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Abstract: Electric cycling is one of the major damage sources in lithium-ion batteries and extensive
work has been produced to understand and to slow down this phenomenon. The damage is related to
the insertion and extraction of lithium ions in the active material. These processes cause mechanical
stresses which in turn generate crack propagation, material loss and pulverization of the active
material. In this work, the principles of diffusion induced stress theory are applied to predict
concentration and stress field in the active material particles. Coupled and uncoupled models are
derived, depending on whether the effect of hydrostatic stress on concentration is considered or
neglected. The analytical solution of the coupled model is proposed in this work, in addition to
the analytical solution of the uncoupled model already described in the literature. The analytical
solution is a faster and simpler way to deal with the problem which otherwise should be solved in a
numerical way with finite difference method or a finite element model. The results of the coupled
and uncoupled models for three different state of charge levels are compared assuming the physical
parameters of anode and cathode active material. Finally, the effects of tensile and compressive stress
are analysed.

Keywords: diffusion induced stress; hydrostatic stress influence on diffusion; electrode particle model;
battery mechanical aging; li-ion battery

1. Introduction

Lithium-ion batteries are actually one of the most widespread rechargeable energy-storage
systems [1]. They have a large field of application from small electronic systems up to electric vehicles
in automotive and industrial applications [2,3]. Indeed, they can span a great capacity and power
range with a good energy density and long lifetime.

Safety and batteries performance have been analysed through modelling and experimental tests
in the last decades [4,5]. Progressive damage with charge/discharge cycles is the major weak point of
lithium ion cells, since it affects the lifetime considerably [6]. The lithium ions are stored/withdrawn in
the active material of the electrodes through insertion/extraction processes. These processes must be
studied at a micrometre scale, at which active material of both electrodes appears as a particulate matter,
as depicted in Figure 1a. Insertion/extraction processes induce expansion/contraction of the active
material particles, and in turn mechanical stress which damage the electrode structure. The electrode
damage causes indirectly the increase of solid electrolyte interface (SEI) growth which in turn affects
the battery performance and the available capacity [7]. Stress and strain due to insertion/extraction
processes are recently investigated via in-situ measurements in battery electrodes [8–10]. However,
the lack of experimental stress measurements in active material particles does not allow to validate the
results derived in this work.
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Figure 1. Battery scheme at micrometer scale and focus on the lithium intercalation mechanism in
anode particles (a). Stress and deformation of the active material particles during lithium insertion
(b) and extraction (c). Blue shadows depict the lithium concentration (blue means high concentration,
white means low concentration). Concentration level affects tension (arrows pointing toward each other)
and compression (arrows pointing away from each other) of radial and hoop stress. The concentric lines
show expansion or shrinking of the particle: they are evenly spaced in the undeformed configuration.

These type of stresses are described originally by Prussin [11] as chemical stress or diffusion
induced stress (DIS), which manages the interaction between chemical and mechanical problem. Later,
Larché and Cahn [12,13] and Chu and Lee [14,15] studied the interaction between thermodynamic of
diffusion and stress.

Several continuum models of diffusion induced stress were proposed in the last decade, each of
them highlights some particular features. The models mainly divide in two groups: the coupled models
consider the influence of the hydrostatic stress on the lithium ions diffusion, namely “pressure diffusion
effect,” and the uncoupled models neglect this effect.

Cheng and Verbrugge presented an uncoupled model for stress evolution in spherical particle
in Reference [16] and they studied the effect of surface mechanics in nanometre particles, showing that
tensile stress may be significantly reduced in magnitude or even be reverted to a state of compression
with small particle radius [17].

Christensen and Newman were among the first to study DIS models applied to lithium ions
cell [18–20] deriving a stand-alone electrode particle model. Meanwhile, Zhang et al. performed a
numerical implementation of coupled DIS problem, and studied the influence of the aspect ratio of an
ellipsoidal particle of lithium manganese oxide (LMO) on stress [21]. Later they studied the stresses
which arise both from concentration gradient and heat generation in cathode particles, assumed as
ellipsoidal with varying aspect ratio [22]. The basis of DIS theory applied to lithium-ion cells are clearly
explained in Reference [23–25] for different geometry domain. Recently Bagheri et al. presented the
numerical results of coupled DIS problem for galvanostatic and potentiostatic insertion in spherical
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LMO particle [26]. Eshghinejad et al. presented a continuum model which couples diffusion and
mechanics of ions intercalation for non-dilute solutions [27], according to Haftbaradaran et al. [28],
and solved it with a finite elements (FE) model. Eshghinejad et al. highlighted that compressive stress
results in lower lithium ions solubility and thus lower achievable capacity. Recently Wu et al. extended
the study of diffusion induced stress to the interaction with other particles. Indeed, they developed a
three-dimensional particle network model in a FE platform and a multiscale model which considers
the stress in the particle as the superposition of the concentration gradient induced stress and the stress
which comes from the interaction with other particles [29].

