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Abstract: Water jet technology is a key technology in the marine natural gas hydrate (NGH) solid
fluidization mining method. As an important parameter in water jet breaking NGH sediments
technology, the critical breaking velocity of NGH sediments is unknown. In the present research, an
orthogonal design experiment is carried out to study the critical velocity of NGH breakage by water
jet, using frozen soil and sand as experimental samples. First, the time it takes to reach maximum
NGH breaking depth is determined. Then, ultimate breaking distance is studied with respect to the
NGH saturation, jet pressure, and nozzle diameter. Following that, the variation of critical velocity
with NGH saturation is analyzed. Eventually, a formula to calculate the critical velocity for marine
NGH breakage by water jet process is established, and the undetermined coefficient (η) in the formula
is calibrated with the experiment data. The results show that the ultimate breaking distance is mostly
achieved within 63 s. The three experimental factors in order of the effect on the ultimate breaking
depth (from high to low) are NGH saturation, jet pressure, and nozzle diameter. The critical velocities
for marine NGH breakage corresponding to the NGH saturations of 20%, 40,%, 6%, and 80% are
5.71 m/s, 7.14 m/s, 9.60 m/s, and 10.85 m/s, respectively. The undetermined coefficient η in critical
velocity formula is 1.44 m/s.

Keywords: natural gas hydrate; critical velocity; solid fluidization method; water jet; ultimate
breaking distance

1. Introduction

Natural gas hydrate (NGH), also named as “Flammable Ice”, is considered to be an alternative
clean energy source in the 21st century because of its huge reserves [1]. The total amount of NGH
resources in the world is about 3 × 1015 m3, most of which is stored in the ocean [2–4]. According
to the types of accumulation, marine NGH can be divided into four types: the sandstone NGH
reservoir, non-sandstone NGH reservoir, seafloor mounds NGH reservoir, and disseminated NGH
reservoir [5]. Sandstone NGH reservoirs, which have a relatively high porosity and are easy to exploit,
are usually selected for production tests [6–8]. Disseminated NGH reservoirs, although accounting for
more than 90% of the total NGH reserves, are difficult to exploit with the current technology because
of low permeability [9]. The NGH resources in the South China Sea are about 85 trillion m3 [10].
However, they belong to the disseminated NGH reservoir type, and its matrix is mainly composed
of clay and silty sand. The characteristics of hydrate in the South China Sea can be summarized as
low permeability, shallow burial, and poor cementation. Although so many methods, such as heat
injection, depressurization, chemical injection, carbon dioxide replacement, and solid fluidization,
have been proposed, and are expected to be used in hydrate production [11–14]. However, for marine
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disseminated NGH reservoirs, only the depressurization method and the solid fluidization method
have been technically verified by the offshore production test in the South China Sea in 2017 [14,15].
In the process of the production test with depressurization method, hydraulic slotting technology is
used to solve the problem of the low permeability of the disseminated NGH reservoir [16]. The solid
fluidization method is a new NGH production method, and its process is shown in Figure 1 [17]. First,
a small borehole is drilled with coiled tubing. Then the NGH sediment around the borehole is broken
into fine particles by water jet technology. After mixing with water, particles of hydrate, clay, and sand
form slurry. Under the action of in situ separator, clay, and sand particles are separated and backfilled.
Hydrate particles are transported to the ocean surface through the riser for further treatment [18].
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Figure 1. The exploitation process of natural gas hydrate (NGH) with the solid fluidization method.
(Adapted from Qiu [17])

It can be seen that the technology of water jet breaking NGH is one of the core technologies
of both the depressurization method and the solid fluidization method. Therefore, the technology
of water jet breaking NGH has attracted the attention of some scholars. Pan [19] studied the effect
of jet velocity on erosion depth and volume of NGH sediment by numerical simulation. Chen [20]
studied the water jet erosion efficiency of hydrate-bearing sediment in the South China Sea under
various work parameters, such as jet velocity, standoff distance, and nozzle diameter with the Arbitrary
Lagrangian–Eulerian (ALE) method. Yang [21] carried out an experiment about the breaking of NGH
with water jet. The influence of target distance, NGH saturation, and jet flow rate on the breaking
depth is studied. Wang [22,23] carried out experiments of NGH breaking by water jet with frozen soil
as experimental sample, developed a water jet mining tool, and optimized the water jetting parameters
of the NGH production test in South China Sea. Wang [24] studied the effect of moving speed of mine
head, jet flow rate, and jet action number on the jet breaking effect on four aspects: borehole shape,
borehole diameter, breaking efficiency, and slurry concentration. The critical breaking velocity is an
important parameter for evaluating the object’s erodibility in water jet breaking technology. It means
that only when the jet velocity on the contact surface of the jet and the object is higher than a certain
value, will the object be damaged. In addition to evaluating the object’s erodibility, the critical speed
is also a key parameter to predict the breaking rate. However, the critical breaking velocity of NGH
sediment under the action of the water jet is still unknown.

