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Abstract: In the process of waterflooding technology in the Jilin oilfield, local radial compressive
stress caused by rock deformation results in local casing collapse. According to statistics regarding
casing-deformation characteristics, a certain number of these characteristics are approximately
parabola-shaped at the radial-deformation bottom, and the boundary of the whole deformation area
is approximately symmetrical and double-parabola-shaped. The main work of this article focused
on occurrences of such casing deformation. Assuming that, in the process of casing deformation,
external work is totally converted into energy consumption due to the deformation, the variation
regularity of bearing capacity under local radial load was obtained. In the Qing-1 stratum of the
Jilin oilfield, by selecting casing with radial collapse deformation parameters of 41/2”J55, 51/2”J55,
41/2”N80, and 51/2”N80, radial bearing capacity was calculated. Study results showed that the
casing bearing-capacity value was reduced by 39.69% compared with the current API 5C3 standard
when under the action of a local radial load. The casing collapsed due to the impact of local radial
loads produced by mudstone creep. A series of relationships between radial bearing strength and
casing parameters were also obtained. The research results are of significant academic value for the
compilation of casing design codes or standards under local radial loading.

Keywords: casing collapse; local radial load; bearing capacity; Fresnel integral

1. Introduction

After a period of waterflood development in oil fields, a variety of casing damage will occur, such
as squashing, diameter reduction and staggered sections. However, in some oilfields, such as Daqing,
Jilin, Xinjiang, Belridge, Lost Hills, and Samotlor, casing collapse caused by water injection accounts
for about 70% of the all casing collapses [1–7]. The causes of casing damage are very complicated,
but the root cause is that the external load on the casing under the action of crustal stress exceeds
the external load strength of the casing. Due to water-flooding penetration into the mudstone layer,
rock-caused creep under the action of overlying strata leads to the occurrence of local radial casing
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deformation. Therefore, casing strength design is an opportunity for researchers to prevent casing
failure. In the 1940s, scholars of the Soviet Union ГИНИ(Булгaкoв, 1930) and Г.М.Caркисo developed
a casing strength design; then, in the early 1980s, ищенкo established the mechanical model of the
casing wall under heterogeneous load. By means of stress superposition, the theoretical formula of
stress change in casing was obtained [8]. Since then, the strength-design standard represented by
the American Petroleum Association (API) has been widely used in many countries. At present, the
API 5C3 and ISO 10400 standards [9,10] are used as the design standards of casing strength in the
petroleum industry, but most of those standards are based on calculated results under uniform and
non-uniform loads [11–16]. By using the lead-mold method to determine the casing-deformation
characteristics of the Jilin oilfield, it was found that the casing deformation was due to local radial
deformation, as shown in Figure 1 [17]. Previous studies [18,19] have found that casing deformation is
mainly manifested as axial extrusion deformation and shear deformation. Axial compression failure
occurs at the production stage, while axial shear failure occurs at the edge of the collapse area. Many
scholars [20–27] have found that the main reason for local radial casing deformation is the lateral
extrusion formed by water-absorption mudstone expansion. The finite element analysis is applied to
establish the shape of casing deformation characteristics. Results showed that the bottom and side
boundaries of the casing deformation were approximately parabola-shaped (Figure 2).
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Based on the principle of conservation of work and energy, the casing types 41/2”J55, 51/2”J55,
41/2”N80, and 51/2”N80 in the Jilin oilfield were selected as examples. The mechanical model of the
bearing capacity of the casing under local radial load was established, and the relationship between the
radial bearing capacity of the casing and local radial load was obtained. In order to verify the casing
deformation, finite element simulation was carried out. The numerical simulation results were good.
The calculation results show that the casing radial bearing capacity was decreased under local radial
load, and the relationship between casing radial bearing capacity and casing wall thickness, yield
strength, and other parameters were obtained. This paper is an effective supplement to the API 5C3
and ISO 10400 standards, providing a scientific basis for casing and parameter design optimization of
future water-flooding reservoirs. It is of great significance to reduce casing-collapse rates and reduce
the cost of oilfield maintenance.

