article

Multi-Step Short-Term Wind Speed Prediction using

a Residual Dilated Causal Convolutional Network

with Nonlinear Attention

Kumar Shivam 1,*, Jong-Chyuan Tzou 1 and Shang-Chen Wu 1

1 Department of Mechanical Engineering, Kun Shan University, No.195, Kunda Rd., Yongkang Dist.,

Tainan City 710, Taiwan; anthony@mail.ksu.edu.tw (J.-C.T.); scwu537@mail.ksu.edu.tw (S.-C.W.)

* Correspondence: s106002443@g.ksu.edu.tw; Tel.: +886-6-205-0021

Received: 8 March 2020; Accepted: 31 March 2020; Published: 7 April 2020

Abstract: Wind energy is the most used renewable energy worldwide second only to hydropower.

However, the stochastic nature of wind speed makes it harder for wind farms to manage the future

power production and maintenance schedules efficiently. Many wind speed prediction models exist

that focus on advance neural networks and/or preprocessing techniques to improve the accuracy.

Since most of these models require a large amount of historic wind data and are validated using the

data split method, the application to real-world scenarios cannot be determined. In this paper, we

present a multi-step univariate prediction model for wind speed data inspired by the residual U-

net architecture of the convolutional neural network (CNN). We propose a residual dilated causal

convolutional neural network (Res-DCCNN) with nonlinear attention for multi-step-ahead wind

speed forecasting. Our model can outperform long-term short-term memory networks (LSTM),

gated recurrent units (GRU), and Res-DCCNN using sliding window validation techniques for 50-

step-ahead wind speed prediction. We tested the performance of the proposed model on six real-

world wind speed datasets with different probability distributions to confirm its effectiveness, and

using several error metrics, we demonstrated that our proposed model was robust, precise, and

applicable to real-world cases.

Keywords: wind speed forecasting; wind energy; machine learning; convolutional neural network;

deep learning architectures; time series; residual networks

1. Introduction

With increasing concern about global warming and pollution caused by over usage of fossil

fuels, the leading world organizations and countries are encouraging renewable energy sources like

wind and solar power. According to the U.S. Energy Information Administration, renewable energy

contributes to over 18% of total energy production with solar and wind energy contributing almost

10% [1]. Wind energy is mostly generated at on-shore or off-shore clusters of wind turbines also

known as wind farms. These wind farms in order to manage the future production of total electrical

power efficiently require prior knowledge of future wind conditions. We can classify the wind speed

prediction problem into several temporal ranges. According to [2], there are four temporal ranges for

forecasting: (1) long-term, with a range of a week to a year or much ahead; (2) medium-term, for two

days to a week ahead; (3) short-term, for one hour to two days ahead; (4) very short-term, from a few

seconds to one hour. Accurate short-term prediction is used for economic load dispatch planning,

such as increase and decrease in wind power supply and is used to preplan distribution from the

wind farms. Short-term wind speed prediction is also vital for advanced scheduling of the cleaning,

maintenance, and safety check of wind turbines during low-wind conditions.

Energies 2020, 13, 1772 2 of 30

Generally, numerical and statistical approaches are used to predict wind speed. Numerical

models require a large amount of historical multivariate data of terrain to make accurate forecasts;

also, large processing power is required to assemble such a method, thus not being recommended

for short-term forecasting [3]. Statistical approaches consider the relationship between input and

output data to create a prediction model. Conventional statistical methods proposed by Jenkins [4]

can be categorized as follows: autoregressive mode (AR), moving average model (MA),

autoregressive moving average (ARMA), and auto-regressive integrated moving average model

(ARIMA). ARIMA models are used to predict and model high-frequency wind speed data. In [5], the

authors proposed a nested ARIMA model that uses non-stationary features of wind speed data for

forecasting and generates surrogate data for wind speed. In [6], a stochastic differential equation

approach (Langevin model) was used to model the normal behavior of wind turbine towers’

vibration using wind speed using high-frequency sampling data. This method outperformed the

deterministic neural network (NN) methods for high frequency data; however, the authors also

suggested that NN models are just as good for 10 minute sampling time series.

Several studies also used artificial intelligence models such as neural networks for the wind

prediction problems. In [7], the author used a back-propagation (BP) algorithm to train a neural

network on two previous wind speed data points to predict the next wind speed data point, which

outperformed statistical models in terms of prediction accuracy. The work in [8] used a complex-

valued recurrent neural network (RNN) to train the model on a complex wind speed signal (wind

speed + wind direction) to perform multi-step ahead predictions. In [9], the authors proposed a linear

model for predicting one-day-ahead wind speed and direction by developing a linear model and

using the least-squares method for parameter estimation. These studies confirmed that wind speed

can be predicted by using historical data in the absence of a numerical model that requires several

environmental variables such as the pressure gradient, air temperature, and orography. In [10], the

results also confirmed the assumption that one can train a model only using historical data and still

get reasonable accuracy. Using a different approach, the work in [11] used a hybrid approach by

combining the numerical model with a Gaussian process-based probabilistic model. The authors

applied a Gaussian process model to the wind speed data output of the numerical weather model

(NWP) to make one-day-ahead wind power forecast.

In more recent studies, the research has been focused on finding better neural network

architectures to improve the wind speed prediction accuracy. Many of these focused on the aspects

of deep learning or advanced preprocessing techniques. In [12], principal component analysis (PCA)

was used to reduce the input dimension and search the optimal input sample size for the deep-LSTM

architecture. This architecture combined with PCA achieved better accuracy compared to support

vector machines (SVM), the back-propagation neural network (BPNN), and the LSTM model without

PCA analysis. This model was validated using the classic training and testing split method, also

known as the holdout method [13,14], where they trained the model on a part of a historic dataset

and validated the performance on another. Using the SVM regression method combined with the

evolutionary algorithm, the work in [15] presented a novel approach for hyperparameter estimation

of SVM models using evolutionary programming (EP) and particle swarm optimization (PSO), which

in turn outperformed a multi-layer perceptron (MLP)-based regression model. The training and

testing split of data was 80% and 20%, respectively, and training set was divided into 10 subsets. In

a similar research proving the capabilities of LSTM, the work in [16] presented the results showing

that the LSTM model could outperform SVM while predicting wind speed using multiple

environmental attributes like previous wind speed, pressure, relative humidity, temperature, and

solar radiation. While this study showed very supporting results for LSTM, also claiming that the

requirement of training data was low, the study did not explain the training procedure of these

models. Some studies used advanced preprocessing or data preparation methods. In [17], targeted

and adjacent wind turbines with related time-lag characteristics were exploited using wavelet

coherence transformation analysis (WCT) preceded by continuous wavelet transformation (CWT) to

establish the spatial-temporal correlation. An LSTM model was trained on the CWT of wind speed

signals, which clearly outperformed the conventional BP, extreme learning machine (ELM), and SVM

Energies 2020, 13, 1772 3 of 30

models. Models in this research were trained and tested on a data split of training, validation, and

testing sets. In general, the LSTM model is very popular for wind speed prediction. The work in [18]

introduced a modification to the LSTM structure to better predict the weather contextual data and

decrease the naive character of generic LSTM. By introducing an adaptive compression algorithm,

cell regulation, and rectified linear units (ReLU) units to generic LSTM, the improved model was able

to increase the prediction accuracy for wind power. The model was validated using an 80% training

split and 20% testing split. Discrete wavelet transformation (DWT) was used as a data preprocessing

method in [19], and several LSTMs were trained on the z-score normalized values of different

decomposition levels of the DWT of the original wind signal. The z-score denormalized values of

each predicted value for each decomposition level were added to get the final prediction. The DWT

method was also tested with recurrent neural networks (RNN), BP, generic LSTM, RNN, and BP with

a training, validation, and testing set of 70%, 20%, and 10%, respectively. The models were optimized

using Adam, a first-order optimization algorithm. Results confirmed that the LSTM model trained

with DWT decompositions performed better than the rest of the models on short-term prediction of

wind speed. The deep learning method proposed in [20] used the wavelet packet decomposition,

CNN, and CNN-LSTM models for wind speed prediction. A hybrid model was reported in [21], by

incorporating the double decomposition and error correction with the LSTM model to improve one-

step-ahead prediction of short-term wind speed. In [22], the authors used different configurations of

artificial neural networks (ANN) to predict the hourly wind speed time series. In a different

approach, ELM with kernel mean p-power error loss [23] was used to improve the wind speed

prediction accuracy. The author claimed that ELM based on second-order statistics was not suitable

for a non-linear and non-Gaussian dataset, so a new loss function was introduced, and PCA was

applied to reduce some of the redundant data components. In a more recent paper [24], a direct multi-

step-ahead prediction model was by combining LSTM with ensemble empirical model

decomposition (EEMD) and fuzzy entropy and compared against the SVM, BP, and generic LSTM

models. Another ensemble forecasting method based on a multi-objective optimization algorithm

was proposed in [25] for wind speed forecasting that included the back-propagation neural network

(BPNN), RBF, general regression neural networks (GRNN), and the wavelet neural network (WNN)

with singular spectrum analysis for data preprocessing.

Since most of the recent research for wind related prediction is focused on the LSTM-based

architecture or improving the traditional models, another type of machine learning architecture

known as the convolutional neural network (CNN) is also an alternative for time series forecasting.