In this research, an orthogonal design experimental study of the critical velocity of NGH sediment
under the action of water jet was carried out using frozen soil and sand as experimental samples. Firstly,
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the time it takes to reach maximum NGH breaking depth is determined. Then, the ultimate breaking
distance is studied with respect to NGH saturation, jet pressure, and nozzle diameter. Following
that, critical water jet breaking velocities corresponding to various sample saturations are calculated.
Eventually, by combining the marine NGH strength expression with the critical breaking velocity
semi-empirical formula, the formula to calculate the critical breaking velocity of marine NGH breaking
by water jet is established. The characteristic velocity (η), an undetermined coefficient in the formula,
is calibrated with the experiment data. This study will be helpful for the further research on the marine
NGH breakage by water jet.

2. Experiment Equipment and Method

2.1. Experimemt Apparatus

As shown in Figure 2, the experiment apparatus mainly includes a water supply tank, pump,
flowmeter, pressure gauge, experimental water tank, and nozzle. The volume of the water supply tank
is 4.5 m3. The pump is a plunger pump with the maximum working pressure and displacement of
30 MPa and 200 L/min, respectively. The measuring range of pressure gauge is 0–40 MPa at a 0.1 MPa
precision, and the measuring range of flowmeter is 2–20 m3/h at a 0.02 m3/h precision. The function
of the experimental water tank is to ensure that the jet is submerged. A movable baffle is installed
in the water tank between the nozzle, and the experimental sample to avoid erosion of the sample
while adjusting the test pressure. The type of nozzles used in the experiment is the cone straight type.
The length of the cone angle section and the straight pipe section of a nozzle are the same, which are
three times of nozzle diameter. The cone angle is 13◦.
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2.2. Sample Preparation

NGH is very easy to decompose at environmental temperature and pressure [25]. So, frozen sand
and clay is used to instead of an NGH sediment as an experimental sample. In the early stage, it
was generally believed that the mechanical properties of hydrate were similar to those of ice [26,27].
With the development of research, there are now different views on whether the mechanical properties
of hydrate and ice, and the mechanical properties of hydrate sediment and frozen soil and sand, are
the same. Stern [28] found that ice ordinarily exhibits a strength maximum before leveling off to steady
flow stress, and methane hydrate exhibits monotonic work hardening (or strain hardening). Although
the studies of Durham [29] have shown that methane hydrate is as much as 40 times stronger than ice,
there is evidence that the tensile stress of methane hydrate was almost equal to that of ice, and the
compressive stress was slightly higher than that of ice [30]. As for hydrate deposits and frozen soils,
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their differences mainly lie in the cohesion, while the internal friction angle is almost the same [31].
Winters [32] suggested that when porosity and saturation of the frozen soil (sand) and the NGH
sediment are the same, their mechanical properties are consistent. Although the mechanical properties
of frozen sand and clay are not exactly the same as that of NGH sediment, it can replace NGH sediment
as an experimental sample to some extent. The experimental sample preparation is based on the matrix
particle composition of NGH sediment samples in Shenhu area of South China Sea, which consists
of clay (26.89%), silty sand (67.99%), and fine sand (5.12%). Porosity of the NGH core sample in the
Shenhu area of South China Sea is 43.6%, and its matrix specific gravity is 2.7 [33]. Clay, silt, sand, and
fine sand were blended uniformly in the same composition as that of the NGH sediments, to prepare
the matrix sample. The mass of water can be calculated according to the following formula:

mw

ms
=

ξ
1− ξ

·
ρw

ρs
Suε (1)

where: mw is mass of water; ms is mass of matrix; Su is NGH saturation; ξ is porosity; ρw is density of
water; ρs is density of matrix; ε is volume ratio of ice to water—because of the volume expansion of
water during freezing, its value is 1.1.

