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Abstract: The need for expanded energy storage motivates material development for scalable aqueous
secondary batteries. The combination of transition metals with redox-active organics represents
a new approach to functional material design. Here, we detail the synthesis of titanium (IV)
1,8-dihydroxyanthraquinone (Ti(1,8-DHAQ)2) as a novel redox-active material and demonstrate
its use as a negative electrode in an aqueous battery. This one-pot synthesis results in amorphous
micron-scale particles with titanium binding directly to the carbonyl feature as evidenced by scanning
electron microscopy and infrared spectroscopy. When assembled in a coin cell with a lithium
manganese oxide positive electrode, the active material can be electrochemically cycled with a charge
density of 40 mAh/g at 1.1 V. This represents a new method of creating simple and scalable electrodes
using metal-organic materials for versatile energy storage applications.

Keywords: aqueous battery; titanium anode; manganese battery; anthraquinone; metal-organic material

1. Introduction

The rising use of variable-output renewable energy in the form of solar and wind power has
increased the demand for large- and medium-scale electrical energy storage [1,2]. Lithium-ion batteries
are effective for high power and high energy density applications such as small-scale consumer
electronics, electric vehicles, and increasingly for short to medium term grid-scale storage [3–6].
Similarly, flow-batteries can provide a compelling engineering framework for grid-scale energy
storage [7]. Beyond these technologies, however, there is still significant need for safe and affordable
battery technologies designed for the intermediate-scale, 10–100 kWh range, which could provide
reliable energy storage for homes and small business. In this space, aqueous batteries are attractive as
they are nonflammable and have a low solvent cost. Additionally, their lower energy density compared
with lithium-ion is less of a concern in stationary applications [2]. Positive electrode materials including
lead oxide [8], manganese oxide [9], and nickel oxide [10–12] have been used as a stable positive
electrode material for acidic, neutral, and alkaline electrolytes, respectively. Previous studies have
demonstrated the suitability of lithium manganese oxide (LMO) as an effective cathode material in
aqueous secondary batteries [13–15] and lithium sulfate has been used in conjunction with LMO
electrodes [16] as an electrolyte. Zinc-manganese dioxide primary batteries are manufactured on a
global scale [17], and secondary batteries based on similar chemistries show incredible promise for
intermediate-scale applications due to the highly scalable positive electrode which can be designed for
high cycle life and stability [18–21]. There still, however, remains a compelling need for innovative
negative electrode materials to replace zinc, which forms dendrites [22–24] and has been identified as
the major contributor to capacity decline in secondary Zn-MnO2 batteries [25].
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Organic redox-active materials provide a vast chemical space for potential low-cost negative
electrode materials. For example, quinones, which undergo a rapid, two-electron reduction [26,27],
have been used recently in aqueous flow batteries in acidic [28], basic [29], and neutral electrolytes.
Quinones are also highly tunable, and their derivatives can shift their half-cell potential as a result of
functional group [30], pH [31,32], and coordinating solvent [26,33]. To translate these technologies to
traditional battery architectures, the materials must be rendered both insoluble and stable throughout
their range of charge states. One approach to immobilize organics is to incorporate them into a
polymer backbone [16,34,35]. This approach has achieved a long cycle life and material capacity but
has potential challenges in adoption due to the synthesis cost and scalability [36].

Another approach for electrode design utilizes the combination of organics with metals to create
crystalline battery materials in the form of metal-organic frameworks (MOFs). While MOFs can
be designed for conductivity and energy storage [37,38], they are often not conductive over their
complete charging range and may suffer from slow intercalation kinetics [36,39,40], making them more
attractive for use in capacitors. MOFs often require specialized synthetic procedures requiring high
temperatures and pressures, and may be cost inefficient at an industrial level. Some recent approaches
have been more successful at cost-effective design by using high surface area carbon [13,15] and
NaTi2(PO4)3 [41] as electrode materials, but there is still need for new design principles to create safe,
scalable battery materials.