Tensile hoop stress due to insertion/extraction processes is the driving force for the analytical
crack propagation model described by Deshpande et al. [30]. The authors described the capacity
reduction rate due to electrolyte decomposition on the new free surfaces created by the cracks.
Other works performed numerical analysis to predict crack propagation in active material with
a stochastic approach [31] and considering the effect of current rate [32]. Grantab et al. developed
a numerical method for studying lithiation-induced crack propagation in silicon nanowires that
accounts for the effects of pressure-diffusion on the stress, and compared the results with an uncoupled
model [33].

A continuum model of diffusion-mechanical problem in spherical geometry is presented in
this paper. The model described in Section 2 gives a tool to estimate the stresses and strains in
active material particles during lithiation/delithiation on the basis of particle size and mechanical
properties with specific assumptions. Furthermore the model takes into account the hydrostatic stress
influence on lithium diffusion, namely the “pressure diffusion effect”, which couples mechanical and
diffusive problem. The hydrostatic stress effect is highlighted comparing the results of the coupled
and uncoupled model, which considers or neglects the stress influence, respectively. The definition of
an equivalent diffusion coefficient which accounts for the hydrostatic stress effect allows to derive an
analytical solution even for the coupled model, still not available in literature, as far as the authors
know. The results of the analytical model are compared with numerical results in literature in Section 3.
Furthermore, lithium concentration and stress are derived in galvanostatic insertion and extraction
with different state of charge (SOC) for anode and cathode insertion material in Section 3. It is
highlighted that tensile stresses are the driving force for crack propagation, and thus solid electrolyte
interface (SEI) growth and capacity fade. On the other hand, compressive stresses induce a reduction
of lithium flux which in turn affects the achievable capacity.

2. Problem Formulation

The mechanical stresses which arise in the active material particles are directly linked to lithium
intercalation/de-intercalation phenomena which occur over charge/discharge cycling. For this reason,
this model works just for intercalation materials, and not for conversion material, such as Silicon,
since lithium ions would interact with host material differently. The particle is assumed spherical,
isotropic and linear elastic, and the current density is assumed uniform all over the particle surface.
These assumptions make the problem axisymmetric, leading to a one-dimensional problem in the
radial coordinate. A couple of boundary conditions are given: traction-free condition is applied on the
outer surface of the particle, thus neglecting the interaction with surroundings, and a fixed central
point is imposed to prevent rigid body motion.

The lithium ions diffuse gradually in the particle during insertion and extraction. The ions
diffusion makes the lithium concentration inhomogeneous along the particle radius, as shown in
Figure 1b,c.

The concentration gradient causes a mechanical stress state in analogy to temperature gradient.
Therefore, the areas with greater concentration gradient are affected by larger deformation compared
to the areas where the gradient is lower. Therefore, a diffusion-elastic problem must be studied, since
the stress state described by the elastic problem depends on the concentration level which is described
by the diffusive problem.
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The concentration level in insertion and extraction affects the sign of the stresses. Referring to
insertion in Figure 1b, the greater concentration of the outer layers causes a tensile radial stress all
over the particle because the surface expands more than the core. The hoop stress is compressive in
the outer layers and tensile in the core because the greater deformation of the surface is prevented by
the core. In extraction (Figure 1c) the particle shrinks, and the radial stress is compressive because
the concentration level decreases along the radius. The hoop stress is tensile in the surface and
compressive in the core because the greater expansion of the core is prevented by outer layers which
are characterized by a lower concentration level.

2.1. Mechanical Problem

Strains are characterized by an elastic and a chemical contribution, which is expressed according
to Prussin [11] in Equation (1).

εch =
Ω
3

C(r), (1)

where Ω is the partial molar volume, which describes the volume variation of the solution host
material and intercalated lithium. C is the lithium concentration field within the particle. The total
strain is expressed as the sum of elastic strain and chemical strain [11], so the constitutive equations
are expressed in spherical coordinates in Equations (2) and (3).

εr =
1
E

(
σr − 2νσc

)
+

ΩC
3

, (2)

εc =
1
E

[
(1− ν)σc − νσr

]
+

ΩC
3

, (3)

where E and ν are the Young modulus and Poisson ratio. The last term in Equations (2) and (3) couples
the mechanical and chemical aspects. It is worth noting that this expression is written in analogy to
an elastic-thermal problem, so the diffusivity part of the equation is totally equivalent to a thermal
problem if the concentration field is replaced by the temperature and the partial molar volume is
replaced by thermal expansion coefficient.