For the experimental samples with saturation of 20%, 40%, 60%, and 80%, the mass ratio of water
to matrix is 5.2%, 10.4%, 15.6%, and 20.8%, respectively. Evenly mixed water and matrix was poured
into molds and frozen at −18 ◦C for seven days, after which the experiment samples were prepared.

2.3. Experimemt Procedure

A few hours before the start of the experiment, sufficient ice was added into the experimental
water tank and water supply tank, to ensure the low temperature of experiment sample and jet water.
Relative positions of the nozzle and the experimental sample were adjusted, so that they were on
the same axis with a 20 mm distance. Prior to turning on the pump, the movable baffle was kept
closed. The pump was turned on and the jet pressure was adjusted. When the jet pressure reached
the experimental set point, the removable baffle was lifted to the open position, and the NGH water
jet breaking experiment was timed as started. Every certain time duration, the removable baffle was
closed to pause the jet breaking, and to record the jet breaking depth (the depth of the experimental
sample that the water jet had broken into). When the jet breaking depth did not increase any more, an
experiment of NGH jet water breaking was considered as completed. As shown in Table 1, a total of
sixteen groups of orthogonal design experiments were designed and conducted with a variation of
nozzle diameter, jet pressure, and NGH saturation.

Table 1. Orthogonal design experimental parameters of NGH breaking by water jet.

Experimental Serial Number Saturation (%) Nozzle Diameter (mm) Jet Pressure (MPa)

1 20 1.5 2.5
2 20 2.0 5
3 20 2.5 7.5
4 20 3.0 10
5 40 1.5 5
6 40 2.0 2.5
7 40 2.5 10
8 40 3.0 7.5
9 60 1.5 7.5
10 60 2.0 10
11 60 2.5 2.5
12 60 3.0 5
13 80 1.5 10
14 80 2.0 7.5
15 80 2.5 5
16 80 3.0 2.5
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3. Results and Discussion

3.1. Ultimate Breaking Time of the NGH Water Jet Breaking Process

For each jet breaking experiment, the sample breakage depth when the jet water could not break
into the experiment sample any further is defined as maximum breaking depth. The time it takes to
achieve the maximum breaking depth is the ultimate breaking time. Since the experimental sample is
made of frozen soil, although the sample is submerged in the water tank to maintain low temperature,
it should not be exposed to above zero degrees centigrade ambience for an excessive time. During the
jet breaking process, the major breakage happens in the early stage for a short period of time, and, as the
jet breaking proceeds, the breaking rate becomes low and breaking depth changes very little. Therefore,
based on the correlation of breaking depth and time, the breaking depth that barely changes with time
is approximately regarded as the maximum breaking depth, and the corresponding time is considered
the ultimate breaking time. Figure 3 shows the variation of breaking depth with breaking time under
various experimental conditions. As the jet breaking process proceeds, breaking depth increases with
time, and breaking depth increase slows down with time. The first 0–15 s is the fast-breaking section,
during which breaking depth increases rapidly. The following 16–63 s is the slow-breaking section
during which breaking depth increases slowly. Comparing the breaking depth and time correlations
under three experimental conditions in Figure 3, it was found that, given the same jet breaking time,
the larger the breaking depth, the more significant breaking depth increases during the slow-breaking
section, so a longer breaking time is needed to achieve the maximum breaking depth. Among all the
NGH jets breaking experimental conditions, sample saturation of 20% (lowest), jet pressure of 10 MPa
(highest), and nozzle diameter of 3.0 mm (largest) lead to the largest breaking depth, and thus results
in the longest ultimate breaking time. Under this experimental condition (Sn = 20%, P = 10 MPa,
Dn = 3.0 mm), average breaking rate (the rate of breaking depth increase is defined as breaking rate)
during the fast-breaking section is 18.6 mm/s, and the average breaking rate of the slow-breaking
section is as low as 1.4 mm/s. Breaking rate slows down further after the slow-breaking section, so the
breaking depth increase after slow-breaking section is negligible. Therefore, based on the breaking
depth vs. time curve of the experiment under sample saturation of 20%, jet pressure of 10 MPa, and
nozzle diameter of 3.0 mm, 63 s is considered ultimate breaking time. The jet breaking process is
conducted for 63 s for the following experiments.
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3.2. Ultimate Breaking Distance of NGH Breaking by Water Jet

