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Abstract: Propane-Precooled Mixed Refrigerant (C3MR) and Single Mixed Refrigerant (SMR)
processes are considered as optimal choices for onshore and offshore natural gas liquefaction,
respectively. However, from thermodynamics point of view, these processes are still far away from
their maximum achievable energy efficiency due to nonoptimal execution of the design variables.
Therefore, Liquefied Natural Gas (LNG) production is considered as one of the energy-intensive
cryogenic industries. In this context, this study examines a single-solution-based Vortex Search
(VS) approach to find the optimal design variables corresponding to minimal energy consumption
for LNG processes, i.e., C3MR and SMR. The LNG processes are simulated using Aspen Hysys
and then linked with VS algorithm, which is coded in MATLAB. The results indicated that the
SMR process is a potential process for offshore sites that can liquefy natural gas with 16.1% less
energy consumption compared with the published base case. Whereas, for onshore LNG production,
the energy consumption for the C3MR process is reduced up to 27.8% when compared with the
previously published base case. The optimal designs of the SMR and C3MR processes are also found
via distinctive well-established optimization approaches (i.e., genetic algorithm and particle swarm
optimization) and their performance is compared with that of the VS methodology. The authors
believe this work will greatly help the process engineers overcome the challenges relating to the
energy efficiency of LNG industry, as well as other mixed refrigerant-based cryogenic processes.

Keywords: natural gas; single mixed refrigerant; propane-precooled mixed refrigerant; liquefaction
process; energy efficiency; compression power
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1. Introduction

The continuous growth of human society will adversely affect the world energy requirements
in the near future [1]. The estimates indicate an increase in the worldwide energy of up to 56% from
2010 to 2040 where India and China are the main contributors with increments of 112% in the same
era [1]. Despite the intense research on renewable resources, it is projected that 76% of energy needs
will be met by fossil fuels until 2040 [2]. Among conventional energy resources (i.e., gas, oil, and coal),
Natural Gas (NG) has become essential because of its low Greenhouse Gas (GHG) emissions and
increased thermal efficiency [3]. NG is the cleanest fuel with least contribution to climate change and
air pollution [4,5]. As a result, a significant shift from coal to NG has been witnessed worldwide [6,7].

Most of the NG reservoirs are located in the remote areas, thus NG is transported to markets in
gaseous or liquid (LNG) forms. The economical and easy transportation of NG over long distances
(>2000 km) is a critical factor, which is solved through liquefaction approach. The transportation of
NG as LNG is preferred because of its lower cost and high safety compared with a pipeline (gaseous)
transportation over long distances [8]. Due to this, the pipeline gas trade has been reduced by
seven times than the LNG trade [9]. However, a primary issue with LNG processes is operating
expenditure in terms of energy required to liquefy NG. It exhibits low energy efficiency, and the energy
required is related to the compression power (shaft work) for refrigeration to liquefy NG. The shaft
work for refrigeration cycles is dependent on the flow rates of the ingredients of mixed refrigerant
(MR) and cycle operating conditions (e.g., refrigerant evaporation and condensation pressure) [10].
The optimal execution (i.e., via determining the optimal operating pressures and composition of the
mixed refrigerant) of the liquefaction processes is minimized by the overall compression power [11,12].
This eventually enhances process efficiency by exploiting economic advantages with low energy
requirements. Hence, several studies have improved liquefaction processes via sole optimization.
For example, Lee et al. [13] determined the optimal design of the SMR case with minimum shaft
work. Shah et al. [14] were the first to study multi-objective optimization of the C3MR process.
They optimized the C3MR process by considering the total shaft work requirement, capital cost, total
annual cost, and total hydrocarbon inventory as objective functions.

The process optimization is developed through adaptation of commercial process simulators,
and this exhibits comprehensive thermodynamic libraries. The LNG processes are simulated in
commercial simulators and optimized by developing a connection between both software environments.
For instance, Aspelund et al. [15] built a simulation environment linked with the optimization algorithm.
They used Aspen Hysys® to model SMR process and subsequently optimized it using a hybrid strategy
by combining Nelder–Mead Downhill Simplex and Tabu search algorithms. Khan et al. [16] decreased
the overall compression energy requirement of the SMR process using Non-Linear Programming
(NLP) and particle swarm paradigm. Wang et al. [17] designed the C3MR process in Aspen Plus® and
presented an optimal design through Sequential Quadratic Programming (SQP). Hatcher et al. [18],
Lee et al. [19], and Mortazavi et al. [20] also modeled the C3MR process and subsequently optimized it
via the Box method, Successive Reduced Quadratic Programming (SRQP), and hybrid optimization (i.e.,
Genetic Algorithm (GA) and SQP). Lee et al. [21] applied multi-objective optimization (using SQP) via
gProms process simulator to find an optimal design of SMR process. Furthermore, Lee and Moon [22]
have also used the SRQP to find optimal designs of SMR and C3MR liquefaction processes. They
applied a mathematical optimization model that includes the cost model, as well as thermodynamic
model. However, Tsay and Baldea [23] reported that modeling, simulation, and optimization become
more complicated when phase transition and recycle streams are incorporated into refrigeration
cycles. Therefore, they used equation-oriented modeling and optimization strategies [24,25] to find
the optimal design of SMR liquefaction processes. Moreover, Vikse et al. [26] presented a versatile
simulation method to find an optimal design of complex SMR process. They investigated the capability
of nonsmooth framework (i.e., equation-oriented modeling) for the optimal design of SMR process.
Ali et al. [27] employed Generalized Polynomial Chaos (gPC) based surrogate modeling approach
to study the operational reliability of the SMR process. Most recently, Zhu et al. [28] performed



