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Abstract: This paper presents an improved estimation strategy for the rotor flux, the rotor speed and
the frequency required in the control scheme of a standalone wind energy conversion system based on
self-excited three-phase squirrel-cage induction generator with battery storage. At the generator side
control, the rotor flux is estimated using an adaptive Kalman filter, and the rotor speed is estimated
based on an artificial neural network. This estimation technique enhances the robustness against
parametric variations and uncertainties due to the adaptation mechanisms. A vector control scheme
is used at the load side converter for controlling the load voltage with respect to amplitude and
frequency. The frequency is estimated by a Kalman filter method. The estimation schemes require
only voltage and current measurements. A power management system is developed to operate the
battery storage in the DC-microgrid based on the wind generation. The control strategy operates
under variable wind speed and variable load. The control, estimation and power management
schemes are built in the MATLAB/Simulink and RT-LAB platforms and experimentally validated
using the OPAL-RT real-time digital controller and a DC-microgrid experimental setup.

Keywords: induction generator; estimation; control; artificial neural network; Kalman filter; rotor
speed; frequency; power management; DC-microgrid

1. Introduction

Different electrical machines are used in wind energy conversion system (WECS) configurations,
and one of these is the squirrel cage induction machine applied as a generator, also known as a
self-excited induction generator (SEIG). The SEIG has attracted considerable attention due to its
applicability as a stand-alone generator using different conventional and nonconventional energy
resources with its absence of DC excitation, low cost, simplicity and construction robustness, reliability
and almost nil maintenance requirements. However, reactive power consumption, expensive rotor
position encoder, reduced voltage and frequency regulation under variable speed are the major
drawbacks [1–4].

During the WECS operation, the amplitude and the frequency of the SEIG voltage are affected
by the random variations of the wind speed. Such voltage variation can influence the load side
stability in direct interface configurations. Therefore, WECS integrates power electronics converters,
at the load side, to regulate the load voltage and frequency and meet the requirements [5–7]. At the
generator side of the WECS, the turbine-generator is required to operate at an optimum speed in order
to extract maximum power from the wind. This speed is varying continuously with the wind speed
changes. Therefore, sensorless speed control is of high interest to avoid the use of encoders due to
the cost and inaccuracies in measurements [8–10]. Model reference adaptive systems (MRAS) are
popular estimation methods for the rotor speed and the rotor flux. They are simple and require low
computational effort. Conventional MRAS methods depend on the reference model accuracy, which
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is sensitive to the parametric variations and the overall control system [11–15]. Several solutions for
enhancing MRAS performance have been proposed. Adaptive mechanisms, based on the Kalman filter
(KF), have been used for flux estimation combined with speed control based on proportional-integrator
(PI) regulators [16]. The drawback of the PI control methods is the tuning of the control gains, which
are, in most cases, fixed and do not handle all wind speed conditions. KF techniques are considered
powerful estimation tools in senseless drives [17]. In reference [18], a fourth-order KF model was used
to estimate the rotor flux to be used in the speed estimation based on the least square’s algorithm.
In references [19] and [20], an extended Kalman filter (EKF) based on the current/voltage model was
implemented for the estimation of the rotor speed, rotor/stator flux and stator currents. The EKF
model uses the sixth order model of the induction motor drive and heavily depends on the model
accuracy, and it is sensitive to parametric variations. In addition, the load torque is estimated but not
required in the control system. To achieve high performance of the state estimation using EKF, state
and noise covariance matrices must be accurately selected, which have been studied in reference [21]
through optimizing these matrices, which increases the complexity of the EKF. In reference [22], the
MRAS used a neural network to estimate the rotor flux, which was used in the speed estimation
using the least-squares technique. These methods handle the parametric uncertainties by varying the
model coefficients in the least-squares algorithm. In reference [23], an extended adaptive-tuning was
applied to estimate the rotational speed of the wind turbine-generator system based on a permanent
magnet synchronous machine (PMSM). The adaptive tuning mechanism was based on updating the
covariance matrices using the observer matrices. The concern was that these matrices depended on
the system parameters, and there was no discussion about the estimation robustness to parametric
uncertainties. In reference [24], a sliding mode observer was used in the MRAS scheme for stator flux
estimation, whereas the speed was estimated using a PI function of an error defined in terms of the
stator flux, stator current and machine parameters. Although the stability was guaranteed using this
estimation scheme, there was no discussion about the robustness against parametric variations. Similar
comments on the study in reference [25], where the errors in the adaptation mechanism were based
on the machine models that relied on the system parameters. In reference [26], the adaptive model
was based on the estimated speed, found from the PI function, using the error between the reference
model and the adaptive model. These models used the nominal values of the machine parameters
without any mechanism to deal with parametric variations. In reference [27], in order to avoid the
parametric modeling, complex-valued adaptive algorithms were used to estimate the rotor flux and
the rotor speed.