Ultimate breaking distance, the summation of the target distance (the initial distance between
the nozzle and the experimental sample prior to the NGH water jet breaking process, 20 mm) and
the maximum breaking depth, is an important parameter to determine the critical water jet breaking
velocity. Figure 4a,d shows the variation of the ultimate breaking distance with nozzle diameter and jet
pressure when the sample saturation was 20%, 40%, 60%, and 80% respectively. The average ultimate
breaking distances corresponding to 20%, 40%, 60%, and 80% sample saturations were 230.5 mm,
179 mm, 126.5 mm, and 109.25 mm, respectively, which suggests that the higher sample saturation, the
shorter the ultimate breaking distance.
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In orthogonal design test analysis, the range of a certain factor indicates the variation of the
factor. A larger range indicates a higher influence that the specific factor has on the experimental index.
As an example, the ultimate distance range of the sample saturation was calculated as the highest
average ultimate distance (230.5 mm) among those corresponding to four various sample saturations,
minus the lowest average ultimate distance (109.25 mm), equaling 121.25 mm. The ultimate breaking
distance ranges of nozzle diameter and jet pressure were calculated using the same method, as shown
in Table 2. In Table 2, Ki indicates the average ultimate breaking distance corresponding to Experiment
Level i. Table 2 shows that the average ultimate breaking distance Ki increases with nozzle diameter
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and jet pressure increase. The average ultimate breaking distance ranges of the three experimental
factors, sample saturation, jet pressure, and nozzle diameter, were 121.25 mm, 115 mm, and 112.5 mm,
respectively. This shows that the sample saturation has the greatest effect on ultimate breaking distance.
However, NGH saturation is a sediment property that could not be changed artificially. In summary,
the three factors in order of the effect on the ultimate breaking depth (from high to low) are sample
saturation, jet pressure, and nozzle diameter. There is a limitation in this orthogonal design experiment.
Although the influence of a single parameter on the ultimate breaking depth is analyzed, the influence
of interaction parameters on the ultimate breaking depth are not considered. The latter can more
clearly reveal the relationship between the ultimate breaking distance and the experimental parameters.
The main reason is that the main goal of this paper is to study the critical velocity of NGH sediment,
which is a parameter to characterize the natural characteristics of NGH sediment. So, the critical
velocity of NGH sediment is independent of jet pressure and nozzle diameter. Therefore, the interaction
study is not considered in this orthogonal design experiment.

Table 2. Range analysis table of orthogonal design experiment.

Parameter
Factor A Factor B Factor C

Saturation Jet Pressure Nozzle Diameter

K1 230.5 (20%) 101.5 (2.5 MPa) 107.5 (1.5 mm)
K2 179 (40%) 144 (5.0 MPa) 138.75 (2.0 mm)
K3 126.5 (60%) 183.25 (7.5 MPa) 179 (2.5 mm)
K4 109.25 (80%) 216.5 (10.0 MPa) 220 (3.0 mm)
R 121.25 115 112.5

3.3. Critical Velocity of the NGH

The critical velocity of the NGH breakage by the water jet is the axial water jet velocity at the
sample breakage cross section when the ultimate breaking distance is achieved. The water jet flow
velocity can be calculated based on the attenuation equation of the jet flow field. Although the water
jet flow in this study is the non-free jet inside the enclosure, its axial jet velocity follows the same
attenuation law as the free jet flow [34]. For the free jet flow, the jet flow field consists of the core area
where axial velocity keeps the same, and the diffusion area where axial velocity declines with distance
from the nozzle. Axial velocity can be expressed as Equations (2) and (3):

When x < x0

vx = v0 (2)

When x > x0

vx =
λdn

x
v0 (3)

where: x is the distance to nozzle, x0 is the length of the potential core, x0 = λdn, v0 is the initial exit
velocity of the jet, vx is the axial velocity of jet at distance x from nozzle, dn is the nozzle diameter, λ is
a dimensionless parameter to be measured experimentally, and Rajaratnam [35] recommends that the
value of λ is 6.3.