Energies 2020, 13, 1732 3 of 22

experimental investigation to analyze the flow distribution in plate-fin heat exchanger that is mostly
used in the SMR process. Khan et al. [11] proposed a mixed refrigerant composition selection method
based on the boiling point difference and specific refrigeration effect of individual components in
mixed refrigerant. The proposed selection criteria were applied to the MR used in SMR and C3MR
system; and a decrease in energy consumption for compression was observed. In another similar
study, Xu et al. [29] developed a correlation between the ambient temperature and mixed refrigerant
composition to evaluate energy utilization for PRICO LNG process. Qadeer et al. [30] adopted
krill-herd optimization strategy for optimal solution of process conditions and MR composition of the
SMR process.

Recently, a single-solution based Vortex Search (VS) [31] algorithm has been evaluated for the
design optimization of complex processes such as modified SMR [32] and self-recuperative high
temperature co-electrolysis-based methanol production [33]. Authors have found best optimal designs
through the VS approach. Previously [32], the VS algorithm was used for the design optimization
of modifed SMR process (MR consists of five components; nitrogen, methane, ethane, propane,
and i-pentane) instead of conventional and well known SMR process that uses four components,
i.e., nitrogen, methane, ethane, and propane. Since the optimization of LNG processes exhibited
a significant reduction in exergy destruction and an enhanced the energy efficiency. The process
engineers always focus on optimizing the plant design and operation to increase the profits of the
chemical processes by improving the energy efficiency (reducing the operating costs). However,
the energy efficiency enhancement for the LNG plants through exclusive optimization is a challenging
task by virtue of highly complex and nonlinear thermodynamic interactions between the constrained
design variables and energy efficiency. Therefore, efficient and rigorous optimization of the LNG
processes continues to be an ongoing issue.

The major contribution of this study is the implementation and evaluation of the single-solution
based Vortex Search (VS) [31] methodology to find the optimal design variables (corresponding
to minimal energy consumption) of the SMR (for offshore applications) and C3MR (for onshore
applications) processes. The SMR and C3MR processes are simulated in Aspen Hysys® v9. The
VS algorithm is coded and modified in MATLAB version 2018b. The simulated LNG processes
are linked with VS through ActiveX functionality. Optimal findings are analyzed and compared
with the well-known algorithms including the GA and Particle Swarm Optimization (PSO). The VS
algorithm can be applied to find the optimal design of any complex chemical process by simulating in
Aspen Hysys.

2. Vortex Search Strategy

The single-solution based VS algorithm was developed by Doğan and Ölmez [31]. The dominant
characteristic of the VS algorithm is the adaptive interval (step) size phenomenon that significantly
improves the functionality of the search mechanism. The VS algorithm program balances neighborhood
weak locality and strong locality to determine the optimal solution. Furthermore, the algorithm almost
converges at the optimum point, and thus, it reacts in an exploitative (strong locality) manner to
adjust the updated solution towards the optimal result. Hence, the hunted radius decreases with the
completion of each iteration. The VS algorithm deterministically locates a solution in the specified
lower and upper bounds and converges to a global optimal point for the optimization. To examine the
performance, the VS approach has been employed to solve the issue of the selection of an analog active
filter component [34] and the optimal design of analog filter group delay [35].

In the Vortex Search Optimization (VSO) approach, the effectiveness and success of optimal
solutions significantly depend on weak and strong locality. The weak and strong locality refers to
small and large changes that occur in the current solution. A weak locality is required when the search
procedure begins whereas strong locality is required when the optimization algorithm converges
successfully close to the best optimal solution. Further, Figure 1 shows the optimization procedure using
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the VS algorithm. The major steps of the VS algorithm searching are; primary estimation (initialization
of VS), candidate solutions, current solution substitution, and radius reduction methodology.
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2.1. Primary Estimation

The search strategy of the said algorithm is explained using a nested vortex pattern. Figure 2
shows a model of the VS algorithm in a bidimensional nested circle. The rivet of the search under the
initial conditions is determined by the diameter of the outermost circle. The rivet or initial center (µ0)
is given by Equation (1) as follows:

µ0 =
upper bound + lower bound

2
(1)
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Figure 2. Representation of the working search process using a model of the VS in a two-dimensional
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2.2. Candidate Solutions

After evaluating the initial solution, a Gaussian distribution is used to calculate next neighbor
solutions Ci(X) = {x1, x2, x3, . . . , xk}, k = 1, 2, . . . , n as expressed in Equation (2) as follows:

p(ζ|µ, υ) =
1√

(2π)d
|υ|

exp

−1
2
(ζ− µ)T(ζ− µ)

υ

 (2)

where n denotes number of candidates’ local optimal points, i defines the number of count and d
represents the dimension number, and ζ and µ denote the vector for a haphazardly yielded variable
and the sample mean (chosen as the center), respectively. Additionally, ν denotes the covariance matrix
that is given by Equation (3) as follows:

υ = s2[I], dimesion : d× d (3)

where s2 denotes the variance distribution and I denotes the identity matrix. The standard deviation
(s0) under the initial conditions is given by Equation (4) as follows:

s0(= r0) =
max(upper bound) −min(lower bound)

2
(4)

where s0 is considered as the initial radius (r0) and is differentiated to yield an entire covering of the
weak vicinity in the neighborhood search area for a fully weak locality at the initial stage.

2.3. Current Results Substitution

The replacement phase of the nearest candidate result with the current solution commences with
the solution X′ ∈ C0(X), (i = 0) from C0(X), wherein the current circle center µ0 lies within the search
space limits. If the new solutions are beyond the search space boundaries, then the candidate solutions
are shifted into the specified bounds as given in Equation (5) as follows:

(lower bound)d
≤ sd

k ≤ (upper bound)d (5)

where k varies from 1 to n, and d symbolizes the dimension of bound limits. In the ensuant iteration,
the obtained optimum solution X′ denotes the center of the next circle. In the second step of the coevals
phase, the active radius (r1) of the circle decreases, and a new set of vectors C1(X) is obtained across
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the new center. In the second step of the selection phase, the new solution set C1(X) is evaluated via
X′ ∈ C1(X). If the selected solution advances to the old solutions, then it is saved.

Similarly, the assigned center in the third step is hypothetically saved as the new
advanced/optimum solution to the point, as shown in Figure 3. The phenomenon continues until the
completion criterion is satisfied.
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2.4. Radius Reduction Methodology

This is viewed as a type of reconciliation step-size improvement strategy that is employed in
random seeking mechanisms to realize the potential benefits of the VS approach. The approach ensures
the VS program to act in an exploratory (weak locality) fashion at the beginning and in the manner of a
strong locality in the final measurements. To attain this type of a search mechanism, it is necessary to
appropriately adjust the gain of the radius during optimization in each iteration. Therefore, the radius
decrement process is described as an inverse incomplete gamma function. The VS algorithm is used
to optimize a few benchmark objective functions to demonstrate the effectiveness of the algorithm,
and the results are listed in Table 1.
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Table 1. Benchmark functions optimized using the VS algorithm.

Name of Function and
(Global Value) Objective Function Equation Minimum Search Bound Plot

Schafer, (0) f (x) = 0.5 +
sin2

(√
x2

1+x2
2

)
−0.5

(1+0.001(x2
1+x2

2))
2

0 [−100,100]
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3. Onshore and Offshore LNG Processes

Many liquefaction technologies have been developed for onshore and offshore LNG production.
The C3MR, DMR, and cascade processes are considered suitable candidates for onshore LNG production.
Whereas, for offshore applications, the SMR, nitrogen-expander-based, and DMR processes are the
promising options. The DMR process is considered for both onshore, as well as offshore applications [36].
Generally, the liquefaction process is selected based on NG reserve’s location (onshore or offshore),
production capacity, degree of complexity, and environmental conditions. However, considering
the energy efficiency (operating costs), the SMR (PRICO®) process is the most suitable candidate
for small-scale and offshore applications compared with the expander-based LNG processes [37].
Although, for offshore applications, the nitrogen-expander-based liquefaction process have several
dominant features such as safety and simplicity in operation but thermodynamically it is less attractive
than the SMR process, due to high exergy destruction. Whereas, the C3MR process is considered as a
promising candidate for onshore applications due to its relative high energy efficiency. Furthermore,
this process is capable of producing 81% of the base-load LNG [38]. It is reported [39] that about 77%
of the world’s LNG plants are using the C3MR technology. Nevertheless, the process exhibits a high
degree of complexity. Detailed process descriptions of the SMR and C3MR liquefaction processes are
described in the forthcoming sections.