Unlike LSTM or the conventional model, CNN requires little to no data preprocessing. The work in

[26] introduced a 1D CNN-based forecasting model for direct multi-step-ahead prediction for short-

term wind speed data. The model was trained on 75% of the dataset and tested on 25% and

outperformed the SVM, radial function (RF), decision tree (DT), and MLP models on 11 datasets.

Apart from wind speed prediction, CNN architectures have traditionally been used in time series

classification. In [27], it was shown that the CNN model could extract a suitable internal structure to

produce deep features automatically and outperform state-of-the-art methods on real-world datasets.

CNN architectures, unlike other feature-based models, do not require sophisticated feature

engineering[28–30]. These papers provided supportive results and reviews showing that 1D CNN

could be used as an automatic feature extraction mechanism for one-dimensional data. Several

studies have presented the innovations in CNN to improve its suitability for time series data. Some

hybrid models of the CNN architecture with the gated recurrent unit (GRU) are also used for wind

speed predictions. In [31], a CNN-GRU model was introduced for short-term wind prediction that

used CNN as a feature extraction method for multivariate weather data and then fed the features to

the GRU model to make predictions. A model called the dilated causal convolutional neural network

(DCCNN), also known as the deep temporal convolutional network (DTCN), has been used in

multiple time series applications, including multivariate prediction [32], real-time water level

prediction [33], and seismic event prediction [34]. Moving a step further, WaveNet was proposed in

[35], a network comprised of the residual unit of DCCNN for raw audio generation. Another CNN

architecture, widely used in medical image segmentation, is called U-net. U-net is named after its U-

Energies 2020, 13, 1772 4 of 30

shaped structure, where low-level features are fused with high-level features to learn cross-context

information. The works in [36,37] gave us an insight into the success of U-net in image segmentation.

Attention modules are sometimes also used to improve the performance of U-nets. The works in [38–

40] propose attention modules for U-net architectures in medical image applications.

The application of attention modules in time series models is also an active field of research. The

works in [41,42] proposed the application of attention in the LSTM architecture for time series

prediction. Attention models have also been used with CNN and time series data. The work in [43]

proposed an attention gated CNN for sentence classification, and the work in [44] introduced a

temporal causal discovery framework (TCDF) for learning causal relationships in time series data.

However, many innovative CNN architectures mentioned above have not yet been explored for

renewable energy applications. Studies are often focused on learning linear causal relationships from

training data.

We exploited the time series feature extraction power of DCCNN and the computational

efficiency with the low data requirement of U-net to discover the complex underlying relationship in

time series wind speed signals. We used a nonlinear attention module to merge the low-level features

of residual DCCNN U-net (ResUnet) to high-level features. We used a sliding window training

method to train our models, using eight hours of wind speed data with a sampling frequency of 10

minutes to predict the next eight hours’ wind speed. We also compared our model against the naive

prediction method, LSTM, GRU, residual DCCNN (SeriesNet), and residual DCCNN U-net

(ResUnet) architectures. In summary,

 We present “ResAUnet”, a residual dilated convolutional network based on U-net that uses

nonlinear attention to merge the causal features of low-level residual blocks with high-level

residual blocks to learn the nonlinear causal relationship in wind speed data for short-term wind

prediction.

 We evaluate the performance of our proposed model and several other time series prediction

models on six real-world wind speed datasets with different probability distributions using

multiple time series error metrics.

We organize the remainder of this paper as follows. Section 2 presents the details of LSTM, GRU,

residual dilated CNN, ResUnet, and the proposed model (ResAUnet). It also provides detailed

information of the hyperparameters used for each model. In Section 2.6, we describe the wind speed

dataset used for the evaluation of the model. Section 3 presents the model training method used in

the presented research and the performance metrics used for the accuracy comparison of different

models. We detail the results of this research at the end of Section 3. Conclusions of this study are

given in Section 4.

2. Prediction models and method

In this section, we describe the different wind speed prediction models used for benchmarking,

as well as the proposed model. We start with the brief introduction of LSTM, GRU, DCCNN, and

attention. Then, we move on to the details of the proposed model.

2.1. Long-term Short-term Memory and Gated Recurrent Unit

Energies 2020, 13, 1772 5 of 30

Long-term short-term memories (LSTM) are a variation of RNN modules introduced to

overcome the long-term dependencies problem of RNN. LSTM, introduced by [45], are capable of

learning long-term dependencies and are used by state-of-the-art time series prediction models. The

concept behind the LSTM model is a memory cell that maintains its state over time and non-linear

forgetting units that regulate the information in and out of the memory cell. In order to utilize all the

information present in the time series data, the dataset is normally chronologically arranged before

feeding into LSTM.

Figure 1 shows the structure of an LSTM network, where every cell’s output, also known as the

control state, h, is connected to the next cell’s input, x. The cell state C is also shared with the next

LSTM cell in the chain. An LSTM cell contains an input gate, i, which decides the information

originating from the new observation at current timestep t, and the output of the previous timestep

t-1 will be stored in the unit state or not. Then, a forget gate, f, selectively forgets some of the past

trends and other time series factors. Later, the output gate, o, determines the output and cell state for

the current timestep observation. All the gates have their separate weight matrix, W, and bias vector,

b. The training process of LSTM can be written as the following equations.

�� = �(�� · [ℎ���, ��] + ��) (1)

�� = ���� · [ℎ���, ��] + ��� (2)

��� = ���ℎ(�� · [ℎ���, ��] + ��) (3)

�� = �� ⊙ ���� + �� ⊙ ��� (4)

�� = �(�� · [ℎ���, ��] + ��) (5)

ℎ� = �� ⊙ tanh (��)

(6)

In the above equations, the ⊙ operator represents the Hadamard product [46], also known as

element-wise multiplication of two matrices. In Equations 1, 2, and 5, σ represents a sigmoid

activation. Similarly, in Equations 3 and 6, tanh represents a hyperbolic tangent activation. The

equations for the sigmoid and hyperbolic tangent activations are as follows.

σ(x) =
��

(1 + ��)
 (7)

tanh(�) = 1 −
2

1 + ����
 (8)

Figure 1. Structure of an LSTM network, where LSTM cells are linked as a

chain. For each LSTM cell, x and h are the input and output, respectively.

Energies 2020, 13, 1772 6 of 30

The length of the LSTM chain can be determined by the length of the output/prediction steps. A

fully-connected (FC) layer follows the LSTM chain to output step temporal features. The equation for

each neuron in an FC layer with linear activation can be written as follows.

�� = � �����

�

���

(9)

where �� is the output of the kth neuron, �� is the ith input x, ��� is the weight for the ith input, and

m is the total number of input variables. The FC layer at the end of the LSTM chain finds the complex

relationship between the LSTM outputs and training variables to further improve the accuracy of the

architecture. The model used for comparison in this paper uses the backpropagation algorithm for

training. The backpropagation algorithm is also known as the backpropagation of errors [47] and is

a chain rule method. Using an optimizer (often, a gradient-based one), after each forward pass

through the network, the algorithm applies a backward pass to adjust the model’s parameters, such

as weights and biases. For the LSTM architecture, we made use of the first-order gradient-based

stochastic objective optimization algorithm, Adam [48]. The name of the Adam optimization

algorithm is derived from adaptive moment estimation because it uses estimations of the first and

second moments of the gradient to adapt/adjust the learning rate for each weight of the neural

network. For more details on how the Adam optimization works, one may refer to the referenced

paper.

Gated recurrent units (GRU) were first proposed by [49] as a simplified and efficient

modification of traditional RNN and LSTM cells. GRU models have successfully been applied to

sequence modelling problems in the past [50,51], which makes them good candidates as a benchmark

model for our paper. Unlike LSTM, GRU only has two gates, the update gate and the reset gate; since

there is no output gate, GRU has no control over the memory content of the unit. Due to simple gating

units and less modulation of the flow of information inside the unit, GRU has less training parameters

than LSTM. Furthermore, the lack of a forget gate gives GRU the ability to keep information from

distant past steps, without discarding it through time or forgetting information that is irrelevant to

the prediction. A simple GRU block is presented in Figure 2 below.

An update gate �� , for timestep t, helps the model determine the amount of previous

information that needs to be passed to the next unit. The advantage of the update gate is that it copies

all the past information and eliminates the vanishing gradient problem. The reset gate, �� , is a

replacement of the forget gate from LSTM that determines the amount of information to forget/reset.

The equations of GRU can be written as follows.

�� = �(�� · [ℎ���, ��] + ��) (10)

Figure 2. A gated recurrent unit.

Energies 2020, 13, 1772 7 of 30

�� = �(�� · [ℎ���, ��] + ��) (11)

ℎ�� = ���ℎ(�� · [�� ⊙ ℎ���, ��] + ��) (12)

ℎ� = (1 − ��) ⊙ ℎ��� + �� ⊙ ℎ�� (13)

In Figure 3, the LSTM and the GRU models are illustrated, which are used as the benchmark

models for our proposed model. The LSTM model is comprised of two hidden layers of the LSTM

chain of 50 LSTM cells each (the number of cells corresponds to the number of input timesteps; please

refer to Section 5 for more information). Finally, an FC layer consisting 50 neurons with linear

activation was used as the output layer. Similarly, we also used a GRU model with two hidden layers

of the GRU chain with 50 units each followed by an FC layer of 50 with linear activation. The number

of hidden layers for the LSTM layer was determined using the Tabu search method; please refer to

[52] for more details about the architecture search using the mentioned method. The complete

parameter information of LSTM and GRU models is listed in Table 1 and Table 2, respectively.