Artificial neural networks (ANN) techniques were used for different applications in wind
energy. In references [28] and [29], different ANN structures were used for wind speed estimation.
In reference [30], ANN was used for speed estimation in WECS and verified, only by real-time
simulation, for grid-connected applications. Rotor flux observers, based on ANN, have been used in
the reference model for the detection of the thermal variation in the stator resistance or in the current
model in order to reduce the reference model dependency operating under different conditions [31,32].

In this paper, the aim is to take advantages of the above methods by proposing a combination of
the Kalman filter and artificial neural networks to estimate the speed that is required for the generator
side control, and the Kalman filter for the frequency estimation, which is used for the load side control.
For the state estimation, the KF is reduced to the fourth-order model, and the artificial neural networks
technique is used for the speed estimation, as an adaptation mechanism in the scheme of the MRAS
estimation, which will improve the estimation robustness to parametric uncertainties by continuously
updating the neural networks parameters. The advantage of the ANN technique, compared to other
techniques based on the PI scheme, is that its parameters are updated online to enhance the robustness
to uncertainties, whereas the PI scheme has fixed parameters. The sensorless speed operation will
enhance the drive control cost by eliminating the speed encoder and its performance by avoiding
the measurement noise of the encoder. In addition, the KF technique can eliminate the measurement
noises generated by the current and voltage sensors. At the load side, the frequency, required to be
maintained constant, is estimated using a Kalman filter strategy to take advantage of its adaptive
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tuning, compared to the conventional phase-locked loop (PLL) [33–37]. The estimation techniques are
used to implement control systems for operating a DC-microgrid that comprises a standalone SEIG
based WECS with battery storage as shown in Figure 1a.

2. Induction Generator Wind Energy System

2.1. Induction Generator Model

Using the (α, β) stationary reference frame, the induction generator model is expressed by the
electrical equations for stator currents and rotor fluxes as follows

disα
dt = −γisα + K

τr
ϕrα + pKωϕrβ +

1
σLs

vsα

disβ
dt = −γisβ − pKωϕrα +

K
τr
ϕrβ +

1
σLs

vsβ

dϕrα
dt = Lm

τr
isα − 1

τr
ϕrα − pωϕrβ

dϕrβ
dt = Lm

τr
isβ + pωϕrα −

1
τr
ϕrβ

(1)

σ = 1−
L2

m
LsLr

; K =
Lm

σLsLr
;γ =

1
σLs

(
Rs +

RrL2
m

L2
r

)
where, isα, isβ are the α-β stator currents, ϕrα,ϕrβ are the α-β rotor fluxes, and vsα, vsβ are the α-β stator
voltages, Ls, Lr, Lm are the stator, rotor, and mutual inductances, respectively, Rs, Rr are the stator, rotor
resistances, respectively, τr = Lr/Rr is the rotor time constant, p is the number of poles pair, σ is the
leakage coefficient, and ω is the rotor speed.

In this work, a dynamometer has been used to emulate the wind turbine. It is small, and its
external stiffness is neglected compared to the other quantities. Therefore, its drive train can be
represented by a single lumped mass model as follows

dω
dt

=
1
J

(
Tr − frω−

pLm

Lr

(
ϕrαisβ −ϕrβisα

))
(2)

where, J is the moment of inertia, fr is the damping factor and Tr is the wind turbine torque.