3.1. SMR LNG Process Description

A conventional SMR, alternatively known as the PRICO (poly refrigerant integrated cycle
operations) process, was first introduced by Black and Veatch in 1970 [40]. Figure 4 shows that
the SMR process consists of compressors to compress the MR in steps with intermediate coolers
(air/water), i.e., a cryogenic multistream exchanger for exchanging heat between MR and feed natural
gas and expansion valves (Joule–Thomson (JT)). In the SMR LNG cycle, a mixed refrigerant stream
comprised of a range of mixture of methane, ethane, propane, and nitrogen is employed to produce a
significant refrigeration effect to liquefy natural gas up to a temperature of approximately −159 ◦C and
a pressure of 1.3–2.0 bar. First, the SMR stream is introduced into a refrigeration cycle loop equipped
with compression units, including after-coolers/inter-stage coolers. The MR gains heat during the
compression process and is removed by air/water-cooled inter-stage coolers. Subsequently, the MR
stream enters the cryogenic multistream exchanger and gets condensed. Then, the pressurized liquid
MR passes through a JT valve where its pressure is lowered. At the outlet of this JT valve, the MR
is obtained with liquid fraction >0.85. This MR (stream-5) exchanges the latent heat with incoming
high-pressure MR (stream-14), as well as feed NG (stream-1) and is evaporated. Finally, it is exited as a
superheated vapor (stream-6) from the LNG heat exchanger and is subsequently introduced into the
compressor (K-1), thereby completing the refrigeration loop.
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Figure 4. Process flow diagram of the single mixed refrigerant (SMR) process.

3.2. C3MR LNG Process Description

Although the SMR and C3MR exhibit resemblance in terms of the MR cycle, the degree of
complexity of C3MR exceeds that of SMR. They utilize the same cryogenic heat exchanger (i.e., a plate
and fin brazed with aluminum core) [11]. The C3MR process is less inviting for offshore applications
due to its complex structure and large space requirements. Given its ability to match hot (natural
gas) and cold (MR boiling) composite curves, the C3MR process performance is lower than that of
other available LNG processes. The C3MR process uses the two refrigeration cycles; pure propane
(C3) and MR-based refrigeration cycles as shown in Figure 5. The propane-based refrigeration loop is
employed to precool the feed natural gas, as well as the mixed refrigerants. Subsequently, the process
of liquefaction and subcooling of the feed natural gas stream is performed through the MR cycle.
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3.3. Simulation Basis for LNG Process Modeling

In the study, Aspen Hysys is used to model the SMR and C3MR processes. Optimal conditions for
the processes as determined by Khan et al. [32] are selected to create the base case study. Natural gas
feed quality, other process conditions, and assumptions used in the simulation are highlighted in Table 2.
Binary interactions parameters are predicted using the popular Peng–Robinson model, whereas the
entropies and enthalpies are evaluated via the Lee–Kesler thermodynamic model. A Minimum Internal
Temperature Approach (MITA) value is specified as 3 ◦C to obtain a more efficient design for the LNG
multistream exchangers.

Table 2. Natural gas feed conditions and assumptions for Hysys modeling of the SMR and C3MR.

Property Condition

NG feed condition
Flow rate 1.0 kg/h

Temperature 32 ◦C
Pressure 50 bar

NG feed composition Mole fraction
Methane 0.9133
Ethane 0.0536

Propane 0.0214
n-Butane 0.0047
i-Butane 0.0046

n-Pentane 0.0001
i-Pentane 0.0001
Nitrogen 0.0022

Intercooler outlet temperature 40 ◦C
Vapor fraction boil-off-gas 8.0%

Compressor isentropic efficiency 0.75
Fluid package Peng–Robinson

Enthalpy/entropy calculation Lee Kesler
Pressure drops across LNG cryogenic exchanger in SMR process

“Stream-1” to “Stream-2” 1.0 bar
“Stream-14” to “Stream-4” 1.0 bar
“Stream-5” to “Stream-6” 0.1 bar

Pressure drops across LNG exchanger in C3MR process
“Stream-NG-1” to “Stream-NG-5” 1.0 bar

“Stream-4a” to “Stream-5a” 1.0 bar
“Stream-4b” to “Stream-5b” 0.5 bar
“Stream-6a” to “Stream-1a” 0.05 bar
“Stream-6b” to “Stream-1b” 0.05 bar

Heat loss to the environment in both SMR and C3MR processes negligible

4. Optimization Problem Formulation for SMR and C3MR Processes

The effectiveness of any optimization problem is examined by the mathematical problem
formulation. The effectiveness significantly affects the type of optimal candidate set results
and optimization elapse time. The following constitute the major components for any general
optimization problem:

1. Target function(s).
2. Constraint function(s) and their limits(s).
3. Optimization variables.
4. Optimizing variable bounds (search area).
5. Other design parameters, if any.