Our design approach for new negative electrode materials targets the combination of redox-active
organics and transition metals. This is, to our knowledge, the first aqueous battery with a solid electrode
comprised of both organic anions and transition metal cations, both of which could be redox-accessible.
This approach offers the potential for increased energy density and tunability of electrode materials.
Here, we report the synthesis, characterization, and performance of a titanium-anthraquinone material,
which represents a broad class of low-cost energy storage materials consisting of metals coordinated by
redox-active organics. Ti(1,8-DHAQ)2 is synthesized in one step from commodity chemical precursors
and can be reversibly cycled around 1.1 V vs. a manganese oxide positive electrode with a specific
capacity over 40 mAh/g.

2. Materials and Methods

Titanium isopropoxide (TTIP) and 1,8-dihydroxyanthraquione (1,8-DHAQ) were combined in
a one-pot reaction to synthesize Ti(1,8-DHAQ)2. Two equivalents (2.0 mmol, 0.480 g) of 1,8-DHAQ
(Acros Organics) was added to mesitylene (5 mL) in a 50 mL round-bottom flask and heated to 150 ◦C.
The flask was attached to a Schlenk line and was flushed under constant nitrogen. One equivalent
(0.3 mL, 1 mmol), of titanium(IV) tetraisopropoxide (BeanTown Chemical) was syringed into the
reaction mixture, immediately turning the light-orange solution to a dark-red. The reaction was then
left on heat for one week at 150 ◦C in a short-path distillation apparatus. After cooling to room
temperature, the mixture was vacuum filtered, and the resulting black solid was subsequently washed
with toluene, followed by methanol, followed by a pH 11 sodium hydroxide solution. The solid
product was placed in a sublimation apparatus and heated to 300 ◦C under a 15 millitorr vacuum to
remove any excess 1,8-DHAQ. The material was characterized by the attenuated total reflectance (ATR)
infrared (IR) spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive
X-ray spectroscopy (EDS), and powder X-ray diffraction (XRD). A detailed description of the physical
characterization methods for Ti(1,8-DHAQ)2 can be found in the supporting information.

The Ti(1,8-DHAQ)2 product was tested in a 2032-size coin cell battery. The cell assembly method
was adapted from established procedures [42]. Lithium manganese oxide (LMO), polytetrafluoroethyele
(PTFE) condensed liquid binder, Super P carbon black conductive powder, and 2032-type coin cell
casings were purchased from MTI Corporation. The active material was combined with the conductive
powder and PTFE binder in a 6:3:1 ratio. Ten percent by weight N-methyl-2-pyrrolidone (NMP) was
added to create a slurry, which was ground with a mortar and pestle and spread on a 15 mm diameter
stainless-steel mesh disc (70 threads per inch). This procedure was done for both the Ti(1,8-DHAQ)2
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and LMO active materials to create a negative and positive electrode. A grade 691 glass microfiber
filter (VWR) was cut in a 19 mm diameter circle and soaked in 0.5 M lithium sulfate to be used as the
separator. The electrodes were assembled in a 2032-format coin cell with pH 7 0.5 M lithium sulfate as
electrolyte. The batteries were tested using an 8-channel battery analyzer (MTI). The half-cell electrical
impedance spectroscopy (EIS) was performed on a Gamry 1000 potentiostat in a three-electrode cell
with a silver/silver chloride reference electrode.

3. Results and Discussion

The one-pot synthesis of these metal-anthraquinone materials was based on studies of
magnetic moments in metal-quinone complexes [43–47] and descriptions of the synthesis of
titanium-hydroxyanthracene covalent metal-organic networks (CMONs) [48–51]. Manganese-bound
1,4-dihydroxyanthraquinone materials have been shown to be redox-active in dimethylsulphoxide [52],
and a variety of metals can form chelate polymers with napthazarin [53], as well as a variety of
hydroxyquinones [54]. For this work, iron, zinc, manganese, and titanium materials were considered
in preliminary research due to production cost and environmental availability [55]. Titanium-based
materials often demonstrated insolubility when reduced, and were selected for further study.
The strength of titanium-oxygen bonds contributes to the overall stability of titanium-based chelate
materials [56]. Titanium has been used as an alkaline flow battery electrolyte when coordinated with
catechol [57]; the stability of these compounds under electrochemical cycling indicated that a solid
analogue might be used in a solid-electrode battery. Titanium isopropoxide has been used to synthesize
TiO2 nanoparticles by sol-gel synthesis [58], and was chosen as a titanium source due to the formation of
isopropanol as a side product, which would boil in the high-temperature reaction mixture. These papers
influenced the synthesis in this work by implying that multiple quinones may coordinate to metals
either as bidentate or monodentate ligands, and by using titanium as a stable metal center for solid
metal-organic materials. Based on this literature precedent, we suspect that the hydroxyanthraquinone
would coordinate to titanium through the oxygen atoms. Anthraquinone derivatives were similarly
chosen for their industrial scalability. 1,8-dihydroxyanthraquinone (1,8-DHAQ), also known as dantron
or chrysazin, is readily available commercially as a stimulant laxative.