2. Establishment of the Mechanical Casing Model

Through the analysis of casing collapse area and form, it is found that local radial load is the
main factor leading to casing deformation. Assuming that under the action of lateral uniform load,
the plastic deformation area of casing has two symmetrical parabolic shapes, a simplified casing
for a clamped–clamped thin-walled metal circular tube is the ideal rigid-plastic model, and the
incompressible material at the dent depth of the circular tube along the x-axis continuously varies in the
deformation zone. The local radial load experienced plastic deformation, as shown in Figures 3 and 4;
the −y is the direction of plastic-deformation projection. Assuming that the deflection of the circular
tube and the corner of the circular tube were zero, the cross-section curve part became arc-shaped
after plastic deformation occurred. There was a homolographic axis through the center of the then
non-deformable circular cross-section after plastic deformation occurred.
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This study regarded wellbore deration as the coordinate axis and established a Cartesian coordinate
system, assuming that the radius of the metal circular tube was R, and the plastic-deformation length
of the casing collapse was 2L. Through the geometric relation, the coordinates of each point at the
deformation boundary could be expressed as shown in Figure 3.

A(0, R, 0)
B(2L, R, 0)
E
(
L, R− δmax, lEF

2

)
F
(
L, R− δmax,− lEF

2

)
G(L, R− δmax, 0)

(1)

According to the correspondence relationship of the section in the II-II direction (Figure 5), it
could be obtained between the parameters in the figure:

α0 = arccos
(R− δmax

R

)
(2)

R′ =
πR

sin
(
α′0

)
+

(
π− α′0

) (3)

R′ sin
(
α′0

)
= Rα0 (4)

R′
[
cos

(
α′0

)
+ 1

]
= 2R− δmax (5)

tanα′0 =
Rα0

2R−R′ − δmax
(6)
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Assuming that the deformed surface of the lateral deformation of the casing is parabolic, the
curve equation for establishing the deformation boundary is:

y(x) =
δmax

L2 x2
−

2δmax

L
x + R (7)

z(x) = −
Rα0

L2 x2 +
2Rα0

L
x (8)

3. Calculation of Work and Energy for the Radial Load Deformation

3.1. Conservation of Work and Energy

According to the principle of conservation of work and energy, when the rock absorbs water and
creeps, the external forces acting on the casing in the form of local radial loads are all converted into
internal dissipated energy of various local deformations of the casing.
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According to the conservation of work and energy balance plastic deformation of the casing, the
following equation can be obtained:

Wexter = Winter (9)

where Wexter is the work that the local radial load works on the casing.
When the rock absorbs water and creeps, the external force acting on the casing in the form of

local radial load does work. Winter is the total dissipated energy of local radial deformation of casing,
mainly includes the following aspects:

(1) W1: Plastic work dissipated by the cylindrical surface of the plastic-deformation zone becoming a
curved surface.

(2) W2: Plastic work dissipated by surface curvature radius change of the plastic-deformation zone.
(3) W3: Plastic work dissipated by axial stretching in the plastic-deformation zone.
(4) W4: Plastic work dissipated by rotation of the plastic hinge.

That is:
Winter = W1 + W2 + W3 + W4 (10)

where, Winter is the sum of internal dissipative work.
According to the relation of Equation (9), the calculation flow in this paper is shown in Figure 6.

Energies 2019, 12, x FOR PEER REVIEW 6 of 18 

 

1 2 3 4in terW W W W W= + + +  (10) 

where,  interW is the sum of internal dissipative work. 
According to the relation of Equation (9), the calculation flow in this paper is shown in Figure 6. 

         （Formula 11）
Work of External 

force

            （Formula 10）
Work Done by Internal 

Force 
            

   （Formula 29）4W

Plastic work dissipated by 
the cylindrical surface of the 

plastic-deformation zone 
becoming a curved surface

Plastic work dissipated by 
surface -curvature the radius 

change of the radius of 
curvature of the surface of 

the plastic- deformation zone

Plastic work dissipated by 
axial stretching in the 

plastic-deformation zone

Plastic work dissipated by 
rotation of the plastic hinge

exterW

exter defW qV=

         is the volume of the 
casing subsidence area

q is the local radial loading

defV

Conservation of work and energy  

Formula 11=Formula 10

   （Formula 21）2W

   （Formula 22）3W

   （Formula 20）1W

int erW

int er 1 2 3 4W W W W W= + + +

q   （Formula 31）
q is the local radial loading

 
Figure 6. Flowchart of plastic deformation of casing based on work and energy conservation. 