It is useful to rearrange the constitutive equations in terms of stresses for later purposes:

σr =

E
[(

εr − ΩC
3

)
(1− ν) + 2ν

(
εc − ΩC

3

)]
(1 + ν)(1− 2ν)

, (4)

σc =

E
[(

εc − ΩC
3

)
+ ν

(
εr − ΩC

3

)]
(1 + ν)(1− 2ν)

. (5)

The congruency equations, which relate strain and displacement are:

εr =
du
dr

, (6)

εc =
u
r

. (7)

The characteristic time of solid elastic deformation is much smaller than the diffusion of atoms
in solids, for this reason the mechanical equilibrium is reached much faster than the diffusive one,
and the elastic problem is treated as a quasi-static problem: the transient is not considered, and the
equilibrium is assumed to be reached instantaneously.
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The mechanical equilibrium equation over a spherical domain is given by Equation (8) according
to References [16,17,26,34].

dσr

dr
+

2
r

(
σr − σc

)
= 0. (8)

The mechanical stress state within a spherical particle is completely described by the set of
Equations (4)–(8). The elastic problem is solved for the displacement replacing the congruency
equations (Equations (6) and (7)) in the constitutive ones (Equations (4) and (5)), and the latter in the
equilibrium equation (Equation (8)).

This leads to a second order differential equation (Equation (9)) depending on displacement and
concentration field.

d2u
dr2 +

2
r

du
dr
− 2u

r2 =
1 + ν

1− ν

Ω
3

dC
dr

. (9)

Equation (9) is solved for the displacement integrating it twice. A first integration leads to:

du
dr

+
2u
r

+
∫ r

0

2u
r2 dr−

∫ r

0

2u
r2 dr =

1 + ν

1− ν

Ω
3

C(r) + C1. (10)

The displacement field is got in Equation (11) multiplying Equation (10) for r2, integrating another
time and rearranging the terms.

u(r) =
1 + ν

1− ν

Ω
3

1
r2

∫ r

0
C(r)r2 dr +

C1

3
r +

C2

r2 . (11)

The constants C1 and C2 are obtained imposing the boundary condition for r = 0 and r = R.
The first boundary condition is null displacement at the center of the sphere which leads to C2 = 0.
This result is obtained solving limr→0 u(r), since Equation (11) is not defined for r = 0.

The second boundary condition is derived from the behaviour on the surface. When free expansion
is considered, the radial stress must vanish on the surface. This condition is got solving Equation (12)
according to the constitutive equation (Equation (4)).(

du
dr

∣∣∣∣
r=R
−1

3
ΩC(R)

)
(1− ν) + 2ν

(
u(R)

R
− 1

3
ΩC(R)

)
= 0. (12)

The displacement and its derivative valued for r = R are replaced in Equation (12). Then
Equation (12) is solved for C1, leading to:

C1 = 2
1− 2ν

1− ν

Ω
R3

∫ R

0
C(r)r2dr. (13)

At this stage all the boundary conditions are set, and the displacement field is expressed in
Equation (14).

u(r) =
Ω

3(1− ν)

[
(1 + ν)

1
r2

∫ r

0
C(r)r2 dr + 2(1− 2ν)

r
R3

∫ R

0
C(r)r2 dr

]
. (14)

Therefore Equation (14) is replaced in the congruency equations (Equations (6) and (7)) and radial
and hoop strains are obtained in Equation (15).εr(r) = 1+ν

1−ν
Ω
3

[
− 2

r3

∫ r
0 C(r)r2 dr + C(r)

]
+ 2Ω

3
1−2ν
1−ν

1
R3

∫ R
0 C(r)r2 dr

εc(r) = 1+ν
1−ν

Ω
3

1
r3

∫ r
0 C(r)r2 dr + 2

3 Ω 1−2ν
1−ν

1
R3

∫ R
0 C(r)r2 dr

. (15)
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Then, the stresses are derived replacing the strain equations (Equation (15)) in the constitutive
ones (Equations (4) and (5)).

σr(r) = 2Ω
3

E
1−ν

[
1

R3

∫ R
0 C(r)r2 dr− 1

r3

∫ r
0 C(r)r2 dr

]
σc(r) = Ω

3
E

1−ν

[
2

R3

∫ R
0 C(r)r2 dr + 1

r3

∫ r
0 C(r)r2 dr− C(r)

]
.

(16)

Finally, the hydrostatic stress, defined according to Equation (17), is obtained. The value of
hydrostatic stress is the coupling factor between elastic and diffusion in the diffusive problem.

σh(r) =
σ1 + σ2 + σ3

3
=

σr + 2σc

3
=

2ΩE
9(1− ν)

[
3

R3

∫ R

0
C(r)r2 dr− C(r)

]
. (17)

The results of the mechanical problem, namely the displacement, the strains and the stresses in
Equations (14)–(17) depend on the concentration field, that is solved in the diffusion problem.

2.2. Diffusive Problem

The diffusive equation is derived with the thermodynamic approach described by Chu and
Lee [15] and later adopted by most of the works concerning stress in intercalation materials [21–26].
Chemical potential gradient is the driving force for mass transport. The chemical potential of a solute
in an ideal solution subjected to stress is written in Equation (18) according to Chu and Lee [15].

µ = µ0 + RgTln(C)− σhΩ, (18)

where µ0 is a constant, Rg the universal constant of gasses, C the concentration field, T the temperature,
σh the hydrostatic stress experienced by the particle and Ω the partial molar volume. The expression
of chemical potential in Equation (18) is formulated for dilute solution and does not take into account
non ideality: namely the lithium migrates among interstitial sites and the structure of the host material
is not modified by the intercalation process. The flux of lithium ions inside the particle due to the
chemical potential is expressed in Equation (19) according to Reference [15].