The resulting material was tested for crystallinity by powder X-ray diffraction (XRD). The resulting
diffraction pattern (Supplementary Materials Figure S6) strongly indicates an amorphous molecular
structure. The diffraction pattern provides no evidence for crystalline titanium dioxide in the sample,
suggesting covalent titanium-anthraquinone linkages. While the amorphous nature of this material
cannot be resolved by single-crystal XRD, information about the structure could be determined by
electron microscopy, X-ray spectroscopy, and infrared spectroscopy.

The morphological characterization of Ti(1,8-DHAQ)2 was performed by field emission scanning
electron microscopy (FESEM) and energy-dispersive X-ray spectroscopy (EDS) using a JEOL JSM-7401F.
The material is largely comprised of spherical microparticles (Figure 1a). EDS mapping, also shown in
Figure 1, provides evidence that the titanium and anthraquinone are dispersed evenly throughout
the sample.

Individual points on several samples were selected for quantitative EDS analysis. X-ray spectra for
these points were obtained, providing ratios of titanium and oxygen (Supplemental Figures S3 and S4).
The mounting tape for material was carbon-based, limiting the use of the carbon in obtaining elemental
percentages. The atom percent of titanium and oxygen, respectively, was consistently 11% ± 2% to
88% ± 2% across the samples (Supplementary Materials Figure S5 and Table S1). This percentage
indicates the ratio of titanium to oxygen to be 1:8. This would represent a ratio of titanium to 1,8-DHAQ
of 1:2. This ratio supports evidence that the Ti4+ ion is coordinated to four of the deprotonated hydroxy
groups on the 1,8-DHAQ2− species.
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blue.  
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Figure 1. SEM/EDS images of the Ti(1,8-DHAQ)2 microparticles. (a) Background SEM image. (b) EDS
mapping of carbon in green. (c) EDS mapping of oxygen in magenta. (d) EDS mapping of titanium
in blue.

Attenuated total reflectance (ATR) infrared (IR) spectroscopy provided a method of comparing the
bonding between the reactant and product. The Ti(1,8-DHAQ)2 compounds have a noticeable decrease
in the intensity of the carbonyl stretch compared to the 1,8-DHAQ material (Figure 2). The vibrational
modes of the 1,8-DHAQ starting material were assigned by density functional theory (DFT) to inform
the comparison between the Ti(1,8-DHAQ)2 and 1,8-DHAQ spectra. Theoretical calculations were
performed using the ORCA program package [59,60] along with Avogadro [61,62] to visualize the
molecular orbitals and energies. The density functional theory (DFT) was used for all electronic
structure calculations, with the BP86 [63–65] functional and the RI-J [66] approximation. The molecule
was calculated at the def2-TZVP level of theory [67,68]. Specifically, the theoretical IR indicates that the
peak around 1620 cm−1 in the 1,8-DHAQ spectrum corresponds to the rocking of the hydrogen atoms
bridging between the carbonyl in the 9-position and the hydroxyl groups in the 1- and 8- positions;
this peak is weakly associated with the carbonyl stretch in the 10-position. Conversely, the peak at
1670 cm−1 primarily corresponds to the carbonyl stretch in the 10-position, coupled with the rocking
hydrogen atoms between the oxygen bound to carbon 9 and the two hydroxyl groups. Based on
these assignments, the coordination of the titanium is expected to only slightly mute the intensity of
the peak at 1670 cm−1 as the major contribution of the carbonyl stretch in position 10 is unchanged.
The 1620 cm−1 peak, however, is expected to decrease much more significantly in the titanium-bound
species. These results are consistent with the experimental infrared spectrum of the Ti(1,8-DHAQ)2

product. The details for the DFT methods can be found in the Supplemental Materials.
When analyzed together, these characterization techniques inform the structure of the