Table 1. LSTM model hyperparameters.

Layer

Name
Activations

Kernel Initial

Distribution

Number of

Neurons/Cells

Number of Trainable

Parameters

LSTM
Sigmoid +

Tanh
Normal 50 20,200

LSTM
Sigmoid +

Tanh
Normal 50 20,200

FC Linear Normal 50 2550

 Total 150 42,950

Table 2. GRU model hyperparameters.

Figure 3. (a) Stacked LSTM model with two hidden LSTM layers followed by an FC layer;

(b) stacked gated recurrent unit (GRU) model with two hidden GRU layers followed by an

FC layer.

Energies 2020, 13, 1772 8 of 30

Layer

Name
Activations

Kernel Initial

Distribution

Number of

Neurons/Units

Number of Trainable

Parameters

LSTM
Sigmoid +

Tanh
Normal 50 15,300

LSTM
Sigmoid +

Tanh
Normal 50 15,300

FC Linear Normal 50 2550

 Total 150 33,150

2.2. Convolutional Neural Networks

Convolutional neural networks (CNN) are known for their outstanding performance on image

(2D data) related machine learning tasks, such as image segmentation, object recognition, and super

resolution. A modified version of CNN, known as 1D CNN [30,53], has been developed for time

series and other 1D data (sound, vibration, sentences, etc.). CNN layers as shown in Figure 4(a) are

comprised of filters that capture the local correlation of nearby data points, instead of the

conventional full connection. The filters are made up of convolutional kernels that share the same

weights. Each 1D CNN layer can be mathematically represented as follows:

���
� = �((�� ∗ �)�� + ��)

(14)

where ∗ is the convolution operation, y is the output, x is the input, �� is the weight matrix, and ��

is the bias matrix of the kth layer. In Equation (14), i and j are the number of filters and neurons,

respectively. In the above equation, f is the activation function. The rectified linear unit (ReLU) is one

of the widely utilized activation functions for CNN layers. A modified version of ReLU known as

scaled exponential linear unit (SELU) was proposed by [54], which induces self-normalization

properties on CNN layers. Furthermore, SELU avoids the vanishing gradient problem while

normalizing the network and speeding up the training process. The equations for ReLU and SELU

are as follows,

����(�) = max (0, �) (15)

����(�) = � ∙ max (��� − �, �) (16)

The authors of [54] calculated the values for � and � as 1.05070098 and 1.67326324,

respectively.

Causal convolution [55] is a restrictive variation of CNN, in which the timestep order must not

be violated. In causal CNN, the output at any timestep t only uses the information from previous

steps. Figure 4 (b) illustrates the flow of information in a causal CNN structure. Because of this time

dependency characteristic, causal CNN are used for time series classification and prediction tasks.

Mathematically, we can represent a layer of causal CNN as follows,

���
� = �(���

� ∗ �����
�

+ ��) (17)

where ∗ is the convolution operation, y is the output, ���� is the input to the layer, �� is the weight

matrix, and �� is the bias matrix of the kth layer. In Equation (17), i and j are the number of filters and

neurons, respectively. Unlike standard convolution, causal convolution guarantees that only

instantaneous data are used, and future features are excluded during the training process. Thus, the

final prediction of the causal architecture p(xt+1|x1, x2, …, xt) is independent of xt+1, xt+2, …, xT. Causal

convolution models make predictions in a sequential manner, and predictions of a layer are fed back

into the next layer to predict the next sequence. Unlike RNN, causal convolution models do not have

recurrent connections, and all the conditional predictions can be made in parallel, hence being faster

to train than RNNs.

Energies 2020, 13, 1772 9 of 30

A dilated causal convolution also known as à trous convolution is a variant of CNN, where the

filter is applied to a larger area than its kernel length by skipping inputs at certain steps. This

technique was introduced by [56] to expand the size of CNN’s receptive field of images without

modifying the data structure. The same technique can be applied to the time series data [57,58] to

expand the data length effectively without increasing the neural network structure, as shown in

Figure 4 (c). Due to its sparse connection and weight sharing mechanism, dilated convolution

networks can automatically learn translationally-invariant features from longer input time series

while having fewer trainable parameters than conventional CNN.

2.3. Residual Dilated Convolutional Neural Network

Residual convolutional neural networks were first proposed by [59] to tackle the problem of

training deep learning models. Intuitively, by adding more layers, a CNN architecture should learn

more complex functions and improve the prediction accuracy. However, the authors in [59] noted in

their paper that deeper CNN models are not necessarily better at learning features. During the training

of deeper models, a degradation problem was uncovered. The paper reported that such degradation

was not due to overfitting, because adding more layers to the network counterintuitively increased the

training error. With the increasing depth of the CNN model, the accuracy of the model becomes

saturated and then starts degrading. This identifies the underlying problem of how the gradient

descent-based optimization algorithm works. The authors proposed a shortcut connection by skipping

a few layers of convolution and copying an identity matrix to the input of the following layer. The

shortcut identity connections were designed in a way that all the information from the previous layer

was always passed through to the next connected layer. In the residual learning method, for the

mapping function (output) of a few stacked convolution layers �(�), the shortcut connections force the

network to learn residual function �(�) − � instead. Thus, the underlying mapping function for

stacked layers with an identity shortcut, also known as the residual block, becomes �(�) = �(�) − �.

Therefore, for a residual block, the mathematical formulation can be written as follows,

� = �(� ∗ �) + � (18)

where x and y are the input and output of the residual block. According to the above function, the

dimensions of x and �(� ∗ �) must be the same, else a linear projection can be applied to match the

dimensions. The above modification to the traditional CNN architecture for image data was also

experimented on time series data by replacing the 2D convolution layers with 1D convolution layers.

WaveNet was proposed by [35] to generate raw audio waveforms. The WaveNet architecture consists

of conditional residual blocks and skipped connections. Dilated convolution layers are used instead of

standard convolution layers to expand the receptive field of networks. Several variations for the

residual blocks for time series data have been proposed for different time series tasks. The work in [34]

proposed a CNN-LSTM hybrid network with dilated convolution residual blocks (Figure 5(a)). The

Figure 4. One-dimensional CNN structure with (a) standard convolution,

(b) causal convolution, and (c) dilated causal convolution.

Energies 2020, 13, 1772 10 of 30

residual block proposed for the CNN-LSTM model is comprised of a dilated convolution layer followed

by a ReLU activation and a dropout layer for better generalization. Another variation with skipped

connection and the self-normalizing SELU activation function was proposed by [60]. The author

proposed the residual block (Figure 5 (b)), and ReLU activation was replaced by SELU activation to

remove bias from the network and also improve generalization due to SELU’s self-normalization

properties [54]. As noted by the author, unlike other time series prediction models, this architecture

does not require data preprocessing to improve performance.

We used a generative time series forecasting model SeriesNet proposed by [60] as one of our

benchmark models, a variant of residual-DCCNN. We also tested the CNN-LSTM hybrid model during

our experiments, but the model was not able to converge using our sliding window training method

(refer to Section 4), therefore being excluded from our benchmark list. The complete architecture of the

SeriesNet is shown in Figure 6, and residual blocks and the complete architecture’s hyperparameters

are listed in Table 3 and Table 4, respectively. As illustrated in Figure 6, the final predictions of SeriesNet

were made using parameterized skipped connections of the residual block. As noted by the author, the

model uses skipped connection instead of only using the final output of residual blocks to ensure that

the latent representation of dilated convolution layers is not overly influenced by past trends that may

not be relevant to the present prediction. The L2-norm was applied to every convolution layer to further

improve the generalization, and a truncated normal distribution was used for kernel initialization of

each layer for faster convergence. In this architecture, dilated convolution layers have a fixed number

of filters (i.e., f: 32) with a constant kernel size of three (s:3), but an increasing number of dilations (d) in

the order of 1, 2, 4, 8, 16, 32, and 64 for 7 residual blocks. Furthermore, an 80% dropout rate was added

for the last two residual blocks’ skipped connections. As listed in Table 3, the residual block had two

output layers, residual connection a, and skipped connection b. In Table 4, the connection column

corresponds to the layer id, and a and b are the residual and skipped connections of the residual blocks.

Figure 5. (a) Residual dilated convolution block with ReLU activation and a dropout

layer. (b) Self-normalizing residual block with scaled exponential linear unit (SELU)

activation and skipped connection.

Energies 2020, 13, 1772 11 of 30

Layer id 7 had only 96 trainable parameters as the residual connection of the seventh residual

connection was not used during training. The element-wise sum of the skipped connection of each

residual block was followed by a ReLU activation. The output layer was a 1 × 1 convolution layer with

linear activation. Thus, the length of the input and output data was the same and forecasts were made

in a direct manner.

Table 3. Residual block hyperparameters.

Layer

ID

Layer

Name
Connection Activations

Kernel Initial

Distribution

Parameters

(Filter, Kernel

Size,

Dilation)

Number of

Trainable

Parameters

1
Dilated

Conv1D
Input SELU

Truncated

Normal
(32, 3, d) 64

a Conv1D 1 Linear
Truncated

Normal
(1, 1, NA) 32

b Conv1D 1 Linear
Truncated

Normal
(1, 1, NA) 32

 Total 128

Table 4. SeriesNet hyperparameters.