J = −MC
∂µ

∂r
, (19)

where M is the mobility of the solute.
The mass conservation law of lithium ions in radial coordinate is introduced in Equation (20) [15].

∂C
∂t

+
1
r2

∂(r2 J)
∂r

= 0 (20)

2.3. Uncoupled Problem

At first the uncoupled problem is solved, so the hydrostatic stress term in the chemical
potential expression in Equation (18) is neglected, allowing to decouple the elastic problem from
the diffusive one.

This simplified version of chemical potential is replaced in Equation (19). Therefore, the lithium
ions flux is expressed as Equation (21).

J = −D
∂C
∂r

(21)

where D is the diffusion coefficient, defined as D = MRgT.
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Finally Equation (21) is replaced in the mass conservation law (Equation (20)), and the diffusion
equation in radial coordinate is derived in Equation (22).

∂C
∂t

=
D
r2

∂

∂r

(
r2 ∂C

∂r

)
(22)

Diffusion Equation (22) is written in perfect analogy with thermal diffusion, if concentration field
is replaced by the temperature one.

Equation (22) is associated to a couple of boundary conditions which describe two possible
cell operations: constant voltage (potentiostatic operation, Equation (23)) or constant current
(galvanostatic operation, Equation (24)).

A constant lithium concentration equal to CR is imposed at the cell boundary over time with
potentiostatic operation. The diffusion Equation (22) has a singularity for r = 0, so the second boundary
condition prescribes a finite concentration value at the centre of the sphere. Finally, a constant initial
concentration value C0 is prescribed for t = 0 across the domain.

∂C
∂t = D

r2
∂
∂r

(
r2 ∂C

∂r

)
C(r, 0) = C0, for 0 ≤ r ≤ R

C(R, t) = CR, for t ≥ 0

C(0, t) = f inite, for t ≥ 0

(23)

A constant lithium flux, proportional to the current density, is applied on the external surface
of the particle over time in galvanostatic operation. The lithium flux goes from the particle surface
radially toward the centre, so the flux must be zero for r = 0. An initial concentration value C0 is
present all over the particle, as defined before.

∂C
∂t = D

r2
∂
∂r

(
r2 ∂C

∂r

)
C(r, 0) = C0, for 0 ≤ r ≤ R
∂C(r,t)

∂r

∣∣∣∣
r=R

= I
FD , for t ≥ 0

∂C(r,t)
∂r

∣∣∣∣
r=0

= 0, for t ≥ 0

(24)

The solutions of the problem in Equations (23) and (24) are derived analytically by variable
separation. However the solutions are well known in the literature [16] and are reported in
Equation (25) for potentiostatic operation and in Equation (26) for galvanostatic operation.

C(r, t)− CR
C0 − CR

= −2
∞

∑
n=1

(−1)n+1

πnx
sin(nπx) e−n2π2τ , (25)

C(r, t) = C0 +
IR
FD

[
3τ +

x2

2
− 3

10
− 2

x

∞

∑
n=1

(
sin(λnx)

λ2
nsin(λn)

e−λ2
nτ

)]
. (26)

The solutions are normalized according to the dimensionless characteristic time expressed as
τ = Dt/R2 and to the radial position x = r/R. λn are the positive roots of the transcendent equation
λn = tan(λn). CR is the concentration value on the particle surface, C0 is the initial concentration, F is
the Faraday constant, I is the current density and R is the radius of the particle.

The concentration solutions in Equations (25) and (26) are replaced in Equations (14)–(17) to get
displacement, strains and stress expressions for the uncoupled model.
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2.4. Coupled Problem

The lithium ion flux for the coupled problem reported in Equation (27) is obtained by replacing
the chemical potential (Equation (18)) in lithium flux (Equation (19)).

J = −D
(

∂C
∂r
− ΩC

RT
∂σh
∂r

)
. (27)

Finally, the concentration equation for the coupled problem is derived in Equation (28) replacing
Equation (27) in the mass conservation law (Equation (20)).

∂C
∂t

= D
[

∂2C
∂r2 +

2
r

∂C
∂r
− Ω

RgT
∂C
∂r

∂σh
∂r
− ΩC

RgT

(
∂2σh
∂r2 +

2
r

∂σh
∂r

)]
. (28)

Equation (28) cannot be solved analytically as Equation (22), so the flux expression in Equation (27)
is rearranged in order to obtain an expression similar to Equation (21) which brings back to a
concentration equation analogue to Equation (22), whose analytical solution is already known.

The term ∂σh
∂r in Equation (27) is written according to the chain rule method as: ∂σh

∂r = ∂σh
∂C

∂C
∂r .