Since the target distance between nozzle and experiment sample is larger than the length of the
core area, the attenuation law of the axial velocity in the diffusion area, Equation (3), applies to velocity
calculation for this study. As defined, when jet distance x increases to the ultimate breaking distance,
the corresponding axial jet velocity is the critical water jet breaking velocity of the NGH breakage
by the water jet process. Figure 5a–d shows the variation of the critical water jet breaking velocities
with nozzle diameter and jet pressure when the sample saturations were 20%, 40%, 60%, and 80%,
respectively. With the same sample saturation, experiments conducted under various jet pressures
and nozzle diameters have almost the same critical water jet breaking velocity, which implies that
critical velocity is a feature of the broken object, in this case NGH or the experimental sample, and
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is not affected by jet flow parameters. With the increase in the sample saturation, average critical
velocity under various jet pressures and nozzle diameters increases. Average critical water jet velocities
corresponding to the sample saturation of 20%, 40%, 60%, and 80% are 5.71 m/s, 7.14 m/s, 9.60 m/s, and
10.85 m/s, respectively.
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To further theoretically analyze the correlation between critical velocity of NGH and NGH
saturation, the critical breaking velocity formula established by Dabbagh [36] was introduced as
Equations (4):

vcr = η

(
qu

patm

)k

(4)

where: η is a characteristic velocity, whose value equals to the critical velocity when the strength of
NGH sediment is equal to the atmospheric pressure, η needs to be measured experimentally, k is
a dimensionless exponent, its value is 0.5, Patm is atmospheric pressure, vcr is critical velocity, qu is
uniaxial compressive strength.

Because NGH sediment decomposes under normal pressure and temperature, its uniaxial
compressive strength cannot be measured directly. Therefore, the expression of uniaxial compressive
strength of NGH sediment is derived from maximum deviator stress, which is fitted with triaxial test
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data. Kuniyuki [37] recommends that maximum deviator stress of NGH sediment can be calculated by
the following formula:

q f =
2· cosϕ

1− sinϕ
c0 + αSβh +

2· sinϕ
1− sinϕ

σ3 (5)

where: qf is maximum deviator stress of NGH sediment, in MPa; ϕ is the internal friction angle, 33.8◦;
c0 is cohesion, 0.3 MPa; σ3 is the effective confining pressures, in MPa; α and β are undetermined
parameters, whose values are 4.64 × 10−3 and 1.58, respectively.

Regardless of the effective confining pressure, the uniaxial compressive strength of NGH sediment
is equal to triaxial compressive strength, and its expression can be written as:

qu = q f (σ3 = 0) =
2· cosϕ

1− sinϕ
c0 + αSβh (6)

Combining Equations (4) and (6), the formula for critical velocity of NGH sediment calculation
was obtained:

vcr = η

[
1

patm
·

(
2· cosϕ

1− sinϕ
c0 + αSβh

)]0.5

(7)

Substituting the experimental data to Equation (7), the characteristic velocity η was calculated, as
shown in Figure 6. Corresponding to the NGH saturation of 20%, 40%, 60%, and 80%, η was calculated
to be 1.41 m/s, 1.39 m/s, 1.52 m/s, and 1.44 m/s, respectively. Values of η calculated with various
saturations are close, which proves that the critical water jet velocity formula is correct. Average critical
water jet velocity under various saturations is 1.44 m/s.
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4. Conclusions

Based on the experimental and theoretical analysis, the critical water jetting breaking velocity for
marine NGH breakage by water jet process was studied. Under various experimental conditions, the
deeper the NGH breakage achieved through water jetting process, the greater the breaking ability of the
water jet flow is within the same time, and therefore it takes longer to achieve the maximum breaking
depth. Given the experimental conditions in this study, maximum breaking depth was achieved in 63 s
of the NGH water jet breaking process.

Through orthogonal design experiment analysis, the ultimate breaking distance ranges of the
three experimental factors, sample saturation, jet pressure, and jet nozzle diameter, were found to be
121.25 mm, 115 mm, and 112.5 mm respectively. Hence, the order (from high to low) of the effect of the
three factors on the ultimate breaking depth is NGH saturation, jet pressure, and jet nozzle diameter.



Energies 2020, 13, 1725 10 of 11

Critical water jet breaking velocity of NGH breakage by the water jetting process was found
to increase with NGH saturation increase. Average critical water jetting velocities corresponding
with NGH saturations of 20%, 40% 60%, and 80% were 5.71 m/s, 7.14 m/s, 9.60 m/s, and 10.85 m/s,
respectively. The formula was established to calculate the critical water jet breaking velocity of the
marine NGH breakage by water jet process. Using the experiment data, the undetermined coefficient η
in the critical water jet breaking velocity equation was calibrated to be 1.44 m/s. Considering that frozen
clay and sand are used instead of NGH sediment as the experimental samples in the experiment, there
will be some errors in this value η for real NGH sediment, which should be considered in practical
engineering applications.
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