Layer ID Layer Name
Connection

(to Layer ID)

Parameters

(Dilation)

Number of

Trainable

Parameters

1 Residual Block Input 1 128

2 Residual Block 1a 2 128

3 Residual Block 2a 4 128

4 Residual Block 3a 8 128

5 Residual Block 4a 16 128

6 Residual Block 5a 32 128

7 Residual Block 6a 64 96

8 Dropout 6b NA 0

9 Dropout 7b NA 0

10 Sum 1b, 2b, 3b, 4b, 5b, 8, 9 NA 0

Figure 6. SeriesNet with residual blocks and skipped connections.

Energies 2020, 13, 1772 12 of 30

11 ReLU 10 NA 0

12
Conv1D (1 × 1,

Linear)
11 NA 1

 Total 865

2.4. Residual U-Net Architecture

The U-net architecture was proposed by [61] for biomedical image segmentation. The key feature

of this architecture is the ability to use low-level features while retaining high-level semantic

information. The idea behind U-net is similar to residual networks. In U-net, the low-level features are

copied to corresponding high-level features to create a path for information to propagate between low-

and high-level convolution layers. This method allows backpropagation of errors between layers and

makes training deep learning models easier. Using the idea from U-net and residual networks, some

researchers have proposed a hybrid model by replacing the plain convolution layers of U-net with

residual blocks. The work in [62] proposed a deep residual U-net architecture (ResUnet) for extracting

road from aerial images. In the ResUnet architecture, residual blocks are used to ease training, and the

skipped long connection facilitates the flow of information between low levels and high levels without

degradation. ResUnet architectures are also robust to the noise present in training data, as shown by

[36], where ResUnet outperformed the residual networks. In [37], the authors showed some

experiments with the ResUnet architecture and residual block structure to improve semantic

segmentation of satellite images. In time series data applications, U-net architectures are applied to

model traffic information [63]. Spatio-temporal U-net (ST-UNet) was proposed for modeling graph-

structured time series. By using dilated recurrent skip connections, the ST-UNet architecture can extract

multi-resolution temporal dependencies.

In this paper, we investigated a ResUnet architecture, consisting of the residual blocks from

SeriesNet. As shown in Figure 7, we used the bottom 6 residual blocks similar to SeriesNet, then used

Figure 7. Residual U-Net (ResUnet) architecture for wind series time series prediction.

Energies 2020, 13, 1772 13 of 30

the 7th block (the one with the highest dilation rate) as a bridge to transfer information to the upper 6

residual blocks. This architecture resembled an encoder-decoder network [64] with increasing numbers

of dilation units; the highest dilation reached a value of 64 steps, then a decreasing number of dilations

was applied to residual blocks. The number of residual blocks before and after the bridge was kept the

same. Long skipped connections were applied to the corresponding top residual blocks from bottom

residual blocks. The output of bottom blocks was copied and concatenated with the input of top blocks

with the same number of dilations; thus, the temporal information due to dilation could be recovered

or enhanced by top level residual blocks. Similar to SeriesNet, we used the sum of skipped connections

of each residual block followed by ReLU activation to make the final prediction. Dropout was applied

at the skipped connection of the sixth residual block to decrease the influence of past trends. Using the

1 × 1 convolution layer with linear activation at the output layer, the output steps were equal to the

input steps, and the predictions were made in a direct manner. After some tests, we found a dropout

rate of 80% to be suitable for the ResUnet architecture. The hyperparameters of ResUnet are listed in

Table 5. For the residual blocks’ hyperparameters, refer to Table 3.

Table 5. ResUnet hyperparameters.

Layer

ID
Layer Name

Connection

(to Layer ID)

Parameters

(Dilation)

Number of Trainable

Parameters

1 Residual Block Input 1 128

2 Residual Block 1a 2 128

3 Residual Block 2a 4 128

4 Residual Block 3a 8 128

5 Residual Block 4a 16 128

6 Residual Block 5a 32 128

7 Residual Block 6a 64 128

8 Dropout 6b NA 0

9 Dropout 7b NA 0

10 Residual Block 7a 32 192

11 Residual Block [10, 5a] 16 256

12 Residual Block [11, 4a] 8 320

13 Residual Block [12, 3a] 4 384

14 Residual Block [13, 2a] 2 448

15 Residual Block [14, 1a] 1 96

16 Sum
1b, 2b, 3b, 4b, 5b, 8, 9, 10b, 11b,

12b, 13b, 14b, 15b
NA 0

17 ReLU 16 NA 0

18
Conv1D (1 × 1,

ReLU)
17 NA 1

 Total 2593

2.5. The Proposed Model

The ResUnet structure allows the information to flow from the lower level residual blocks to the

higher level ones. However, this alone is not enough to get a substantial gain in time series data. Since

the residual blocks proposed in SeriesNet work best for univariate time series data, we noticed a major

drawback in the ResUnet architecture. When merging the low-level features with high-level ones, the

dimension of the data becomes modified, and our consistent univariate data flow as in SeriesNet

becomes multivariate because of the concatenation of two one-dimensional outputs. We experimented

by averaging, element-wise multiplication, and addition to overcome this drawback, but the results

were poorer than ResUnet discussed in Section 2.4. Further, we focused our efforts on blocks for time

series data.

Energies 2020, 13, 1772 14 of 30

The attention mechanism is typically used in RNN architectures to improve the model

performance. The works in [65–67] are a few examples where attention blocks were proposed and used

with LSTM architectures for time series forecasting. Attention blocks have also been used with CNN

architectures [40,43,68,69] for image classification and time series data. One of the noteworthy

contributions of the attention mechanism for time series forecasting can be found in [70]. We

investigated this architecture for our application, but the results were not better than SeriesNet, so we

skipped this in our benchmark list.

The proposed non-linear attention mechanism (Figure 8) consisted of two FC layers of equal length

(50 neurons) with a dropout applied between them. The attention mechanism received a concatenated

input X with two column vectors, then a row-wise average was calculated before feeding the data to a

fully-connected layer. The row-wise average function was used to calculate the average mapping of

residual blocks for each time series element without violating their timestep order, i.e., preserving

temporal information. A dropout was applied to the output of the first FC layer before feeding into the

next FC layer to prevent the saturation of FC layers during training. Finally, the output of the second

FC layer was reshaped in order to comply with the CNN layers’ data input format. We applied sigmoid

activation to the FC layers to ensure non-linearity in the FC layer output.

For the given input matrix ��� with i rows and j columns, we could represent our non-linear

attention block as follows,

�� = � ��� �⁄
�

���
 (19)

ℎ� = �(���� + ��) (20)

ℎ� = �(��(ℎ� ⊙ �) + ��), ���ℎ ��� ∼ �(�) (21)

� = ����,�
�,�(���(ℎ�)) (22)

where �� is the row-wise mean of input matrix ��� and n is the number of elements in the row of the

matrix. ℎ� and ℎ� are the outputs of the first and second FC layer. In Equation 21, (ℎ� ⊙ �)

represents the dropout applied to the input of the second FC layer, where ⊙ is the element-wise

(Hadamard) product, ��� is the elements of the mask matrix �, and �(�) represents the Bernoulli

dropout, ���������(1 − �), with dropout probability �. � is the output of the attention block, where

the output vector of the second FC layer is reshaped from 1 × n to n × 1 to conform with the standard

input format of the 1D convolution layer. The dropout rate applied to the output of the first FC layers

in this mechanism was kept at 50%.

Figure 8. Non-Linear attention blocked with fully connected layers.

Energies 2020, 13, 1772 15 of 30

We used the proposed nonlinear attention blocks in ResUnet discussed in Section 2.4 with minor

modifications as shown in Figure 9. We applied the attention blocks to the input of higher level residual

blocks, transforming the concatenated vectors to a single output vector by applying the row-wise

average and finding the nonlinear relationship between each timestep element using FC layers with

sigmoid activation. The residual attention U-net (ResAUnet) architecture’s skipped connections were

similar to those of ResUnet with the exception being that the attention block was also used to bypass

the information by skipping the bridge connection of the residual block with the highest dilation value.

In our proposed architecture, the feature mapping of lower level residual blocks was combined with

the feature mapping of higher level one and then fed into the residual block with the same dilation

value as the corresponding lower level residual block. In order to limit the over influence of past trends

in the training of higher level residual blocks, we applied a dropout of 80% before the bridge connection

and also at the skipped output of the 7th residual block. Combined with nonlinear attention, this

mechanism of information flow allowed the architecture to learn complex relationship between the

causal outputs of different dilation levels. Similar to SeriesNet, the number of output timesteps was

equal to the input (i.e., 50 timesteps). The hyperparameters of the proposed attention block and

ResAUnet are listed in Tables 6 and 7, respectively.

Table 6. Nonlinear attention block hyperparameters.

Layer

ID

Layer

Name
Connection Activations

Kernel Initial

Distribution

Parameters

(No. of

Neurons)

Number of

Trainable

Parameters

1
Row-wise

average
Input NA NA NA 0

2 FC layer 1 Sigmoid Normal 50 2550

3 Dropout 2 NA NA NA 0

4 FC layer 3 Sigmoid Normal 50 2550

5
Reshape

(n, 1)
4 NA NA NA 0

Total 5100

Table 7. Residual attention U-net (ResAUnet) hyperparameters.