Total energy requirement in terms of compression power for LNG processes is considered as a
target/objective in several different design optimization studies. Therefore, the compression power
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required as an operating cost is considered as the objective function to liquefy unit mass flow of NG in
both LNG processes. Hence, the mathematical optimization problem is expressed as follows:

Minimize f (Y) = Min.

 n∑
i=1

Wi/mLNG

 (6)

subject to the MITA values (inside all LNG heat exchangers) as constraints:

∆T(min)(Y) ≥ 3.0 (7)

where Y denotes the set of optimizing decision variables and i denotes the number of compressors.
Parameters including the MR flow rate, condensation pressure, and evaporation pressure were

selected as the design variables for SMR process. Whereas, for the C3MR process, the temperatures
of the cooling stages in the propane cycle were also considered as the design variables in addition to
the MR components flowrates, MR condensation, and evaporation pressures. Table 3 lists all decision
variables (with their bounds) of the SMR and C3MR processes.

Table 3. Decision variables of the SMR and C3MR processes with their upper and lower bounds.

Decision Variables Lower Bound Upper Bound

Design (decision) variables for SMR process
High pressure of MR, P13 (bar) 35.0 70.0
Evaporation pressure, P5 (bar) 1.1 4.0

Flow rate of nitrogen, mN2 (kg/h) 0.1 0.65
Flow rate of methane, mC1 (kg/h) 0.25 0.85
Flow rate of ethane, mC2 (kg/h) 0.45 1.15

Flow rate of propane, mC3 (kg/h) 2.0 3.5
Design (decision) variables for C3MR process

MR cycle
High pressure of MR, P8 (bar) 50.0 70.0

Evaporation pressure, P6a (bar) 2.5 10.0
Evaporation pressure, P6b (bar) 2.5 10.0

Flow rate of nitrogen, mN2 (kg/h) 0.05 0.45
Flow rate of methane, mC1 (kg/h) 0.25 0.85
Flow rate of ethane, mC2 (kg/h) 0.65 1.40

Flow rate of propane, mC3 (kg/h) 0.15 0.8
Propane cycle

Propane 1st cooling stage (◦C) 15.0 30.0
Propane 2nd cooling stage (◦C) 0.0 10.0
Propane 3rd cooling stage (◦C) −20.0 −5.0

Since the optimization of LNG processes is constrained by the MITA inside the LNG heat
exchangers. Therefore, the overall compression power (i.e., objective function) was constrained by the
MITA value of 3 ◦C. The MITA value can be 1~3 ◦C. However, the MITA value of 3 ◦C is more flexible
to ensure the feasibility of the liquefaction with affordable economics.

4.1. Constraint Handling Approach

An exterior penalty function was used to handle the constraints (i.e., MITA value of 3.0 ◦C), and
to further fold the constraints into overall compression power. It has been carried out by several LNG
design optimization studies [12,30,32,41].

Since the overall objective function is formed by combining the required power and constraint as
specified in Equations (6) and (7) as follows:
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Finally, the objective function is reformulated in Equation (8) as follows:

MinimizeP(Y) = Min

 z∑
i=1

Wi/mLNG + w(max{0, (3.0−MITA(Y)}

 (8)

where w denotes a positive penalty parameter, whose values correspond to 1.

4.2. Exergy Destruction Analysis

Exergy for a refrigeration cycle is the minimum theoretical work required from the environment
as the system comes from the dead state to the desired state. Exergy analysis identifies the energy flaws
mainly due to the thermodynamic irreversibilities associated with each equipment, as well as the whole
process. Thus, exergy analysis provides rigorous directions and attention for further improvement in
order to reduce the exergy destruction as much as possible, which ultimately leads to enhance the
overall process performance. The exergy destruction associated with SMR and C3MR processes for all
cases (i.e., base case, GA-optimized, PSO-optimized, and VS-optimized) were performed using the
expressions listed in Table 4 [42].

Table 4. Exergy destruction calculations expressions.

Equipment Exergy Destruction (kJ/h)

Compressor Exdes =
( .
m

)
(Exin − Exout) −

.
W

Interstage coolers Exdes =
( .
m

)
(Exin − Exout)

Multistream LNG heat exchanger Exdes =
∑( .

m
)
Exin −

∑( .
m

)
Exout

JT valves Exdes =
( .
m

)
(Exin − Exout)

5. Results and Discussion

The approach temperature (temperature difference) curve also known as TDCC provides
information about the behavior of MITA value along the length of the LNG heat exchangers. Accordingly,
the efficient heat transfer can be achieved when the height of the TDCC is close to the specified MITA
value of 3 ◦C. The performance of the LNG processes can also be observed through temperature-heat
flow composite curves (THCC). The gap between THCC presents the exergy destruction associated
with the LNG heat exchanger. Figure 6 shows the TDCC and THCC comparison of the VSO-optimized
SMR process and the published base case. It can be observed that there is a larger gap between
the THCC of base case and the VSO-optimized SMR; especially in a temperature range of −70 to
40 ◦C. This large gap indicates the exergy destruction inside the cryogenic LNG heat exchanger, which
ultimately leads to low energy efficiency. It is necessary to reduce the space/gap between THCC to
decrease exergy destruction. Thus, the MR flow should be at the optimal values to cope with the
inefficiency present in the system and minimize the compression power required to liquefy the natural
gas. Given the application of VS optimization approach, as clearly seen in Figure 6d, the triangular
space is smaller than that of triangular area in Figure 6b. This reduction in the gap between THCC
provides a significant energy savings compared with the base case of the SMR process. It is noted that
high MITA value inside multistream heat exchanger continues to exist in the temperature range of −50
and 40 ◦C (Figure 6d).
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Figure 6. Base case (a) temperature difference composite curve (TDCC) and (b) temperature-heat flow
composite curve (THCC) in comparison with the VS-optimized (c) TDCC and (d) THCC curves of the
SMR process.