2.2. Control Scheme

The control scheme, based on the flux weakening vector control, is developed for the SEIG side as
shown in Figure 1b. Description of this control scheme can be found in the literature [8]. To implement
this control strategy, information about the rotor speed is required, which is, in most applications,
available through an encoder. In this work, the rotor speed is estimated for sensorless operation, using
the estimation mechanism that is discussed in the next section.
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Figure 1. Wind energy conversion system: (a) DC-microgrid based standalone self-excited induction
generator with battery storage; (b) generator side converter control scheme.



Energies 2020, 13, 1743 4 of 16

3. State Estimation

3.1. Reference Voltage Model-Based Rotor Flux Estimation

The rotor flux estimator, based on the reference voltage model in the (α, β) stationary reference
frame, is provided by reference [11] 

dϕsα
dt = vsα −Rsisα

dϕsβ
dt = vsβ −Rsisβ

ϕ̂rα = Lr
Lm

(ϕsα − σLsisα)

ϕ̂rβ =
Lr
Lm

(
ϕsβ − σLsisβ

)
ϕ̂r =

√
ϕ̂2

rα + ϕ̂2
rβ

(3)

where, ϕ̂r is the estimated rotor flux.

3.2. Kalman Filter Based Rotor Flux Estimation

The rotor flux estimator is developed using the Kalman filter applied to the discretized model of
the induction generator (1). The discrete state space model is expressed as{

x(k + 1) = A(k)·x(k) + B(k)·u(k) + w(k)
y(k) = C(k)·x(k) + v(k)

(4)

where, k is the step, x =
[

isα isβ ϕrα ϕrβ
]T

; u =
[

usα usβ
]T

; y =
[

isα isβ
]T

, w and v are
independent measurement noises with covariances: E{w(k)w(k)T} = Q, E{v(k)v(k)T} = R.

The discretization is carried out on the continuous Model (1) using Euler’s method and the
matrices A, B and C are given by

A(k) =



1− Tsγ 0 TsK
τr

TspKω(k)

0 1− Tsγ −TspKω(k) TsK
τr

TsLm
τr

0 1− Ts
τr

−Tspω(k)

0 TsLm
τr

Tspω(k) 1− Ts
τr


; B =

 Ts
σLs

0 0 0
0 Ts

σLs
0 0

T

; C =

[
1 0 0 0
0 1 0 0

]

where, Ts is the sampling time.
The Kalman filter algorithm is given in Appendix A. The rotor flux estimation is expressed by

ϕ̂rKF =
√
ϕ̂2

rαKF + ϕ̂2
rβKF (5)

3.3. Artificial Neural Network Speed Estimation

The rotor speed is estimated by the artificial neural network (ANN) shown in Figure 2a. The ANN
is a recurrent multilayer network, where the hidden layer is activated by a hyperbolic tangent (tanh)
function, and the output layer is activated by a linear function. The ANN output is the estimated rotor
speed. The ANN has three inputs:

• Two external signals (estimated rotor flux from the reference voltage Model (3) and estimated
rotor flux from the KF (5)).

• A feedback from the ANN output with a delay.
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The equation of the neuron at the hidden layer and the output are given by
h(k, i) = tanh(w1iω̂(k− 1) + w2iϕ̂r(k) + w3iϕ̂rKF(k))

ω̂(k) =
N∑

i=1
wih(k, i)

(6)

where, ω̂ is the estimated rotor speed, h is the neuron expression at the hidden layer, w ji; j = 1 · · · 3 are
the weights from the input layer to the hidden layer, wi; i = 1· · ·N are the weights from the hidden
layer to the output layer, and N is the number of neurons in the hidden layer.

The ANN training is carried out online, using the flux error between the rotor flux (ϕ̂r) estimated
by the reference voltage Model (3) and the rotor flux (ϕ̂rKF) estimated by the adaptive KF (5), as shown
in Figure 2b, to update the ANN weights [30]. The backpropagation algorithm is used for the training
process, and the weights are updated using the equations

wi(k + 1) = wi(k) + µ·h(k, i)·e(k) (7)

w ji(k + 1) = w ji(k) + µ·x j(k)(wi(k)·(1− h(k, i))·e(k)) (8)

where, x j is the ANN input, j = 1 · · · 3, i = 1· · ·N, e(k) = ϕ̂r(k) − ϕ̂rKF(k), and µ is the learning rate.
The implementation of the ANN training algorithm is provided in the flowchart of Figure 3.
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4. Load Side Control

4.1. Control Design

The three-phase AC load is connected to the DC-link through the DC–AC converter (inverter) and
a resistive-inductive filter to smoothen the signals. In order to match the voltage and the frequency of
the AC load with the system requirements, both quantities are controlled to track specific references.
The load side control system includes two control loops in cascade, as depicted in Figure 4a.