3.2. Work of External Load and Work of Internal Load in Local Radial Load 

3.2.1. Work of External Load exterW  

When the casing is under uniform radial local load, the work done to the casing by the local load 
is: 

exter defW qV= , (11) 

where defV  is the volume of the casing subsidence area; defV  can be expressed as shown in Figure 

3, and: 

( )

0 0
0

2
max

0
0

max max
0

2 sin cos

2 2 24 2 cos2 Fresenl FresenlC sin 2
3 2

L

defV R R R dx

R LR L Sπ
π π

α α α

α α
α α α

α

 = ⋅ − ⋅ ⋅ ⋅ 

    
 = + −           


 (12) 

The Fresnel integral can be obtained by the two following series: 

Figure 6. Flowchart of plastic deformation of casing based on work and energy conservation.

3.2. Work of External Load and Work of Internal Load in Local Radial Load

3.2.1. Work of External Load Wexter

When the casing is under uniform radial local load, the work done to the casing by the local load is:

Wexter = qVde f , (11)
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where Vde f is the volume of the casing subsidence area; Vde f can be expressed as shown in Figure 3,
and:

Vde f = 2
L∫

0

[(
R2αmax· −R· sinαmax·R· cosαmax

)]
dx

= 4
3 R2Lα0 +

R2L
√
π

2
√
α0

(
cos 2αFresenlS

(
2
√
α0
√
π

)
− FresenlC

(
2
√
α0
√
π

)
sin 2α0

) (12)

The Fresnel integral can be obtained by the two following series:

S(x) =

x∫
0

sin
(
t2
)
dt =

∞∑
n=0

(−1)n x4n+3

(2n + 1)!(4n + 3)
(13)

C(x) =

x∫
0

cos
(
t2
)
dt =

∞∑
n=0

(−1)n x4n+1

(2n)!(4n + 1)
(14)

3.2.2. Work of Internal Load Winter

(1) Dissipation energy on the plastic-deformation area when the cylinder is converted to the camber.
The dissipation energy of ds, as shown in Figure 7, is:

dWs =
1
2
σ0t2αds, (15)

where t is the casing wall thickness and σ0 is the casing yield stress.
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The dissipation energy of deformation length
_

E′F′, as shown in Figure 5, is:

Ws = 2

s∫
0

1
2
σ0t2αds =

αmax∫
0

σ0t2Rαdα =
1
2
σ0t2Rα2

max (16)

According to Figure 2 and Equation (7), dent depth δ is:

δ = R− y(x) =
2δmax

L
x−

δmax

L2 x2 (17)

According to the deformation relation, as shown in Figure 6, the deformation relation of z(x) and
a(x) is:

z(x) = Rαmax(x) (18)
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Since the dent depth continuously varies along the x axis, αmax(x) can be described as:

αmax(x) =
z(x)

R
=

2Rα0

RL
x−

Rα0

RL2 x2 =

(
2x
L
−

x2

L2

)
α0 (19)

Therefore, dissipated energy in the whole cambered deformation zone is shown as:

W1 = 2

L∫
0

Wsdx =
8
15
σ0t2RLα2

0. (20)

(2) Plastic dissipative work W2 is produced by the surface of the plastic zone when the radius of
curvature changes by a derivation process similar to W1, which can obtain the surface curvature radial
variation of plastic dissipative energy W2. Dissipation work W2 is shown as:

W2 = 2
∫ h

0

2σ0D2

4
·r·(π− α(x))

(
α(x)′ − α(x)

)
dx =

32
15

N0RL
(π− α0)(
α′0 − α0

) , (21)

where α(x)′ is the angle between the line from the boundary of any section to the center and the
concave direction when the surface curvature radius changes, as shown in Figure 6.