The high MITA value is principally due to the existence of the more volatile component, i.e.,
propane. The MITA value is reduced via precooling the feed gas and MR prior to entering the
LNG cryogenic heat exchanger. This type of precooling conclusively enhances the operation of
the C3MR plant by decreasing the temperature gradient in the LNG cryogenic exchanger through
propane precooling.

Figure 7 shows the graphical results of the C3MR process for the VS-optimized and base case
study. The VS-optimized C3MR process significantly reduces the enclosed space between the THCC as
shown in Figure 7d, whereas the composite curves in the base case exhibit a relatively larger gap.

With respect to a feasible and reliable operation of any cryogenic plant, the composite curve
matching approach is widely used as a thermodynamic graphical approach to determine the optimal
performance of any heat exchange processes. To obtain high energy efficiency of a LNG process with
low required compression power, the hot and cold steam temperature profile (i.e., composite curves)
must be close to each other provided it follows the feasible approach temperature of 3 ◦C.

Table 5 also lists the temperature and pressure for all streams of VS-optimized SMR and
C3MR processes.
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Figure 7. Base case (a) TDCC and (b) THCC curves in comparison with the VS-optimized (c) TDCC
and (d) THCC curves of the C3MR process.

Table 5. Temperature and pressure for all streams of SMR and C3MR processes.

SMR Process C3MR Process

Stream T, (°C) P, (bar) Stream T, (°C) P, (bar)

1 32.0 50.0 1a −136.5 3.0
2 −149.3 49 1b −136.5 3.0
3 −158.5 1.209 2 −56.4 3.0
4 −149.3 58.5 3 −16.22 6.2
5 −152.6 1.65 9 40.0 55.0
6 36.54 1.55 4a −33.34 54.0
7 90.39 3.858 4b −33.34 54.0
8 40.0 3.858 5a −119.4 53.99
9 94.71 9.603 6a −152.7 3.0

10 40.0 9.603 5b −130.6 54.0
11 96.53 23.9 6b −136.5 3.0
12 40.0 23.9 NG-1 32.0 50.0
13 101.5 59.5 NG-4 −33.34 49.0
14 40.0 59.5 NG-5 −149.5 48.99

SMR-stream 36.54 1.55 LNG −158.5 1.209

The optimization of both SMR and C3MR processes was performed by employing well-matured
GA and PSO algorithms. The GA and PSO both are categorized as population-based algorithms.
The performance of these algorithms strongly depends on the tuning parameters, as well as initial
point generation. Table 6 lists the tuning parameters of PSO and GA, which were fixed during the
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optimization of SMR and C3MR. These parameters for GA and PSO were adopted from the recent
LNG optimization studies [12,41,43].

Table 6. Particle swarm optimization (PSO) and genetic algorithm (GA) parameters used to set the
optimization framework for SMR and C3MR processes.

PSO GA

Parameter Value Parameter Value

Number of particles 30.0 Number of population 200.0
Cognition learning parameter 2.0 Selection method Stochastic uniform

Social learning parameter 2.1 Mutation Adaptive feasible
Maximum velocity of particle 4.0 Crossover function Scatter

Inertial weight 0.9–0.2 Fraction of migration 0.2
Number of generations 200.0

Furthermore, Tables 7 and 8 list a comparison of the VS-optimized results of SMR and C3MR
processes, respectively, with their previously published study results using other well-known
optimization algorithms. The base cases for SMR and C3MR were taken from [44]. The SMR
and C3MR processes consume 0.44 and 0.3602 kW compression power to liquefy 1 kg NG with 92%
liquefaction rate, respectively.

In case of the SMR process optimization, the operational energy improvements in the compression
power correspond to 0.4034 and 0.3862 kW via GA and PSO approaches, respectively. The GA
optimized SMR process consumes 8.32% less energy when compared to that of the SMR base case,
whereas the PSO-optimized SMR process exhibits 12.23% energy savings when compared with that of
the SMR base case. Finally, the VS algorithm is used to optimize the SMR process, and this ensures
top-rated optimal conditions over the present approaches. The total compression power decreases by
up to 0.3691 kW, and this corresponds to energy savings of 16.1% when compared to that of the base
process. In the case of GA and PSO optimization of C3MR, the compression power decreases from
0.3602 to 0.2778 kW and 0.2754 kWh with energy savings equivalent to 22.9% and 23.5%, respectively,
when compared to those of the base case. Finally, the VS algorithm results in a power saving of
0.26 kWh in the compression mode having power savings of approximately 27.8% when compared to
that of the base case.