The outer control loop regulates the load frequency, to be maintained constant at 60 Hz, and
provides the reference for the q-component of the load voltage. The inner control loop has a vector
control scheme, based on proportional integral (PI) regulators, to control the direct-quadrature (d-q)
components of the load voltage. The three-phase voltages and currents at the load are available by
measurements. The d-q components are carried out by the Park transformation. The frequency f and
the angular position θ of the (d-q) synchronous rotating reference frame, required in the control system
implementation, are available by estimation.

4.2. Frequency Estimation

The implementation of the load side control scheme, shown in Figure 4a, requires information
about the frequency. In general, a phase-locked loop (PLL) structure is used for its estimation.
The PLL strategy involves the tuning of the voltage control gains to deal with the measurement
uncertainties [33,34]. To overcome this issue, an estimation method, based on the Kalman filter,
is adopted in this work. It consists of obtaining the fundamental component and an orthogonal
component of the three-phase voltages at the load side that is used in the frequency estimation. The
advantage of the Kalman filter is the ability to deal with measurement noises through adapting its
gains [35–37].

The three-phase AC load is considered balanced, and the observed voltages can be expressed as
va(t) = Vm sin(ωet + φ)

vb(t) = Vm sin
(
ωet + φ− 2π

3

)
vb(t) = Vm sin

(
ωet + φ+ 2π

3

) (9)

where, Vm is the amplitude, ωe = 2πf is the angular frequency and φ is the phase angle.
A discrete state space model of the balanced three-phase sinusoidal system can be generated

as follows {
VL(k + 1) = A·VL(k) + w(k)

v(k) = C·VL(k) + z(k)
(10)

where, VL =
[

vLa vLb vLc vLa⊥
]T

is the state vector of the three-phase filtered voltage signals

(vLa, vLb, vLc) and the orthogonal signal, respective to the phase a, (vLa⊥), v =
[

va vb vc
]T

is the
measured output of the load voltages, w and z are independent noises.

The matrices A and C are given by

A =


cos

(
2π
N

)
1
√

3
sin

(
2π
N

)
−

1
√

3
sin

(
2π
N

)
0

−
1
√

3
sin

(
2π
N

)
cos

(
2π
N

)
1
√

3
sin

(
2π
N

)
0

1
√

3
sin

(
2π
N

)
−

1
√

3
sin

(
2π
N

)
cos

(
2π
N

)
0

sin
(

2π
N

)
0 0 cos

(
2π
N

)


, C =


1 0 0 0
0 1 0 0
0 0 1 0


where, N = f s/f is the number of samples in the fundamental component and f s is the sampling
frequency.
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The Kalman filter algorithm, described in Appendix A, is used to estimate the state vector VL
using x = VL, y = v, and w and z are independent measurement noises with covariance [37]. Then, the
instantaneous phase angle is obtained by

θ(k) = tan−1
(
−

vLa(k)
vLa⊥(k)

)
(11)

The fundamental frequency f can be estimated from zero-crossing detection of the signal θ(k).
The frequency estimation algorithm is illustrated in Figure 4b. From the load voltage measurements

vabc, the Kalman filter is applied to estimate the voltages (vabc, va⊥). Then, the angle θ is carried out
using (vLa, vLa⊥) as defined in Model (11). Finally, the zero-crossing detection method is used to
determine the frequency f.
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5. Battery Storage System and Power Management