Ti(1,8-DHAQ)2 product. The sample lacked sharp peaks in the powder XRD and gave no evidence
of crystalline TiO2, indicating that the anthraquinone was directly bonded to the titanium as an
amorphous structure (Supplementary Materials Figure S1). EDS mapping gave evidence that the
component elements of the material were spread through the sample, and sampled EDS spectra
indicated an 8:1 atomic ratio of oxygen to titanium. The IR shows a decrease in the hydrogen bonding
between the hydroxyl groups. This data suggests that the titanium anthraquinone ratio is 1:2, and the
Ti4+ is charge balanced by binding to four deprotonated hydroxyl groups of DHAQ, which are able to
bridge multiple Ti4+ sites to give an extended solid. A proposed general structure based on these data
is given in Figure 3, which implies octahedral coordination about titanium through binding to four
hydroxy groups of two adjacent ketones.
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Figure 2. (a) Infrared spectra of Ti(1,8-DHAQ)2 (red) and 1,8-DHAQ starting material (black).
(b) Expanded view of the carbonyl stretching bands demonstrating a decrease in the peak at 1670 and
1620 cm−1 upon metal binding. Molecular structures of the 1,8-DHAQ starting material are shown
in (c), with the vibrational modes shown with the corresponding energies as determined by density
functional theory (DFT) calculations.
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Figure 3. Synthesis and proposed bonding of the Ti(1,8-DHAQ)2 material based on mass ratios and
infrared spectroscopy. While the structure does have consistent atomic ratios, X-ray diffraction suggests
that the material is not crystalline.

Electrodes prepared from Ti(1,8-DHAQ)2 were tested against a LiMn2O4 (LMO) positive electrode
in an aqueous coin cell. LMO was chosen as a positive electrode material in aqueous electrolyte based
on literature precedent and commercial availability. Lithium sulfate was chosen as an electrolyte in
part due to the poor performance of aqueous sodium-based electrolytes with the LMO electrode [69].
The battery was charged and discharged to test capacity and stability. LMO | Ti(1,8-DHAQ)2 batteries
were charged and discharged with a C-rate of C/2.5, as shown in Figure 4a and produced a coulombic
efficiency of 89%. The resulting nominal voltage of the battery is approximately 1.1 V.

Battery capacity was significantly influenced by the charge and discharge rate (Figure 4c).
The batteries gave the highest capacity when charged and discharged at a rate below C/4. This suggests
that there are kinetic limitations of the system, either in electron transfer or in ion migration for charge
balance. To investigate the battery cycle life, LMO | Ti(1,8-DHAQ)2 batteries were cycled for 100 cycles
(Figure 4b) at 26 mA/g, corresponding to a C-rate of approximately 1.75. There was significant decrease
in capacity over repeated cycling. The energy efficiency remained stable around 60%, typical of an
aqueous solid-electrode battery [70].

The charge transfer resistance of the Ti(1,8-DHAQ)2 material in a three-electrode system was
investigated by electrical impedance spectroscopy (EIS). The resulting data, shown on a Nyquist
plot in Figure 4d, was fit to an equivalent circuit for a three-electrode cell [71,72] and the component
values were calculated by the Nelder–Mead method [73]. The high frequency circuit elements
exhibited a capacitance of 90 × 10−6 F from the constant-phase element [74]. This capacitance is
indicative of an electron-exchange reaction [75] and, with the value of the resistor element, indicates a
charge-transfer process with a real resistance of 14 mΩ g at ambient temperature (22◦ C). At this
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temperature, Ti(1,8-DHAQ)2 exhibits a higher charge-transfer conductivity than the metal-hydride
negative electrodes used in nickel-metal hydride batteries [16,76]
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.
The Ti(1,8-DHAQ)2 system unfortunately displays a decline in capacity over repeated charging.