Figure 9. Residual attention U-Net with the proposed nonlinear attention

block.

Energies 2020, 13, 1772 16 of 30

Layer

ID
Layer Name

Connection

(to Layer ID)

Parameters

(Dilation)

Number of

Trainable

Parameters

1 Residual Block Input 1 128

2 Residual Block 1a 2 128

3 Residual Block 2a 4 128

4 Residual Block 3a 8 128

5 Residual Block 4a 16 128

6 Residual Block 5a 32 128

7 Dropout 6a NA 0

8 Residual Block 7 64 128

9 Dropout 8b NA 0

10 Attention [7,8a] NA 5100

11 Residual Block 10 32 128

12 Attention [11a,5a] NA 5100

13 Residual Block 12 16 128

14 Attention [13a,4a] NA 5100

15 Residual Block 14 8 128

16 Attention [15a,3a] NA 5100

17 Residual Block 16 4 128

18 Attention [17a,2a] NA 5100

19 Residual Block 18 2 128

20 Attention [19a,1a] NA 5100

21 Residual Block 20 1 96

22 Sum
1b, 2b, 3b, 4b, 5b, 6b, 9, 11b,

13b, 15b, 17b, 19b, 21b
NA 0

23 RELU 22 NA 0

24 Conv1D (1 × 1, Linear) 23 NA 1

 Total 32,233

2.6. Wind Speed Data

For the comparison of the models presented in Section 2, we used an open access dataset publish

by [71] under a creative commons license at

https://www.sciencedirect.com/science/article/pii/S2352340919306456. The published dataset presents

the wind speed, wind direction, and wind power data of 12 different sites in the state of Tamil Nadu in

India. The measurements were recorded using anemometers and wind vanes at a height of 100 meters

at a regular interval of 10 minutes throughout the year. The dataset consists of the measurements for

the years 2014, 2015, and 2016 for all 12 locations. to compare the model’s performance, we chose first

six locations and 6050 wind speed timesteps from the datasets, which corresponded to the timeline of

January to mid-February of 2014. The statistical features and collection site details of the dataset used

in this paper are listed in Table 8 below followed by the probability density plot calculated using kernel

density estimation [72], presented in Figure 10.

Table 8. Wind sites’ location and wind speed statistical features.

Wind

Site

Location Wind Speed (m/s)

Latitude Longitude Maximum Minimum Mean
Standard

Deviation

1
08˚51’ 39.30”

N

77˚53’ 11.40”

E
11.77 0.53 6.53 1.73

Energies 2020, 13, 1772 17 of 30

2
10˚34’ 33.20”

N

77˚41’ 21.30”

E
10.63 0.07 4.99 2.06

3
10˚44’ 36.70”

N

78˚08’ 17.00”

E
11.38 0.53 5.95 2.16

4
08˚57’ 44.05”

N

77˚43’ 12.73”

E
11.36 0.27 5.15 1.88

5
10˚03’ 21.90”

N

78˚42’ 46.00”

E
10.82 0.11 6.23 1.33

6
09˚04’ 47.50”

N

78˚17’ 44.30”

E
11.56 0.99 7.16 1.58

2.6. Training Method

In general, the performance of an ANN model is measured using the k-fold validation method.

This method is effective in determining the model’s performance when the data used for training are

not time-dependent, e.g., image data, non-time series regression, etc. Another method used for testing

the time series prediction model is the training and testing split, where data are split for training and

testing the model. This method requires a large historical dataset that can be used to train the complex

models at the training time. The model is then used predict on the testing data split to validate the

model accuracy. Many researches referred to in Section 1 used this method for wind speed prediction

evaluation. However, in real-world applications where historical data for a distant past horizon are not

available, the training and testing split method cannot be applied successfully. Furthermore, the

presence of stochastic trends in time series datasets makes it difficult to verify the performance of such

model for distant future timesteps. Another method of training the time series prediction model is

known as expanding window validation. In the expanding window validation method [73,74], the

model is retrained every time new data are available. This method is popular for validating prediction

models for financial and economic time series data. We investigated this method, but the increasing

Figure 10. Probability distribution of wind speed at different data collection sites.

Energies 2020, 13, 1772 18 of 30

amount of data in the training pool made the training period longer, and the model took more time to

converge.

Figure 11. Sliding window validation method for time series prediction models.

In our research, we used the sliding window technique [75–78], also known as the rolling window,

moving window, or walk-forward technique. The sliding window technique is more robust to the

stochastic changes in the data trend and can be applied to smaller datasets as the window size is smaller.

As shown in Figure 11, we used a training window of 21 sets of 50 wind speed timesteps to train our

model and then predicted the next 50 timesteps using the last set of data in the training window. For

every new prediction window, the training window used a new set of 50 timesteps and discarded the

oldest set of timesteps. The intuition behind this technique was that by discarding old data from the

training window, we could limit the influence of distant past trends during model training and promote

the learning of new trends in the data. This method also reduced the training time of the model as the

number of training sets was always fixed. The training window size of 21 × 50 timesteps was chosen

after testing the incrementing window size in multiples of 3, which was also the batch size used for

training all models.

In order to facilitate a fair comparison of all benchmark models, we also used the results of simple

the naive prediction model. The naive prediction model used in our benchmark model uses the current

set of timesteps t to predict the next set t+1 as ���� = �� . We used the stochastic optimizer Adam [48] to

train and retrain all the models (LSTM, GRU, SeriesNet, ResUnet, and ResAUnet) with a learning rate

of 0.0075, the exponential decay of the first moment equal to 0.9, the exponential decay of the second

moment estimate equal to 0.999, and an epsilon value of 10��. Models were trained for 50 epochs for

each training window with a batch size of 3. The loss function used for training different models was

the mean absolute error (MAE). For each wind speed site, the model’s weights were reinitialized to

default weights in order to prevent the influence of trends from previous wind sites on the next site’s

prediction. The training and prediction method used for the models in this study is shown as a

flowchart in Figure 12.

Energies 2020, 13, 1772 19 of 30

3. Results

3.1. Performance Metrics for Forecast Accuracy

Usually, the performance of a regression model is judged using the root mean squared error

(RMSE), mean absolute error (MAE), and mean absolute percentile error (MAPE). However, when it

comes to the time series prediction model, MAE, RMSE, and MAPE were not sufficient to evaluate

the model’s performance. RMSE depends on the scale of dependent variable and is sensitive to large

deviation. MAPE is a scale independent measure. However, MAPE has the limitation of being infinite

or undefined if there is a zero value in the series. Furthermore, MAPE can have an extremely skewed

distribution in the case that the actual values are very close to zero. Therefore, we also used the

“symmetric” MAPE (SMAPE) proposed in the Makridakis competition (M-3 competition) [79] for

time series prediction models. We also investigated the mean squared log error (MSLE) for our

performance evaluation. Since the MSLE measures the ratio between the actual value and the

predicted value, large errors are not penalized if the both the actual and predicted values are large

numbers. Furthermore, MSLE penalizes underestimates more than the overestimates. Another error

metric we used is the normalized root mean squared error (NRMSE). NRMSE is the normalized

version of RMSE, which facilitates the comparison between datasets and models with different scales.

We also used the unscaled mean bounded relative absolute error (UMBRAE) [80] to compare the

accuracy of different models using naive prediction results as the benchmark. UMBRAE is based on

the mean bounded relative absolute error (MBRAE), but the final result is represented in terms of a

ratio, rather than relative error. If UMBRAE is larger than one, the model has worse accuracy than

the benchmark, and values smaller than one indicate better accuracy than the benchmark. UMBRAE

is less sensitive to outliers and a is symmetric and scale-independent measure of model’s accuracy.

The equations for calculating the performance/error metrics used in this paper are as follows.

Figure 12. Training and prediction method.

Energies 2020, 13, 1772 20 of 30

��� =
1

�
� |�� − ���|

�

���

(23)

���� = �
1

�
� (�� − ���)�

�

���

�

(24)

���� =
1

�
� log �

�� + 1

��� + 1
�

�

���

(25)

���� =
1

�
� �

���−��

��
�

�

���

(26)

����� =
2

�
�

|���−��|

|��| + |���|

�

���

(27)

NRMSE =
�

1
�

∑ (�� − ���)��
���

�

���� − ����

(28)

����� =
1

�
�

|�� − ���|

|�� − ���| + ��� − ���
∗�

�

���

(29)

������ =
�����

1 − �����

(30)

where �� is the actual value, ��� is the predicted value of the model, ���
∗ is the predicted value of the

naive prediction method, and n is total number of predictions.

3.2. Comparison

We trained and tested the proposed model and benchmark models on six wind speed datasets.

The models involved in this research were naive, LSTM, GRU, SeriesNet, ResUnet, and ResAUnet.

No preprocessing was applied to the wind speed data in order to test the model’s performance on

raw wind speed data. Each model’s input series length was 50, and a 50 step-ahead-prediction test

was evaluated in this paper.

In Table 9, the prediction errors including MAE, RMSE, MSLE, MAPE, SMAPE, NRMSE, and

UMBRAE of the six models are presented for different wind speed measurement sites. The

comparison for the six sites is summarized below.