The wind energy-based microgrid operates in standalone mode by integrating a battery storage
system (BSS). The BSS includes a battery bank and a DC-DC buck-boost converter connected to the
DC-link, as shown in Figure 5a. The BSS control system regulates the DC-link voltage, to be maintained
constant, through the buck-boost converter by charging-discharging the battery bank to meet the
load demand. As illustrated in Figure 5a, the bidirectional buck-boost converter is run in continuous
conduction mode. The insulated-gate bipolar transistor (IGBT) states s1 and s2 are selected, based
on the control system, to operate the converter for charge and discharge modes. The control system
includes a PI controller to regulate the DC-link voltage (Vdc) for tracking the voltage reference (Vdc*),
and the battery charge-discharge is operated through controlling its current (Ibat) to track a current
reference carried out from the powers: Wind generator power (Pw), battery power (PB), and load
power (PL); and the battery voltage (Vbat), as shown in Figure 5b.

In this work, it is assumed that the battery bank can store any excess power produced by the wind
turbine generator. The charge-discharge process is conducted through a power management system
(PMS).

The PMS checks the battery state of charge (SOC) carried out by

SOC = 100

1 +

∫
Ibat

Q

 (12)

where, Ibat is the battery current and Q is the battery capacity.
The constraints on the SOC for the battery storage is given as

SOCmin ≤ SOC ≤ SOCmax (13)
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where, SOCmin and SOCmax are the minimum and the maximum allowable states for safety.
The power management system provides the references to the local controllers (generator and

battery) based on the net power (Pnet) and the battery SOC. It follows the flowchart shown in Figure 6.
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6. Experimental Results

Experiments were conducted using the DC-microgrid experimental setup illustrated in Figure 7.
The electric schematic for wiring is shown in Figure 8. The setup includes the following modules:



Energies 2020, 13, 1743 9 of 16

1. Three-phase squirrel-cage induction generator.
2. Capacitor bank connected to the generator stator terminal for running as a self-started generator.
3. Four-quadrant dynamometer, coupled with the induction generator, for wind turbine emulation.
4. Back-to-back IGBT converters to connect the generator to the load.
5. Bidirectional IGBT DC-DC converter and line inductor to connect the BSS to the DC-link.
6. Battery bank based on lead acid batteries.
7. Three-phase inductor as the filter to connect the DC-AC converter to the load.
8. Variable switching resistor to vary the three-phase AC load.
9. Data acquisition interface (OPAL-RT OP8660) for voltage-current measurements.
10. Real-time digital simulator (OPAL-RT OP5600) for rapid control prototyping and

Hardware-in-the-loop (HIL).

The specifications of the squirrel-cage induction machine, the OPAL-RT system, and the other
components are available in references [30,34]. The elements’ characteristics are provided in Tables 1
and 2.

The control and estimation algorithms and the data acquisition were implemented in the
MATLAB/Simulink environment and executed in the real-time digital simulator OP5600 through the
RT-LAB software, which compiles the Simulink model and runs it in the OP5600 [34]. The control
gains were selected by trial and error, to achieve successful performance for the estimation (generator
state and load frequency) and the control (rotor speed and DC-link voltage).

The artificial neural network was implemented with N = 6 as the number of neurons in the hidden
layer. The sampling time for the ANN and the Kalman filter execution was Ts = 100 µs.

The first experiment was carried out to operate the wind turbine-generator under a variable wind
speed profile and a variable load by varying the resistances’ values. Figure 9 presents the responses
of the microgrid. The rotor speed estimation and the tracking are shown Figure 9a, where it can be
observed that the rotor speed, estimated by the ANN estimation scheme, was well achieved, and
the rotor speed was tracking its reference. It can be observed for the speed response in Figure 9a,
a zero steady-state error, while a small steady-state error was observed in the speed tracking in
reference [24], using the MRAS-sliding mode observer. Furthermore, the speed tracking occurred
without an overshoot, compared to the result in reference [15], where a small overshoot was seen
at the step transition as the speed estimation depended on the model parameters. In reference [22],
the speed response had some oscillations, whereas these fluctuations were not observed in the speed
tracking shown in Figure 9a. The power management system operates the charge-discharge of the
battery adequately at each change in the load to keep the power balanced in the system, as shown
in Figure 9b. The DC-link voltage was successfully regulated, as shown in Figure 9c, despite the
step variations in the generator power and the load demand. The battery current, required for such
operation, is shown in Figure 9d, and as observed, it follows the variation between the generator
power and the load demand. In Figure 10, the d-q components of the load voltage track the voltage
references with a good performance, and the frequency was well estimated and regulated to track the
reference value despite the variations in the load demand. These results prove the robustness of the
proposed estimation-control system to uncertainties due to step variations in the wind speed and the
load demand.