(3) Dissipation of the plastic work where the plastic hinge line rotation is:

W
_

EA
3 =

_
EA∫
0

N0

(
2x
L
−

x2

L2

)
α′0dx =

N0α′0
L2

L·
_

EA
2
−

_
EA

3

3

 (22)

where the length of space curve
_

EA is:

_
EA =

L∫
0

√
1 +

(
dy(x)

dx

)2

+

(
dz(x)

dx

)2

dx (23)

By substituting Equations (7) and (8) into Equation (23), the
_

EA can be derived:

_
EA =

√
4
(
δmax2 + R2α2

0

)
+ L2 + L2

4
√
δmax2+R2α2

0

ln

√
4(δmax2+R2α2

0)+L2+2
√
δmax2+R2α2

0
L (24)

In the same way, the plastic dissipative work can be obtained when yield lines
_

AF,
_
FB, and

_
BE

rotate, and Equation (25) can be obtained on the basis of mirror symmetry:

W
_

EA
3 = W

_
AF
3 = W

_
FB
3 = W

_
BE
3 (25)

Consequently, the total dissipative work when the plastic hinge lines rotate is as follows:

W3 = W
_

EA
3 + W

_
AF
3 + W

_
FB
3 + W

_
BE
3 = 4W

_
EA
3 (26)

(4) Dissipation of plastic work W4 on plastic deformation area when under axial tension.
On the basis of the geometric relationship in Figure 8, maximum axial elongation is known:

∆ε = 2
( _
GA− L

)
. (27)
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The length of the curve is:

_
GA =

L∫
0

√
1 +

(
dy
dx

)2

dx =
2δ
L

√
L4

4δmax2 + L2 +
L2

4δmax
ln

L2 + 4δmax
2 + 2δmax

√
4δmax2 + L2

L2 (28)

On the basis of the deformation mechanism, to solve the volume of the deformation zone, the
dissipation work of axial tension is:

W4 =

∆ε∫
0

M0dε = 2M0

( _
GA− L

)
, (29)

where M0 is the ultimate bending moment that can be expressed under local radial uniform load in the
plastic-deformation zone as follows [28]:

M0 = σ0·D (30)

The calculation relationship between the lateral load of the external load and the deformation
parameters of the casing is:

q =

32
15 M0Lα0

2 + 32
15 M0RL π−α0

α′0−α0
+ 2N0

( _
GA− L

)
+

4M0α
′

0
L2

(
L·

_
EA

2
−

_
EA

3

3

)
[

4
3 R2Lα0 +

R2L
√
π

2
√
α0

(
cos 2α0FresenlS

(
2
√
α0
√
π

)
−FresenlC

(
2
√
α0
√
π

)
sin 2α0

)] (31)

4. Example Analysis

In this paper, wells with casing collapse in the Qingshankou formation of the Jilin oilfield were
selected as examples. The casing types in the mudstone interval were mainly 41/2 J55 (114.3 mm),
51/2”J55 (139.7 mm), 41/2”N80 (114.3 mm), and 51/2”N80 (139.7 mm). We took a plastic deformation
length of 2 m, selected casings with different wall thicknesses for calculation, obtained the radial
bearing capacity value of the radial casing, and simulated the actual bearing capacity value of the casing
under different deformation conditions by the finite element method. The corresponding parameters
and calculation results are shown in Table 1 and Figures 8–15.

Table 1. Results of local radial load for casings with different wall thicknesses.

Casing
Type t/mm σ0/kN δ(h)/mm q/MPa q Simulation

Value/MPa
Pb

(API)/MPa Pb-q/MPa (Pb-q)/
Pb/%

51/2”J55
6.20 988 1.60 14.89 14.0 21.50 6.61 30.74

6.99 1103 1.42 22.33 22.7 27.90 5.57 19.96

7.72 1215 1.33 30.01 31.0 33.90 3.89 11.47

51/2

”N80

7.72 1766 1.30 28.23 32.4 43.30 15.07 34.80

9.17 2073 1.00 48.54 47.3 60.90 12.36 20.30

10.54 2358 1.00 71.82 74.4 76.90 5.08 6.61

41/2”J55
5.21 676 1.85 13.75 12.7 22.80 9.05 39.69

5.69 734 1.78 18.96 17.4 27.60 8.64 31.30

6.35 819 1.56 24.58 27.1 34.20 9.62 28.13

41/2”N80
7.52 1557 1.39 37.60 42.3 50.00 12.40 24.80

9.19 1878 1.24 57.85 61.3 72.40 14.55 20.10

11.10 2229 1.00 82.17 81.6 88.00 5.83 6.63
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Figure 15. Finite element deformation simulation on different casing wall thicknesses.