Then the hydrostatic stress in Equation (17) is differentiated with respect to the concentration: ∂σh
∂C =

− 2ΩE
9(1−ν)

. Finally, the lithium flux is expressed in Equation (29) factoring the term ∂C
∂r .

J = −D
(

1 +
2Ω2EC

9RgT(1− ν)

)
∂C
∂r

(29)

Equation (29) is similar to the expression of lithium ions flux derived for the uncoupled problem
(Equation (21)), but the diffusion coefficient is multiplied by a new factor. So, the equivalent diffusion
coefficient for the coupled problem is introduced in Equation (30), in accordance with Chu and Lee [15].

Deqvn(r) = D
(

1 +
2Ω2EC

9RgT(1− ν)

)
= D(1 + k · C). (30)

The equivalent diffusion coefficient is composed by the physical diffusion coefficient D and by an
artificial contribution k · C due to the hydrostatic stress effect. This factor is always greater than one,
both for material with positive and negative fraction molar volume. Thus, hydrostatic stress effect
always enhances lithium diffusion decreasing the concentration gradient within the particle.

This result can be derived even with general boundary conditions on the surface, that is, a general
form of C1. The displacement in Equation (11) as a function of C1 (C2 = 0) is replaced in the expression
of the radial and hoop stress, and the hydrostatic stress is calculated according to Equation (17).
After some calculations it gives:

σh(r) =
2ΩE

9(1− ν)

[
C(r) + C1

3(1− ν)

2(1− ν)Ω

]
(31)

Even in this condition the derivative of the hydrostatic stress with respect to the concentration
has the same value computed before, leading to the same artificial diffusion contribution.

Lithium ion flux of the coupled problem in Equation (32) is formally similar to the flux of the
uncoupled problem in Equation (21): namely it is equal to a coefficient multiplied for the derivative of
the concentration with respect to the radius.

J = −Deqvn
∂C
∂r

(32)

This observation allows to derive the same diffusion equation of the uncoupled problem
(Equation (22)) introducing the new diffusion coefficient Deqv instead of the physical diffusion
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coefficient. Therefore, the same solutions derived for the uncoupled problem can be used also for the
coupled one replacing the physical diffusion coefficient with the equivalent diffusivity.

The concentration solutions reported in Equations (25) and (26) become non-linear because
the equivalent diffusion coefficient depends itself on concentration. Thus, an iterative calculation,
described in Figure 2 must be performed as follows:

• The concentration field is calculated according to the physical diffusion coefficient.
• The equivalent diffusion coefficient is calculated for each radial position with the concentration function.
• A new concentration function is computed with the equivalent diffusion coefficient computed in

the previous iteration.

The iterations go on until the maximum difference between the concentration computed in the
kth iteration and k− 1th is below a certain threshold. This iterative computation converges in few
iterations to a stable value.

Figure 2. Iterative calculation procedure.

Once the concentration field is obtained, it is replaced in Equations (14)–(17) to get displacement,
strains and stresses expressions for the coupled model.

3. Results and Discussion

In this section, the numerical results derived with the model explained in Section 2 are presented.
The concentration functions for galvanostatic and potentiostatic insertion are compared with the results
available in literature derived through numerical simulation. Then, concentration and stress function
computed with the analytical model are presented in case of galvanostatic operation. The comparison
between the coupled and uncoupled model highlights the hydrostatic stress influence on lithium
diffusion. The results are derived according to the physical parameters reported in Tables 1 and 2,
referring to anode and cathode materials.
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Table 1. Graphite properties (anode).

Parameter Symbol Value Unit Reference

Diffusion coefficient D 2 · 10−14 m2/s [35,36]
Partial molar volume Ω 3.42 · 10−6 m3/mol [37]

Maximum concentration Cmax 3.18 · 104 mol/m3 [37]
Young modulus E 15 GPa [18]

Poisson ratio υ 0.3 - [18]
Particle radius R 5 · 10−6 m [18]

Table 2. LixMn2O4 (LMO) properties (cathode).

Parameter Symbol Value Unit Reference

Diffusion coefficient D 7.08 · 10−15 m2/s [21,26]
Partial molar volume Ω 3.497 · 10−6 m3/mol [21,26]

Maximum concentration Cmax 2.29 · 104 mol/m3 [21,26]
Young modulus E 10 GPa [21,26]

Poisson ratio υ 0.3 - [21,26]
Particle radius R 5 · 10−6 m [21,26]

3.1. Compatibility between Model Assumptions and Real Material

Graphite and lithium manganese oxide (LMO) are chosen as case study for anode and cathode
intercalation materials respectively. The compatibility between the assumptions of the analytical model
and real active materials is discussed in this section. The linear elastic assumption is respected for
all the insertion materials, because they show slight deformation. There are two aspects to discuss:
geometry and homogeneity assumptions.