Energies 2020, 13, 1743 10 of 16

Energies 2020, 13, x FOR PEER REVIEW 10 of 16 

 

The first experiment was carried out to operate the wind turbine-generator under a variable 
wind speed profile and a variable load by varying the resistances’ values. Figure 9 presents the 
responses of the microgrid. The rotor speed estimation and the tracking are shown Figure 9a, where 
it can be observed that the rotor speed, estimated by the ANN estimation scheme, was well achieved, 
and the rotor speed was tracking its reference. It can be observed for the speed response in Figure 9a, 
a zero steady-state error, while a small steady-state error was observed in the speed tracking in 
reference [24], using the MRAS-sliding mode observer. Furthermore, the speed tracking occurred 
without an overshoot, compared to the result in reference [15], where a small overshoot was seen at 
the step transition as the speed estimation depended on the model parameters. In reference [22], the 
speed response had some oscillations, whereas these fluctuations were not observed in the speed 
tracking shown in Figure 9a. The power management system operates the charge-discharge of the 
battery adequately at each change in the load to keep the power balanced in the system, as shown in 
Figure 9b. The DC-link voltage was successfully regulated, as shown in Figure 9c, despite the step 
variations in the generator power and the load demand. The battery current, required for such 
operation, is shown in Figure 9d, and as observed, it follows the variation between the generator 
power and the load demand. In Figure 10, the d-q components of the load voltage track the voltage 
references with a good performance, and the frequency was well estimated and regulated to track 
the reference value despite the variations in the load demand. These results prove the robustness of 
the proposed estimation-control system to uncertainties due to step variations in the wind speed and 
the load demand. 

 
Figure 7. Experimental setup. Figure 7. Experimental setup.Energies 2020, 13, x FOR PEER REVIEW 11 of 16 

 

3

5

4

1

2

Lab-Volt’s inverter
 module 8857

3

5

4

1

2

Lab-Volt’s inverter
 module 8857

1

2

3

4

6

5

(SCIM Module 8221) 

+
E4
_

41

52

63

Lab-Volt’s inductor
 module 8374

Coupling to 
Dyno 8960

MSC LSC 

+
E
7
--

- I7 +

 “Inverter 1” 
pulses from the 
OP8600 HIL box

  “Inverter 2” 
pulses from the 
OP8600 HIL box

Lead Acid 
Battery

4

5

6

lsaL

lscL

lsbL
- I1 +

- I2 +

- I3 +

- I4 +

- I5 +

- I6 +

3

5

4

1

2

Lab-Volt’s inverter
 module 8837

BSC

  “Inverter 3” 
pulses from the 
OP8600 HIL box

41

52

63

+ I8 -

Lab-Volt’s inductor
 module 8326Lab-Volt’s battery

 module 8802

+
E
8
--

Lab-Volt’s capacitive
 module 8331

Lab-Volt’s load
 module 8311

Variable
Load

+ E3 --

+ E2 --

+ E1 --

+
E5
_

+
E6
_

Figure 8. Connection schematic of the experimental setup 

Table 1. Characteristics of the microgrid elements. 

Element Characteristics 
Dynamometer Four-quadrant, 0−3 Nm, 0−2500 rpm, 350 W 

SCIG Four-pole, 3 phases, 60 Hz, 208 V, 1670 rpm, 175 W  
Battery Lead acid, 48 V, 9 Ah, max charge current 2.7 

Table 2. Characteristics of the converters and the excitation capacitor bank. 

Characteristics Values 
IGBT power converters 

DC-link voltage 220 V  
IGBT peak current 12 A 

Switching control (voltage, frequency) 0/5 V, 0−20 kHz 
Excitation capacitor bank 

Power, voltage 252 VAR, 120 V 
Capacitance 8.8 μF 
Resistance 300 Ω 

 

  

(a) (b) 

Figure 8. Connection schematic of the experimental setup.