Table 9. Error metrics of different models on six site's wind speed data. SMAPE, “symmetric” MAPE;

UMBRAE, mean bounded relative absolute error.

Wind

data
Models

MAE

(m/s)

RMSE

(m/s)

MSLE

(m/s)

MAPE

(×100%)

SMAPE

(×100%)

NRMSE

(1)

UMBRAE

(1)

Site 1

Naive 1.683 2.068 0.092 0.298 0.274 0.192 1.000

GRU 1.359 1.694 0.063 0.259 0.218 0.157 0.843

LSTM 1.356 1.688 0.063 0.262 0.220 0.157 0.853

SeriesNet 1.304 1.618 0.058 0.248 0.211 0.15 0.804

ResUnet 1.306 1.624 0.058 0.249 0.211 0.151 0.805

ResAUnet 1.254 1.583 0.055 0.237 0.202 0.147 0.768

Site 2

Naive 2.631 3.171 0.328 0.767 0.529 0.306 1.000

GRU 1.745 2.138 0.155 0.515 0.359 0.206 0.705

LSTM 1.629 2.016 0.142 0.483 0.340 0.194 0.698

SeriesNet 1.482 1.868 0.119 0.414 0.312 0.180 0.618

Energies 2020, 13, 1772 21 of 30

ResUnet 1.504 1.879 0.125 0.423 0.323 0.181 0.632

ResAUnet 1.353 1.707 0.107 0.389 0.296 0.165 0.584

Site 3

Naive 2.935 3.504 0.312 0.668 0.505 0.323 1.000

GRU 1.839 2.235 0.136 0.456 0.322 0.206 0.657

LSTM 1.773 2.151 0.129 0.443 0.312 0.198 0.679

SeriesNet 1.527 1.916 0.104 0.375 0.278 0.177 0.575

ResUnet 1.470 1.858 0.098 0.356 0.269 0.171 0.554

ResAUnet 1.271 1.641 0.079 0.310 0.236 0.151 0.486

Site 4

Naive 1.710 2.194 0.158 0.438 0.357 0.198 1.000

GRU 1.422 1.761 0.099 0.388 0.296 0.159 0.896

LSTM 1.417 1.746 0.101 0.400 0.299 0.157 0.837

SeriesNet 1.378 1.708 0.094 0.373 0.288 0.154 0.864

ResUnet 1.390 1.717 0.095 0.375 0.290 0.155 0.873

ResAUnet 1.288 1.624 0.085 0.350 0.268 0.146 0.810

Site 5

Naive 1.453 1.88 0.105 0.359 0.264 0.176 1.000

GRU 1.073 1.402 0.061 0.287 0.193 0.131 0.779

LSTM 1.081 1.408 0.062 0.290 0.195 0.131 0.803

SeriesNet 1.059 1.374 0.060 0.282 0.192 0.128 0.773

ResUnet 1.070 1.388 0.062 0.283 0.195 0.130 0.779

ResAUnet 1.035 1.342 0.056 0.272 0.187 0.125 0.762

Site 6

Naive 1.731 2.138 0.085 0.28 0.257 0.204 1.000

GRU 1.319 1.658 0.053 0.231 0.195 0.158 0.794

LSTM 1.315 1.662 0.054 0.234 0.195 0.159 0.833

SeriesNet 1.292 1.625 0.051 0.225 0.191 0.155 0.768

ResUnet 1.295 1.630 0.052 0.226 0.192 0.156 0.771

ResAUnet 1.295 1.617 0.050 0.223 0.192 0.154 0.781

 LSTM and GRU models constantly performed better than the naive prediction model. Although

the GRU model had a much lower number of parameters than LSTM, its performance was pretty

close to LSTM. The LSTM model outperformed the GRU model on scaled error metrics like

MAE, MSE, and MSLE on Site 1, Site 2, Site 3, and Site 4 data. However, we observed varying

performance of LSTM and GRU for percentage-based metrics (MAPE and SMAPE) and scaled

error metrics (NRMSE and UMBRAE). Overall, we saw the LSTM model performing slightly

better than GRU.

 Compared to the LSTM and GRU models, we could clearly see a performance gain in SeriesNet.

SeriesNet exhibited less error on all the metrics than the previous three models, with the only

exception being UMBRAE on Site 4, where LSTM had less error by a scale of 0.027. This indicated

that SeriesNet was able to learn the wind speed trends to predict 50-step-ahead data points much

better than LSTM and GRU.

 The ResUnet model, which uses the residual blocks of SeriesNet, did not show any improvement

for error metrics for all six data sites except for Site 3. The ResUnet model outperformed

SeriesNet on all metrics for Site 3. Although the ResUnet model’s performance was not better

than SeriesNet, it was either very close to or better than the LSTM model. Since the residual

blocks of SeriesNet were designed for univariate time series data, degradation in the

performance of ResUnet model was expected.

The proposed ResAUnet model with nonlinear attention blocks had the lowest error and best

performance on all wind speed data sites with the only exception being Site 6, where SeriesNet

showed better MAE, SMAPE, and UMBRAE. The ResAUnet model excelled on the RMSE, MSLE,

MAPE, and NRMSE metrics for Site 6. By the evaluation of Table 8, we could conclude that nonlinear

attention used in ResAUnet was helpful to improve the prediction accuracy for wind speed data.

Energies 2020, 13, 1772 22 of 30

3.3. Prediction and error plots

To further verify the performance of ResAUnet, the prediction graphs of each model with

corresponding ground truth data for six wind sites are provided in Figures 13, 14, 15, 16, 17, and 18.

Moreover, Figure 18 provides the NRMSE of the six models for each prediction step (sample set) on

each wind site. The initial 21 sets of timesteps were excluded from the plots since they did not

contribute to the evaluation of the models and were only used for training purposes. The plots consist

of 5000 timesteps for wind speed. All predictions were made using the out-of-time method, and the

model was not trained on the data on which the predictions were made.

Figure 13. Prediction results of the six models for wind Site 1.

Energies 2020, 13, 1772 23 of 30

Figure 14. Prediction results of the six models for wind Site 2.

Figure 15. Prediction results of the six models for wind Site 3.

Energies 2020, 13, 1772 24 of 30

Figure 16. Prediction results of the six models for wind Site 4.

Figure 17. Prediction results of the six models for wind Site 5.

Energies 2020, 13, 1772 25 of 30

Figure 18. Prediction results of the six models for wind Site 6.

Figure 19. NRMSE of the six models for different wind sites at each prediction step (sample set).

Energies 2020, 13, 1772 26 of 30

Through Figures 13 to 18, the prediction trend of different models was observable. The LSTM

and GRU models were able to capture the overall trend of wind speed data. The SeriesNet and

ResUnet models evolved over time on the training sets to also capture some of the local trends, which

is more visible in Figures 14, 15, and 16. Overall, ResAUnet was able to capture local nonlinear trends

much faster and more accurately than the other models. The evolution of ResAUnet could be clearly

seen in Figures 13, 14, 15, and 16, where the model was able to follow accurately the local trend of

wind speed data much faster than the other models. The NRMSE of each prediction step is plotted in

Figure 19, where ResAUnet had the least NRMSE among all models used in this study throughout

the validation process.

3.4. Training time evaluation

The number of parameters and the models’ architecture had a great influence on the training

complexity. For RNN-based models like LSTM and GRU, the recurrent connections increased the

training time as the data flow was sequential between the different blocks in the same chain. CNN

models, however, did not show this sequential nature of data flow, and all the predictions could be

made in parallel. Parallel dataflow enabled CNN models to train faster than their RNN counterparts.

We demonstrate the average training time of each model used in the study in Table 10 below.

Table 10. Average training time for each training window (in seconds).

Wind Site LSTM GRU SeriesNet ResUnet ResAUnet

Site 1 2.45 2.27 0.68 1.34 1.23

Site 2 2.42 2.30 1.19 1.71 1.75

Site 3 2.61 2.11 1.16 1.45 1.63

Site 4 2.45 2.28 0.75 1.25 1.39

Site 5 2.46 2.31 0.72 1.14 1.30

Site 6 2.43 2.28 0.70 1.23 1.44

Experiments were conducted on a notebook PC with an Intel i5 7th generation CPU and 8GB

RAM. The TensorFlow API for the Python programming language was used to create and train the

models on the notebook’s Nvidia GeForce 920MX dedicated GPU.

4. Conclusions

Improving the accuracy of short-term wind speed prediction is one of the most important factors

for improving the energy conversion efficiency. By accurately predicting distant future timesteps (in

this case, 50-steps-ahead), efficient power management and planning of repair/cleaning schedules

could be done in advance. In this paper, a residual U-net architecture of dilated convolution layers

with a nonlinear attention block was proposed for 50-step-ahead prediction of wind speed data using

the previous 50 steps. The proposed model was validated using the sliding window technique and

was evaluated against several other models including naive prediction. The models were tested on

the wind speed data of six different sites. For this study, it could be concluded that:

 CNN architectures consisting of residual blocks made of a dilated convolution layer had higher

prediction accuracy than RNN-based architectures like LSTM and GRU. SeriesNet showed an

overall performance gain of 3% to 17% for MAPE compared to LSTM, which meant residual

blocks of dilated convolution layers were effective for learning wind speed trends without

preprocessing the data. Furthermore, CNN architectures required less training time than LSTM

and GRU.