About the geometry assumption, it is necessary to understand how a sphere is capable to represent
the random geometry of the active material particles. For some materials, such as NMC or graphite the
real particle geometry is close to a sphere, as showed by SEM images in Reference [37–39], but for other
materials, such as LMO or LCO, particles shape is more elongated and irregular. However, a modelling
approach must overcome the statistical variation of the samples and give reasonable and general results
which can be valid for the entire samples population. For this reason, an ideal geometry which can be
extended and representative of all the other particles is adopted in this work, according the following
reasoning. Simulations confirm that greater particle size results in higher stress, because of longer diffusion
path. Hence, the radius is chosen so that the ideal spherical particle adopted in simulation circumscribes
the mean real particle, once the statistical distribution of the particle size of a powder is known. In this
manner, it is possible to give a safe estimation of the stress in the powder particles based on their size,
overcoming the limit of the random distribution of the particles shapes. The results of the simulation at
least overestimate the real stress in the particles of a powder, since a bigger spherical equivalent particle is
used to simulate all the different particles shapes present in a powder.

For what concerns different ideal geometries, Zhang et al. studied the influence of the aspect ratio
of an ellipsoidal LMO particle on the stress [21,22]. The results show that the stresses computed with
aspect ratios different from one (one corresponds to the sphere) are ±10% of the stress computed with
spherical geometry. Hence, spherical geometry minimizes the error due to the statistical distribution
of the particle shape [21].

Some works analysed the stress over a realistic particle geometry extracted from SEM images [40–43].
The results show that the main difference between realistic particle and ideal spherical particle resides in
the stress concentrations in notches. In future works, it is meaningful to study a generalized notch factor,
based on the statistical analysis of powder samples, which can be representative of the notching effect
of different active material particles. Indeed, stress concentration due to notching effect causes cracks
propagation: the main reason for electrode damage and capacity fade.
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Moreover, a recent work [44] demonstrated how the assumptions of spherical geometry and
isotropic and linear elastic material are accurate for LCO and graphite, since they found a good
agreement between the macroscopic deformation predicted by their numerical model and the
experimental measurements conducted on pouch cell. Finally, spherical assumption is widely accepted
among several works [20–22,26,45].

The second aspect concerns the homogeneity assumption. This aspect can be still divided in two
issues: phase transition during Li insertion and inhomogeneity of primary particles. Phase transition
occurs in some materials when lithium content exceeds the equilibrium concentration. Lithium ions
begin to intercalate in different type of interstices above the equilibrium concentration, modifying the
crystallographic structure: this leads to a stress and concentration jump between the two phases
because they are characterized by different physical parameters. Christensen et al. pointed out that
LMO shows a single phase in the 4V plateau, and the transformation in cubic-tetragonal phase occurs
with deep discharge [20]. In LCO, which has a negative partial molar volume, Li poor phase has a
larger partial molar volume than the lithium rich phase [46]. Therefore, as the second phase starts to
form during the discharge process, the magnitude of stress starts to decrease—phase change leads to a
safer condition in this case.

However, a simple general approach which considers phase transition in our model is the
following: it is necessary to change the physical parameters according to the concentration level with a
moving boundary concept. When the concentration level exceeds the equilibrium concentration of a
phase in a certain radial position, equilibrium concentration and physical parameters (Young modulus,
Poisson ratio and especially partial molar volume) must be changed with the physical parameters of the
new phase. During insertion the “boundary” between the two phases moves towards the core, and the
physical parameters must be changed accordingly. So, phase transition can be implemented in the
model in Section 2 tuning the input parameters, but the framework of the model remains unchanged.

The particles of some materials, such as NMC, are synthesized from primary particles [39].
However, it is hard to model the influence of randomly distributed primary particles which compose
secondary particle, and because of the random orientation of primary particles, secondary particles
are usually assumed as a continuum material [47,48]. However, Wu et al. [49] tried to consider the
influence of primary particle on the stress.

3.2. Comparison with the Results of Numerical Models in Literature

The analytical solution of DIS problem was proposed by Cheng et al. [16] according the uncoupled
formulation. As far as the authors know, analytical solution of the coupled problem are still not available
in literature. Generally, the finite difference method [18,20,21,23,24] or FE simulations [16,21,27,33] in
commercial codes were adopted in order to solve the DIS problem in the coupled formulation. Following
the procedure explained in Section 2, the analytical solutions of the standard diffusion problem are used to
get the solution of the DIS coupled problem via an iterative computation, which is a much simpler way
compared to solve the whole coupled equation (Equation (28)) with finite difference method or building
up a FE analysis.

The concentration function computed with the analytical model in galvanostatic and potentiostatic
insertion are compared with the results derived via finite different method by Bagheri et al. [26] in Figure 3.
A good agreement is achieved between the analytical model proposed in this work and Reference [26]
derived via numerical computation. Furthermore the concentration trend with and without “stress effect”
matches with the results of Zhang et al. [21] and Christensen et al. [19]. Moreover the results of the
uncoupled model matches with the model derived by Cheng et al. [16]. Even the stress functions fits
faithfully the numerical results available in the literature, since they depend uniquely on concentration.
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Figure 3. Concentration level as a function of dimensionless radial position for different time constants
τ in galvanostatic (a) and potentiostatic (b) insertion. The analytical model is reported with solid
(coupled) and dashed (uncoupled) lines. The solution of the numerical model [26] is reported in
discrete radial coordinates with dots (coupled) and crosses (uncoupled).