As shown in Figures 8–15, when the casing is deformed, its bearing capacity is obviously lower
than the anti-extrusion strength designed in the API standard. In order to verify the casing deformation,
finite element simulation was carried out. The deformation of four types of casing under local radial
load based on finite element simulation was consistent with the analysis results based on the principle
of conservation of work and energy.

In this paper, four types of casing in the Qing-1 section of Jilin oilfield’s water-absorbing layers
were selected as research examples. Through the theoretical calculation model and the numerical
simulation method, the influence of radial stress, induced by water absorption and mudstone expansion
in a local state, on casing strength was calculated and analyzed. Results show that when the casing
was subjected to a local radial load induced by the suction of the mudstone layer, the bearing-capacity
value of the casing in the local area of the extrusion deformation was smaller than the current
American Petroleum Institute (API) casing strength design standard value, considering overall load.
Results in Figures 16–21 summarize the relationship between relative and absolute decreases of casing
bearing capacity and casing wall thickness, casing yield strength, and maximum casing deformation,
respectively. In comparison, the greater the casing wall thickness and yield stress are, the smaller the
casing bearing-capacity value is compared with the API standard. On the other hand, the larger the
maximum casing deformation is, the larger the bearing-capacity value and the API standard value are;
the relationship between them can be described by a linear relation. Therefore, in the layer segment
with local-deformation characteristics, in the selection of casing string, a casing type with higher
extrusion strength should be selected rather than the casing under overall load. This can help avoid
casing damage due to local radial load.
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Figure 19. Relationship curve between absolute intensity-reduction value and yield stress.
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Figure 20. Relationship between relative intensity-reduction ratio and maximum deformation.
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We calculated and analyzed the relationship between the bearing capacity of four casing types
used in the Qing-1 formation of the Jilin oilfield, casing wall thickness, and yield strength. The results
of the four calculation types show that the relationship between casing bearing capacity, wall thickness,
and yield stress could be expressed by the linear function of positive correlation under the local radial
load of local sections. When the casing is deformed, the thicker the casing wall, the greater the local
radial load, the greater the yield stress and the greater the local radial load. For each type of variation
relation, refer to the fitting relation in the Figures 22 and 23. Results provide a reference for the selection
of other casing types and yield strength of casing wall thickness under this condition.
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5. Conclusions

(1) In the process of oilfield water-flooding development, mudstone creeps to form local radial
induced stress acting on the casing, resulting in casing-collapse deformation. Through the
measurement of casing deformation in some wells in the Jilin oilfield, it was found that the
bottom of the radial deformation is parabolic, and the lateral deformation boundary is symmetric
parabolic. In this paper, a calculation method for the local radial load collapse deformation of the
casing is presented based on the conservation of work and energy.
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(2) The external work of casing deformation caused by a local radial load was transformed into the
dissipation energy of casing deformation. According to the conservation of work and energy, the
relationship between bearing capacity and casing deformation was established, and four types of
casing wells in the study area were selected for calculation and analysis. The results showed that
casing bearing capacity under a local radial load was smaller than the standard value designed
by the API industry. Compared with the four casing types, the maximum bearing capacity was
reduced by 15.07 MPa, and maximum relative reduction was 39.69%.

(3) The results of the four calculation types show that the relationship between casing bearing
capacity, wall thickness, and yield stress could be expressed by the linear function of correlation
under the local radial load of local sections. Results provide a reference for the selection of other
casing types and yield strength of casing wall thickness under this condition.

(4) The research results showed that, under the action of local radial loading, casing selection
according to the current API design standard value cannot meet the requirements of actual
projects. A new approach is proposed for casing strength design under local radial loading that
can play a significant role in the prevention and control of such casing-collapse in wells.
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