Although the Ti(1,8-DHAQ)2 batteries are also charged above the thermodynamic voltage window of
water, 1.23 V, these high voltages still result in highly stable batteries as nickel metal-hydride batteries
(1.4 V nominal voltage) and lead acid batteries (2 V nominal voltage). Disassembled batteries showed
no visible dissolution of the Ti(1,8-DHAQ)2 material and no significant deviation from neutral pH
even after repeated cycling—which suggests that water splitting is not occurring as a decomposition
pathway. The Ti(1,8-DHAQ)2 as prepared did not dissolve in a pH range of 4–10, but the reactivity
of the material after repeated charging remains unknown, and hydronium or hydroxide ions may
react with the reduced Ti(1,8-DHAQ)2 material. The general morphological structure at the micron
scale of Ti(1,8-DHAQ)2 also remained after charging (Supplementary Materials Figure S6), and the
ratio of titanium to oxygen by EDS remained 1:8. Titanium catechol systems display robust stability
under electrochemical strain [77,78] and are chemically similar to the structures synthesized in this
work. For these reasons, we suspect that the degradation of capacity over time is most likely due
to a reaction of the quinone under repeated electrochemical stress. Anthraquinone-based redox
mediators have been shown to decompose to anthrone complexes when repeatedly reduced and
oxidized [79]. This proposed degradation mechanism would alter the structure of the species and
inhibit electrochemical reversibility, but does not necessarily lead to dissolution.

The conduction mechanism in amorphous coordination polymers more closely resembles a localized
model involving tunneling rather than a solid band model [80,81]. Generally, for a nonintercalating
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electrode, the electronic resistance of the electrode is negligible compared to the ionic transport resistance
of the electrolyte [82]. In recent years, the investigation of electrical conductivity in metal-chelate
polymers have largely focused on crystalline MOFs [80] or extended metal-catecholates [83] rather
than amorphous materials. Unlike crystalline MOFs, amorphous materials can be less regular
in structure due to variations in laboratory and environmental conditions [84]. This allows for the
optimization of parameters such as tortuosity and porosity for high power applications. For amorphous
particulate redox materials, these parameters can be tuned by modifying the binder [85], substrate [86],
and deposition method [87].

One advantage of this approach is the potential redox activity of both the linker and the metal.
If both the Ti3+/4+ couple and the AQ2−/4− couple were accessed, the titanium anthraquinone material
as proposed in Figure 3 would result in a theoretical capacity of 255 mAh/g. The batteries tested
indicated significantly lower capacity than this, however, likely due to limitations in ionic conductivity
through the material for charge balance during charging and discharging. While this material trades
chemical stability for low material and production cost, it has a high potential for scalability due to
inexpensive materials and solvents. The approach used in this synthesis is general, and other electrode
materials might be made using a similar method. The degradation in capacity may be mitigated by
the selection of different redox-active organic, and they may produce similar electrochemically active
compounds when combined with metal linkers.

4. Conclusions

We detail the synthesis of titanium(IV) 1,8-dihydroxyanthraquinone and test the electrochemical
activity in a coin cell. This material can be charged and discharged versus a lithium manganese oxide
positive electrode. The use of transition metals to link redox-active organics is a novel approach that
can provide high theoretical capacity. This is the first such metal-anthraquinone material used in
secondary batteries. Further research may work at preventing the battery capacity deterioration over
repeated cycling. This new material shows promise in the development of scalable aqueous batteries.

Supplementary Materials: Full Supplemental Materials are available online at http://www.mdpi.com/1996-1073/
13/7/1722/s1. Figure S1: Powder XRD of the Ti(1,8-DHAQ)2 material; Figure S2: FESEM images with EDS mapping;
Figure S3: FESEM images of points taken; Figure S4: FESEM of second sample of Ti(1,8-DHAQ)2; Figure S5:
EDS point spectra; Figure S6: FESEM of Ti(1,8-DHAQ)2 after charging; Figure S7: Theoretical IR of 1,8-DHAQ;
Figure S8: Equivalent circuit used to model Ti(1,8-DHAQ)2; Figure S9: Bode plot of Ti(1,8-DHAQ)2 with equivalent
circuit fit. Table S1: Ratios from EDS; Table S2: Cartesian coordinates from DFT; Table S3: EIS equivalent circuit
component parameters.
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