The lack of stress measurements in insertion material particles makes the results in this work
impossible to be validated experimentally, as pointed out even by other authors [26], and mathematical
modelling is the only way to make these computations.

3.3. Insertion under Galvanostatic Control

Concentration level and the stress functions in galvanostatic insertion are computed with the
analytical model proposed in Section 2 assuming null initial concentration. The results are derived for
three different SOC levels: 25%, 50%, 75%. The SOC level is calculated according to Zhang [26,50] as:

SOC =

∫ R
0 c(r)r2dr∫ R
0 cmaxr2dr

· 100. (33)

The current density over the particle surface is 3 A/m2, which corresponds roughly to 2C.
The temperature is assumed to be constant at 298 K. The results for anode and cathode particles whose
physical parameters are listed in Tables 1 and 2 are reported in Figures 4 and 5.

The concentration level normalized with the maximum concentration value which can be stored
in the active material particles is reported in Figure 4a. So, when the normalized concentration is equal
to the unity all the available sites in the particle are occupied by lithium ions. Radial, hoop and Von
Mises stress are reported in Figure 4b–d for graphite particles. The same data are reported in Figure 5
for LMO particles.

The pressure diffusion dependence determines a greater equivalent diffusion coefficient which
allows a faster lithium diffusion within the particle. In particular enhances mass transport from areas
subjected to compression to areas subjected to tensile stress. This fact makes the lithium concentration
gradient predicted by the coupled model lower if compared to the uncoupled model, as shown in
Figures 4a and 5a. Remembering the thermal analogy, lower gradient means lower stress, so the
coupled model predicts a lower stress state, as highlighted in Figures 4b–d and 5b–d; the differences
between the two model are up to 40%. The differences between the stresses computed with the three
SOC levels are small (the maximum is 15% for graphite and 7% for LMO), this suggests that the active
material particles experience similar stresses during almost the whole SOC range.

The comparison between the results obtained for anode (Figure 4) and cathode (Figure 5) shows
the influence of the diffusion coefficient. Indeed, the slight difference in the diffusion coefficient
between LMO and graphite produces an important increase of the concentration gradient in the
cathode particles, which in turn causes a serious increase of the stress. Consequently, a greater
equivalent stress makes the coupling between mechanical and diffusion aspect stronger.
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Figure 4. Lithium concentration (a), radial stress (b), hoop stress (c) and Von Mises stress (d) for different
SOC levels in galvanostatic insertion in anode material. Dashed lines refer to the uncoupled model and
solid lines refer to the coupled model.

Figure 5. Lithium concentration (a), radial stress (b), hoop stress (c) and Von Mises stress (d) for different
SOC levels in galvanostatic insertion in cathode material. Dashed lines refer to the uncoupled model
and solid lines refer to the coupled model
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This results in a greater difference between the concentration computed with the coupled model
or the uncoupled one in LMO because the mechanical component in the chemical potential (Equation
(18)) becomes greater.

3.4. Extraction under Galvanostatic Control

The galvanostatic extraction is modelled assuming an initial concentration within the particle
equal to Cmax, namely SOC 100%, and surface current density equal to −3 A/m2. The extraction
determines a reduction of the SOC level, and the result for SOC equal to 75%, 50% and 25% are reported
in Figures 6 and 7 for anode and cathode material, respectively. Concentration is reported in Figure 6a,
radial, hoop and Von Mises stress are reported in Figure 6b–d for graphite. The same data are reported
in Figure 7 for LMO.

Figure 6. Lithium concentration (a), radial stress (b), hoop stress (c) and Von Mises stress (d) for different
SOC levels in galvanostatic extraction in anode material. Dashed lines refer to the uncoupled model
and solid lines refer to the coupled model.

The same conclusions made for insertion about the differences of concentration and stress state
between the coupled and uncoupled model can be made also for extraction. The differences between
the stress computed with the coupled and uncoupled model are up to 35%. In Figures 6c and 7c
it is highlighted that the particle experiences tensile hoop stress on its surface during galvanostatic
extraction, which is supposed to be the driving force for crack propagation in active material [30].
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Figure 7. Lithium concentration (a), radial stress (b), hoop stress (c) and Von Mises stress (d) for different
SOC levels in galvanostatic extraction in cathode cathode. Dashed lines refer to the uncoupled model
and solid lines refer to the coupled model.

3.5. Evolution of Von Mises Stress in Time

The continuous evolution in time of the Von Mises stress is shown in Figure 8. The hydrostatic
stress effect homogenizes the lithium concentration within the particle, so the stress values computed
by the coupled model are lower than the uncoupled one, in accordance with Reference [21]. On the
contrary, for high extraction time the stress predicted by the coupled model tends to the uncoupled one.