 Nonlinear attention blocks applied to the ResAUnet provided an advantage over SeriesNet in

predicting wind speed for all wind speed datasets used in this study. ResAUnet performed

better on each wind site’s data. A performance gain of up to 17.3% in MAPE, 14.6% in NRMSE,

Energies 2020, 13, 1772 27 of 30

and 15.4% in UMBRAE was observed over the SeriesNet model. Furthermore, ResAUnet could

adapt to the local trends in the wind speed data faster than other models used in this study.

 LSTM, GRU, SeriesNet, ResUnet, and ResAUnet could all follow the trend in complex and

random wind speed data. However, for 50-step-ahead prediction, dilated convolution-based

architectures showed better performance in following the intermediate and local trends. By

retraining the model using the sliding window technique, the ResAUnet model adapted to the

intermediate trend of the wind speed data faster than the other models.

Overall, the proposed model with nonlinear attention blocks could provide more reliable and

accurate 50-step-ahead short-term wind speed prediction for wind farm management systems and

improve the efficiency of wind turbine maintenance, cleaning, and operational planning. Even

though the proposed model had a clear advantage in 50-step-ahead prediction of short-term wind

speed data using raw wind speed data, other environmental factors such as humidity, pressure, wind

direction, solar radiation, temperature, and turbulence have great effect on wind speed. Therefore,

our future studies will incorporate these influencing factors into multi-step-ahead short-term wind

speed prediction. We will also explore other machine learning architectures in order to improve the

prediction accuracy.

Author Contributions: Conceptualization, Kumar Shivam; data curation, Kumar Shivam; formal analysis, Jong-

Chyuan Tzou; investigation, Shang-Chen Wu; methodology, Kumar Shivam and Jong-Chyuan Tzou; software,

Kumar Shivam; supervision, Jong-Chyuan Tzou and Shang-Chen Wu; visualization, Kumar Shivam; writing,

original draft, Kumar Shivam; writing, review and editing, Jong-Chyuan Tzou and Shang-Chen Wu. All authors

have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tyra, B.; Cassar, C.; Liu, J.; Wong, P.; Yildiz, O. Electric Power Monthly with data for November 2018. 2019.

https://www.eia.gov/electricity/monthly/archive/january2019.pdf

2. De Freitas, N.C.A.; Silva, M.P.S.; Sakamoto, M.S. Wind Speed Forecasting: A Review. Int. J. Eng. Res. Appl.

2018, 8, 4–9.

3. Lei, M.; Shiyan, L.; Chuanwen, J.; Hongling, L.; Yan, Z. A review on the forecasting of wind speed and

generated power. Renew. Sustain. Energy Rev. 2009, 13, 915–920.

4. George, E.P.; Box, G.M.J. Time Series Analysis: Forecasting and Control; Holden-Day, San Francisco, CA, 1976.

5. Sim, S.K.; Maass, P.; Lind, P.G. Wind speed modeling by nested ARIMA processes. Energies 2019, 12, 69.

6. Lind, P.G.; Vera-Tudela, L.; Wächter, M.; Kühn, M.; Peinke, J. Normal behaviour models for wind turbine

vibrations: Comparison of neural networks and a stochastic approach. Energies 2017, 10, 1944.

7. More, A.; Deo, M.C. Forecasting wind with neural networks. Mar. Struct. 2003, 16, 35–49.

8. Goh, S.L.; Chen, M.; Popović, D.H.; Aihara, K.; Obradovic, D.; Mandic, D.P. Complex-valued forecasting

of wind profile. Renew. Energy 2006, 31, 1733–1750.

9. El-Fouly, T.H.M.; El-Saadany, E.F.; Salama, M.M.A. One day ahead prediction of wind speed and direction.

IEEE Trans. Energy Convers. 2008, 23, 191–201.

10. Kulkarni, M.A.; Patil, S.; Rama, G.V.; Sen, P.N. Wind speed prediction using statistical regression and

neural network. J. Earth Syst. Sci. 2008, 117, 457–463.

11. Chen, N.; Qian, Z.; Meng, X.; Nabney, I.T. Short-term wind power forecasting using Gaussian Processes.

IJCAI Int. Jt. Conf. Artif. Intell. 2013, 2790–2796, ISBN: 9781577356332.

12. Qu, X.; Kang, X.; Chao, Z.; Shuai, J.; Ma, X. Short-term prediction of wind power based on deep Long Short-

Term Memory. Asia-Pacific Power Energy Eng. Conf. APPEEC 2016, 2016, 1148–1152.

13. Raschka, S. Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning. arXiv 2018,

arXiv 1811.12808.

14. Reitermanov, Z. Data Splitting. WDS'10 Proceedings of Contributed Papers, Part I, 2010, 10, 31–36, ISBN:

9788073781392.

Energies 2020, 13, 1772 28 of 30

15. Salcedo-Sanz, S.; Ortiz-García, E.G.; Pérez-Bellido, Á.M.; Portilla-Figueras, A.; Prieto, L. Short term wind

speed prediction based on evolutionary support vector regression algorithms. Expert Syst. Appl. 2011, 38,

4052–4057.

16. Gangwar, S.; Bali, V.; Kumar, A. Comparative Analysis of Wind Speed Forecasting Using LSTM and SVM.

ICST Trans. Scalable Inf. Syst. 2018, 159407, doi:10.4108/eai.13-7-2018.159407.

17. Shi, X.; Huang, S.; Huang, Q.; Lei, X.; Li, J.; Li, P.; Yang, M. Deep-learning-based Wind Speed Forecasting

Considering Spatial–temporal Correlations with Adjacent Wind Turbines. J. Coast. Res. 2019, 93, 623.

18. Du, M. Improving LSTM Neural Networks for Better Short-Term Wind Power Predictions. arXiv 2019,

arXiv 1907.00489.

19. Liu, Y.; Guan, L.; Hou, C.; Han, H.; Liu, Z.; Sun, Y.; Zheng, M. Wind power short-term prediction based on

LSTM and discrete wavelet transform. Appl. Sci. 2019, 9, 1108.

20. Liu, H.; Mi, X.; Li, Y. Smart deep learning based wind speed prediction model using wavelet packet

decomposition, convolutional neural network and convolutional long short term memory network. Energy

Convers. Manag. 2018, 166, 120–131.

21. Ma, Z.; Chen, H.; Wang, J.; Yang, X.; Yan, R.; Jia, J.; Xu, W. Application of hybrid model based on double

decomposition, error correction and deep learning in short-term wind speed prediction. Energy Convers.

Manag. 2020, 205, 112345.

22. Zucatelli, P.J.; Nascimento, E.G.S.; Aylas, G.Y.R.; Souza, N.B.P.; Kitagawa, Y.K.L.; Santos, A.A.B.; Arce,

A.M.G.; Moreira, D.M. Short-term wind speed forecasting in Uruguay using computational intelligence.

Heliyon 2019, 5, e01664.

23. Li, N.; He, F.; Ma, W. Wind power prediction based on extreme learning machine with kernel mean p-

power error loss. Energies 2019, 12, 1–19.

24. Qin, Q.; Lai, X.; Zou, J. Direct multistep wind speed forecasting using LSTM neural network combining

EEMD and fuzzy entropy. Appl. Sci. 2019, 9, 126.

25. Qu, Z.; Zhang, K.; Mao, W.; Wang, J.; Liu, C.; Zhang, W. Research and application of ensemble forecasting

based on a novel multi-objective optimization algorithm for wind-speed forecasting. Energy Convers.

Manag. 2017, 154, 440–454.

26. Huang, C.J.; Kuo, P.H. A short-term wind speed forecasting model by using artificial neural networks with

stochastic optimization for renewable energy systems. Energies 2018, 11, 2777.

27. Zhao, B.; Lu, H.; Chen, S.; Liu, J.; Wu, D. Convolutional neural networks for time series classification. J.

Syst. Eng. Electron. 2017, 28, 162–169.

28. Zan, T.; Wang, H.; Wang, M.; Liu, Z.; Gao, X. Application of multi-dimension input convolutional neural

network in fault diagnosis of rolling bearings. Appl. Sci. 2019, 9, 2690.

29. Cruciani, F.; Vafeiadis, A.; Nugent, C.; Cleland, I.; McCullagh, P.; Votis, K.; Giakoumis, D.; Tzovaras, D.;

Chen, L.; Hamzaoui, R. Feature learning for Human Activity Recognition using Convolutional Neural

Networks. CCF Trans. Pervasive Comput. Interact. 2020, 2, 18–32.

30. Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D.J. 1D Convolutional Neural Networks

and Applications: A Survey. arXiv 2019, arXiv 1905.03554

31. Huai Nana, Dong Lei, Wang Lijie, Hao Ying, Dai Zhongjian, W.B. Short-term Wind Speed Prediction Based

on CNN_GRU Model. 31th Chinese Control. Decis. Conf. (2019 CCDC) 2019, 1314, 2243–2247.

32. Wan, R.; Mei, S.; Wang, J.; Liu, M.; Yang, F. Multivariate temporal convolutional network: A deep neural

networks approach for multivariate time series forecasting. Electronics 2019, 8, 876.