Table 7. Summary and comparison of the optimization results of the VS-optimized SMR with optimized
SMR process using other well-known optimization algorithms.

Decision Variables Base Case [44] GA Optimized PSO Optimized VS Optimized

High pressure of MR, P13 (bar) 48.0 45.72 54.50 59.50
Evaporation pressure of MR, P5 (bar) 1.30 1.680 2.10 1.550

Flow rate of nitrogen, mN2 (kg/h) 0.2690 0.3300 0.2200 0.1650
Flow rate of methane, mC1 (kg/h) 0.5290 0.4510 0.5900 0.4630
Flow rate of ethane, mC2 (kg/h) 0.6190 0.7062 0.6740 0.6360

Flow rate of propane, mC3 (kg/h) 2.847 2.930 2.649 2.288
Constraints
MITA (◦C) 3.0 3.0 3.0 3.0

Liquefaction rate (%) 92.0 92.0 92.0 92.0
Required specific power

(kWh/kg-LNG) 0.4400 0.4034 0.3862 0.3691

Relative energy saving (%) - 8.32 12.23 16.1
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Table 8. Summary and comparison of the optimization results of the VS-optimized C3MR with
optimized C3MR process using other well-known optimization algorithms.

Decision Variables Base Case [44] GA Optimized PSO Optimized VS Optimized

MR cycle
Condensation pressure of MR, P8 (bar) 55.0 61.24 50.0 43.43
Evaporation pressure, (P6a, P6b) (bar) 3.0 4.55 5.49 2.75

Flow rate of nitrogen, mN2 (kg/h) 0.30 0.2331 0.2519 0.08
Flow rate of methane, mC1 (kg/h) 0.75 0.5764 0.5959 0.4490
Flow rate of ethane, mC2 (kg/h) 0.95 0.9204 1.210 0.8430

Flow rate of propane, mC3 (kg/h) 0.70 0.4989 0.30 0.5690
Propane cycle

Propane 1st cooling stage (◦C) 20.00 19.48 15.54 18.40
Propane 2nd cooling stage (◦C) 3.5 1.919 4.50 0.0
Propane 3rd cooling stage (◦C) −16.0 −15.27 −14.70 −16.75

Constraints
MITA (◦C) 3.0 3.0 3.0 3.0

Liquefaction rate (%) 92.0 92.0 92.0 92.0
Required specific power (kWh/kg-LNG) 0.3602 0.2778 0.2754 0.2600

Relative energy saving (%) - 22.9 23.5 27.8

Exergy Destruction Analysis and Figure of Merit

The exergy destruction of the C3MR process for all cases (base case, GA-optimized, PSO-optimized,
and VS-optimized) is shown in Figure 8. Exergy analysis of propane precooling refrigeration cycles
and mixed refrigerant refrigeration cycles were performed, separately (Figure 8). In the case of
propane precooling section, the highest exergy destruction was found in VS-optimized air coolers
and compressors, i.e., 67.3 and 73.5 kJ/h, respectively. However, in case of VS-optimized MR section
of C3MR process, the exergy destruction through primary LNG exchanger was reduced by 69.5% as
compared to the base case. Moreover, exergy destruction through compressors was reduced by 34%
as compared to the base case. It was observed that compressors and main LNG exchanger of MR
section have the highest exergy destructions, which lead to lower exergy efficiency of that section in
comparison to propane precooling section.

Exergy analysis for SMR process is illustrated in Figure 9. According to Figure 9, the exergy
analysis in comparison to other components was also performed. The highest exergy destruction
was found in VS-optimized primary LNG exchanger, i.e., 38.5%. In addition, in both C3MR and
SMR processes, primary LNG exchanger and compressors can be further optimized by stochastic
optimization algorithm (i.e., Coggins [45], modified coordinate descent, etc.) in minimization of
exergy destruction.

In addition to exergy destruction minimization, Figure of Merit (FOM) plays a vital role to design
efficient refrigeration and liquefaction processes. The higher value of FOM presents higher energy
efficiency, and vice versa. Table 9 lists the FOM analysis of C3MR and SMR processes. Accordingly,
the overall FOM of VS-optimized C3MR and SMR were calculated as 47.0% and 27.9%, respectively.
In case of propane precooling section, the lowest total energy was observed due to the lower range of
temperature used in propane 2nd and 3rd stages of C3MR process (see Table 8).
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Table 9. Figure of merit (FOM) comparison analysis with base case for C3MR and SMR processes.