Table 1. Characteristics of the microgrid elements.

Element Characteristics

Dynamometer Four-quadrant, 0−3 Nm, 0−2500 rpm, 350 W
SCIG Four-pole, 3 phases, 60 Hz, 208 V, 1670 rpm, 175 W

Battery Lead acid, 48 V, 9 Ah, max charge current 2.7
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Table 2. Characteristics of the converters and the excitation capacitor bank.

Characteristics Values

IGBT power converters

DC-link voltage 220 V
IGBT peak current 12 A

Switching control (voltage, frequency) 0/5 V, 0−20 kHz

Excitation capacitor bank

Power, voltage 252 VAR, 120 V
Capacitance 8.8 µF
Resistance 300 Ω
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In this experiment, the control and the estimation schemes were verified for a random ramp
variation of the wind speed by running the dynamometer at a random ramp speed. The estimated
rotor speed tracked the dynamometer speed with a good performance, as illustrated in Figure 11a.
In this ramp response, it can be observed that a small deviation, between the estimated rotor speed
and the reference, was present in a similar way, as in the results of reference [26], which shows a
common behavior in the different control methods. The power response was appropriately balanced in
order to feed the load with a constant power, as shown in Figure 11b. Again, the DC-link voltage was
well regulated, as shown in Figure 11c, despite the speed variation. For the load voltage regulation,
a variable profile for the d-component of the load voltage had been used to test the frequency estimation
and regulation, as shown in Figure 12a. It can be observed that the d-component of the load voltage
tracked the variable reference, and an opposite variable q-component of the load voltage was generated
to compensate for the variation of the d-component and maintain the frequency constant, as shown in
Figure 12a,b. A closer look at the frequency response, shown in Figure 12b, shows that the frequency is
affected by the variation of the d-q components of the load voltage with a fast action of the controller to
bring back the frequency to the constant value, which demonstrates the capability of the estimation
and control system to overcome the disturbances effect.
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7. Conclusions 
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online adaptation to deal with parametric variations and uncertainties. At the load side, the frequency 
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strategy can also be applied for the experimental implementation of other control schemes in wind 
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Figure 11. Control and estimation responses under random ramp wind speed profile and constant
load: (a) Speed estimation and tracking; (b) power responses; (c) DC-link voltage regulation.
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7. Conclusions

An estimation strategy, for the rotor speed, the rotor flux and the load frequency, is proposed to
implement a vector control scheme on a standalone wind energy DC-microgrid based on induction
generator and battery storage. For sensorless operation, the rotor speed is estimated by an ANN-based
MRAS method through estimating the rotor flux by a Kalman filter. The adaptive Kalman filter and the
artificial neural network, used as estimation models, improve the MRAS scheme due to their online
adaptation to deal with parametric variations and uncertainties. At the load side, the frequency is
estimated by a Kalman filter to avoid the PLL use due to its drawbacks. The proposed estimation
strategy can also be applied for the experimental implementation of other control schemes in wind
energy conversion systems based on induction generators.
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the published version of the manuscript.

Funding: This research was funded by CANADA FOUNDATION FOR INNOVATION, grant number 30527.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The time varying Kalman filter algorithm is carried out through the execution of the following steps:
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1. State prediction:

x̂(k + 1/k) = A(k)x̂(k/k) + B(k)u(k) (A1)

2. Estimated error covariance:

P(k + 1/k) = A(k)P(k/k)AT(k) + Q (A2)

3. Kalman filter gain calculation:

K(k + 1) = P(k + 1/k)CT
(
CP(k + 1/k)CT + R

)−1
(A3)

4. State correction:

x̂(k + 1/k + 1) = x̂(k + 1/k) + K(k + 1)(y(k + 1) −Cx̂(k + 1/k)) (A4)

5. Error covariance update:

P(k + 1/k + 1) = (I −K(k + 1)C)P(k + 1/k) (A5)

Initial conditions:

x̂(0) = E
{
x(0)

}
; P(0) = E

{
(x(0) − x̂(0))(x(0) − x̂(0))T

}
(A6)
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