33. Wang, J.H.; Lin, G.F.; Chang, M.J.; Huang, I.H.; Chen, Y.R. Real-Time Water-Level Forecasting Using

Dilated Causal Convolutional Neural Networks. Water Resour. Manag. 2019, 33, 3759–3780.

34. Geng, Y.; Su, L.; Jia, Y.; Han, C. Seismic Events Prediction Using Deep Temporal Convolution Networks. J.

Electr. Comput. Eng. 2019, 2019, 7343784.

35. Oord, A. van den; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior,

A.; Kavukcuoglu, K. WaveNet: A Generative Model for Raw Audio. arXiv 2016, arXiv 1609.03499.

36. Heinrich, M.P.; Stille, M.; Buzug, T.M. Residual U-Net convolutional neural network architecture for low-

dose CT denoising. Curr. Dir. Biomed. Eng. 2018, 4, 297–300.

37. Diakogiannis, F.I.; Waldner, F.; Caccetta, P.; Wu, C. ResUNet-a: A deep learning framework for semantic

segmentation of remotely sensed data. 2019, 162, 94–114.

Energies 2020, 13, 1772 29 of 30

38. Ni, Z.L.; Bian, G. Bin; Zhou, X.H.; Hou, Z.G.; Xie, X.L.; Wang, C.; Zhou, Y.J.; Li, R.Q.; Li, Z. RAUNet:

Residual Attention U-Net for Semantic Segmentation of Cataract Surgical Instruments. Lect. Notes Comput.

Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 2019, 11954 LNCS, 139–149.

39. Wu, C.; Zou, Y.; Zhan, J. DA-U-Net: Densely Connected Convolutional Networks and Decoder with

Attention Gate for Retinal Vessel Segmentation. IOP Conf. Ser. Mater. Sci. Eng. 2019, 533, 012053.

40. Oktay, O.; Schlemper, J.; Folgoc, L. Le; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.;

Hammerla, N.Y.; Kainz, B.; et al. Attention U-Net: Learning Where to Look for the Pancreas. arXiv 2018,

arXiv 1804.03999.

41. Shih, S.Y.; Sun, F.K.; Lee, H. yi Temporal pattern attention for multivariate time series forecasting. Mach.

Learn. 2019, 108, 1421–1441.

42. Zhang, X.; Liang, X.; Zhiyuli, A.; Zhang, S.; Xu, R.; Wu, B. AT-LSTM: An Attention-based LSTM Model for

Financial Time Series Prediction. IOP Conf. Ser. Mater. Sci. Eng. 2019, 569, 052037.

43. Liu, Y.; Ji, L.; Huang, R.; Ming, T.; Gao, C.; Zhang, J. An attention-gated convolutional neural network for

sentence classification. Intell. Data Anal. 2019, 23, 1091–1107.

44. Nauta, M.; Bucur, D.; Seifert, C. Causal Discovery with Attention-Based Convolutional Neural Networks.

Mach. Learn. Knowl. Extr. 2019, 1, 312–340.

45. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780.

46. Steeb, W.-H.; Hardy, Y. Hadamard Product. Probl. Solut. Introd. Adv. Matrix Calc. 2016, 309–317.

47. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature

1986, 323, 533–536.

48. Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. arXiv 2014, arXiv 1412.6980.

49. Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning

phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv

1406.1078.

50. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on

Sequence Modeling. arXiv 2014, arXiv 1412.3555.

51. Ding, D.; Zhang, M.; Pan, X.; Yang, M.; He, X. Modeling extreme events in time series prediction. Proc.

ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. 2019, 1114–1122, doi:10.1145/3292500.3330896.

52. Aladag, C.H. A new architecture selection method based on tabu search for artificial neural networks.

Expert Syst. Appl. 2011, 38, 3287–3293.

53. Li, F.; Liu, M.; Zhao, Y.; Kong, L.; Dong, L.; Liu, X.; Hui, M. Feature extraction and classification of heart

sound using 1D convolutional neural networks. EURASIP J. Adv. Signal. Process. 2019, 2019, 59.

54. Klambauer, G.; Unterthiner, T.; Mayr, A.; Hochreiter, S. Self-normalizing neural networks. Adv. Neural Inf.

Process. Syst. 2017, 2017, 972–981.

55. Kalchbrenner, N.; Espeholt, L.; Simonyan, K.; Oord, A. van den; Graves, A.; Kavukcuoglu, K. Neural

Machine Translation in Linear Time. arXiv 2016, arXiv 1610.10099.

56. Yu, F.; Koltun, V. Multi-scale context aggregation by dilated convolutions. arXiv 2015, arXiv 1511.07122.

57. Borovykh, A.; Bohte, S.; Oosterlee, C.W. Conditional time series forecasting with convolutional neural

networks. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 2017,

10614, 729–730.

58. Borovykh, A.; Bohte, S.; Oosterlee, C.W. Dilated convolutional neural networks for time series forecasting.

J. Comput. Financ. 2018, 22, doi: 10.21314/JCF.2019.358.

59. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. Proc. IEEE Comput. Soc.

Conf. Comput. Vis. Pattern Recognit. 2016, 2016, 770–778.

60. Papadopoulos, K. SeriesNet: A Dilated Causal Convolutional Neural Network for Forecasting. 2018, 1–22.

61. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation.

Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 2015, 9351, 234–

241.

62. Zhang, Z.; Liu, Q.; Wang, Y. Road Extraction by Deep Residual U-Net. IEEE Geosci. Remote Sens. Lett. 2018,

15, 749–753.

63. Yu, B.; Yin, H.; Zhu, Z. ST-UNet: A Spatio-Temporal U-Network for Graph-structured Time Series

Modeling. arXiv 2019, arXiv 1903.05631.

Energies 2020, 13, 1772 30 of 30

64. Ranzato, M.; Huang, F.J.; Boureau, Y.L.; LeCun, Y. Unsupervised learning of invariant feature hierarchies

with applications to object recognition. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2007, 1

– 8, doi: 10.1109/CVPR.2007.383157.

65. Lai, G.; Chang, W.C.; Yang, Y.; Liu, H. Modeling long- and short-term temporal patterns with deep neural

networks. 41st Int. ACM SIGIR Conf. Res. Dev. Inf. Retrieval, SIGIR 2018 2018, 95–104,

doi:10.1145/3209978.3210006.

66. Cinar, Y.G.; Mirisaee, H.; Goswami, P.; Gaussier, E.; Aït-Bachir, A.; Strijov, V. Position-based content

attention for time series forecasting with sequence-to-sequence RNNs. Lect. Notes Comput. Sci. (including

Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 2017, 10638, 533–544.

67. Ran, X.; Shan, Z.; Fang, Y.; Lin, C. An LSTM-based method with attention mechanism for travel time

prediction. Sensors (Switzerland) 2019, 19, 1–22.

68. Zhu, Y.; Sun, W.; Cao, X.; Wang, C.; Wu, D.; Yang, Y.; Ye, N. TA-CNN: Two-way attention models in deep

convolutional neural network for plant recognition. Neurocomputing 2019, 365, 191–200.

69. Chen, Y.; Kalantidis, Y.; Li, J.; Yan, S.; Feng, J. A2-Nets: Double attention networks. Adv. Neural Inf. Process.

Syst. 2018, 2018, 352.

70. Song, H.; Rajan, D.; Thiagarajan, J.J.; Spanias, A. Attend and diagnose: Clinical time series analysis using

attention models. 32nd AAAI Conf. Artif. Intell. AAAI 2018, 2018, 4091–4098, ISBN:9781577358008 .

71. Bharani, R.; Sivaprakasam, A. A large volume wind data for renewable energy applications. Data Br. 2019,

25, 104291.

72. Hu, B.; Li, Y.; Yang, H.; Wang, H. Wind speed model based on kernel density estimation and its application

in reliability assessment of generating systems. J. Mod. Power Syst. Clean Energy 2017, 5, 220–227.

73. Diebold, F.X.; Mariano, R.S. Comparing predictive accuracy. J. Bus. Econ. Stat. 2002, 20, 134–144.

74. Giacomini, R.; White, H. Tests of Conditional Predictive Ability. Econometrica 2006, 74, 1545–1578.

75. Yu, Y.; Zhu, Y.; Li, S.; Wan, D. Time series outlier detection based on sliding window prediction. Math.

Probl. Eng. 2014, 2014, doi:10.1155/2014/879736.

76. Vafaeipour, M.; Rahbari, O.; Rosen, M.A.; Fazelpour, F.; Ansarirad, P. Application of sliding window

technique for prediction of wind velocity time series. Int. J. Energy Environ. Eng. 2014, 5, 1–7.

77. Mozaffari, L.; Mozaffari, A.; Azad, N.L. Vehicle speed prediction via a sliding-window time series analysis

and an evolutionary least learning machine: A case study on San Francisco urban roads. Eng. Sci. Technol.

an Int. J. 2015, 18, 150–162.

78. Hota, H.S.; Handa, R.; Shrivas, A.K. Time Series Data Prediction Using Sliding Window Based RBF Neural

Network. Int. J. Comput. Intell. Res. 2017, 13, 1145–1156.

79. Makridakis, S. The M3-Competition : Results , conclusions and implications. 2000, 16, 451–476.

80. Chen, C.; Twycross, J.; Garibaldi, J.M. A new accuracy measure based on bounded relative error for time

series forecasting. 2017, 1–23, doi:10.1371/journal.pone.0174202.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