FOM for C3MR Process

MFC Process
Precooling Section MR Section

Min. Required Work Total Energy FOM Min. Required Work Total Energy FOM

kJ/h kJ/h % kJ/h kJ/h %

Base Case 99.69 356.4 28.08 356.13 943.2 37.81
GA_C3MR 86.03 306 28.00 356.13 691.2 51.40
PSO_C3MR 101.19 349.2 28.96 356.13 640.8 55.48
VSO_C3MR 83.63 302.4 27.68 356.14 633.6 56.18

FOM for SMR Process
Base Case 372.22 1584 23.50
GA_SMR 371.17 1440 25.56
PSO_SMR 371.17 1404 26.69
VSO_SMR 371.20 1332 27.94

6. Conclusions

This study investigated the optimization by applying a VS algorithm to improve the design of
workhorse commercial SMR and C3MR cycles corresponding to the total required energy. The VS
algorithm utilized the advantage of simple implementation and enhanced search by exploiting a
more rigorous and sophisticated vortex pattern search via balancing the weak and strong localities in
neighborhood candidate solutions. Furthermore, it was observed that its implementation for optimal
search in this type of a complex LNG process was achieved via tuning only a few parameters over GA
and PSO. The algorithm was extremely sophisticated such that the constraints were easily handled via
augmenting into the objective function and producing results with assurance the defined temperature
approach (i.e., 3 ◦C) for both the SMR and C3MR processes. In the study, it was observed that the
VS-optimized SMR and C3MR processes consumed 16.1% and 27.8% less energy, respectively, when
compared to that of the base case study, respectively. Furthermore, the results obtained by the VS
algorithm exhibited superior performance with low parameter adjustment when compared to those of
GA and PSO. Exergy destruction analysis of the VS-optimized C3MR and SMR liquefaction processes
revealed that the liquefaction process could be improved further through better compressor, intercooler,
and LNG exchanger designs or further design optimization. This study does not claim the superiority
of the VS algorithm for general problems but highlights its potential and possibility for finding an
improved optimal solution for the particular LNG processes. It is expected that the VS algorithm is
an easy and systematic approach. Hence, a future study will investigate using the approach in other
MR-based LNG processes including dual MR and cascade processes.
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Nomenclature

Abbreviations
V9 Version 9
inf Infinite
ζ Haphazardly yielded variable
µ Sample mean
r Radius
JT Joule–Thomson
K Compressor
C Cooler
Q Heat
◦C Degree Celsius
kg Kilogram
kW Kilowatt
Acronyms
C3MR Propane precooled mixed refrigerant
SMR Single mixed refrigerant
LNG Liquified natural gas
VS Vortex search
NG Natural gas
GHG Greenhouse gas
MR Mixed refrigerant
NLP Nonlinear programing
SQP Sequential quadratic programming
GA Genetic algorithm
SRQP Successive reduced quadratic programming
SCRS Sequential coordinate random search
PSO Particle swarm optimization
VSO Vortex search optimization
MFC Mixed fluid cascade
PRICO Poly refrigerant integrated cycle operations
MITA Minimum internal temperature approach
THCC Temperature heat-flow composite curve
TDCC Temperature difference composite curve
Subscripts
Xbest Best solution
o Initialization
So Standard deviation
N2 Nitrogen
C1 Methane
C2 Ethane
C3 Propane
Wi Compressors work
Exdes Exergy destruction
Exin Exergy in
Exout Exergy out

References

1. Chong, Z.R.; Yang, S.H.B.; Babu, P.; Linga, P.; Li, X.-S. Review of natural gas hydrates as an energy resource:
Prospects and challenges. Appl. Energy 2016, 162, 1633–1652. [CrossRef]

2. ExxonMobil Corporation. The 2015 Outlook for Energy: A View to 2040. Available online: https:
//corporate.exxonmobil.com/ (accessed on 3 December 2019).

http://dx.doi.org/10.1016/j.apenergy.2014.12.061
https://corporate.exxonmobil.com/
https://corporate.exxonmobil.com/


Energies 2020, 13, 1732 21 of 22

3. Rogala, Z.; Brenk, A.; Malecha, Z. Theoretical and numerical analysis of freezing risk during LNG evaporation
process. Energies 2019, 12, 1426. [CrossRef]

4. Koo, J.; Oh, S.-R.; Choi, Y.-U.; Jung, J.-H.; Park, K. Optimization of an organic rankine cycle system for an
LNG-powered ship. Energies 2019, 12, 1933. [CrossRef]

5. Qyyum, M.A.; Qadeer, K.; Minh, L.Q.; Haider, J.; Lee, M. Nitrogen self-recuperation expansion-based process
for offshore coproduction of liquefied natural gas, liquefied petroleum gas, and pentane plus. Appl. Energy
2019, 235, 247–257. [CrossRef]

6. Eser, P.; Chokani, N.; Abhari, R. Impact of nord stream 2 and LNG on gas trade and security of supply in the
European gas network of 2030. Appl. Energy 2019, 238, 816–830. [CrossRef]

7. Hönig, V.; Prochazka, P.; Obergruber, M.; Smutka, L.; Kučerová, V. Economic and technological analysis of
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