Figure 8. Von Mises stress as a function of insertion (a) and extraction (b) time. The results are derived
with physical parameters of Table 2.
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3.6. Influence of Hydrostatic Stress on Concentration

Hydrostatic stress influence always enhances lithium diffusion. This assertion is justified from
a quantitative point of view by the artificial contribution to the equivalent diffusion coefficient in
Equation (30). This contribution is always positive regardless of the insertion or extraction operation,
time constant or radial position, so the coupled model is always characterized by a greater diffusion
coefficient which decreases the concentration gradient within the particle, as showed in Figures 4a–7a.

This concept is qualitatively explained in Figure 9. Indeed, the chemical potential in Equation (18)
can be split in the concentration contribution (µC = RgT ln (C)) and the hydrostatic stress contribution
(µσ = −Ωσh) as follow: µ = µC + µσ. In case of insertion, referring to Figure 9a, the concentration C2

at r + dr is greater than the concentration C1 at r− dr for a generic radial coordinate r, resulting in a
positive concentration contribution. In the same way the hydrostatic stress σh,2 at r + dr is lower than
the hydrostatic stress σh,1 at r− dr, resulting in a positive hydrostatic stress contribution. This analysis
can be extended to all the radial coordinates from zero to R because both concentration and hydrostatic
stress are monotonic. Therefore, both the contributions are concordant due to the shape of concentration
and hydrostatic stress functions showed in Figure 9a, and concur to the incoming flux. This analysis is
also valid for extraction, as explained in Figure 9b. In this case, concentration, hydrostatic stress and
thus chemical potential contributions are the opposite, resulting in an outgoing flux.

Figure 9. Hydrostatic stress influence on lithium diffusion for insertion and extraction operation.
The qualitative trend of the lithium concentration (red) and the hydrostatic stress (green) for insertion
(a) and extraction (b) are reported in the graphics. The chemical potential is split in concentration
contribution and hydrostatic stress contribution whose increments are valued for a general radial
position r. The stress and concentration contributions for a general radial coordinate are graphically
reported with green and red arrows which goes from the lower to the higher value (c). The lithium flux
due to the chemical potential difference is reported with the blue arrows (c).

On the other hand, hydrostatic stress influences the concentration level in the particle.
Tensile hydrostatic stress allows to store a greater amount of lithium ions, on the contrary compressive
hydrostatic stress determines a reduction of the storable lithium ions. These differences are highlighted
comparing the results with the uncoupled model, which neglects the influence of the hydrostatic stress
on the lithium concentration. Referring to Figure 10a, black arrows mark the border between positive



Energies 2020, 13, 1717 17 of 20

and negative hydrostatic stress. This trend matches with the differences in concentration function
computed with the two models in Figure 10b: where the hydrostatic stress is positive the concentration
level of the coupled model is higher than the uncoupled one, where the hydrostatic stress is negative
the coupled model predicts a lower concentration level compared to the uncoupled model. About this
issue it is worth noting that the model in this work assumes free expansion of the particle surface,
neglecting the interaction with its surroundings.

Figure 10. Hydrostatic stress (a) and concentration (b) in cathode material. Black arrows show
the points where the hydrostatic stress changes sign which partially reflect the turnaround of the
concentration function. Dashed lines refer to the uncoupled model and solid lines refer to the
coupled model.

A more accurate model should consider the surface constraints of the particle which are supposed
to generate an increase in the compressive stress and in turn lower achievable concentration values.
Future works should be carried out in order to confirm this hypothesis.

4. Conclusions

The stress state within active material particle of graphitic anode and LMO cathode are computed
with coupled and uncoupled model according to DIS theory, assuming no constraints on the external
surface. The analytical solution of the coupled model is proposed in this work defining an equivalent
diffusion coefficient composed by a physical term and by an artificial contribution connected to the
hydrostatic stress. This definition allows to exploit the analytical solutions of the uncoupled model
even for the coupled one with an iterative calculation, since the equivalent diffusion coefficient depends
itself on concentration.

The results derived with the analytical solution of the coupled model are compared with the
solutions derived with numerical methods in literature and show a good agreement. The analytical
solution proposed in this work is easier and requires a lower computing time if compared to strongly
non-linear FE method or finite difference method. The concentration function and the stress state
within the particle are computed for three SOC levels: 25%, 50%, 75%. The differences between the
stresses computed with the different SOC levels are small: this fact suggests that particles experience
almost the same stress state during about the whole SOC window. The differences between the
stress state in LMO and graphite is mainly due to diffusion: a smaller diffusion coefficient causes
higher lithium concentration gradient, and higher stress consequently (up to 40%), according to
thermal analogy concept. Thus, the coupling factor Ωσh in chemical potential becomes higher and the
differences between coupled and uncoupled model are not negligible.

Finally, it is pointed out that tensile stress, in particular tensile hoop stress which occurs on the
particle surface during extraction, is the driving force for crack propagation, which in turn damages
the active material and accelerates the SEI growth. On the other hand, compressive hydrostatic stress
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influences the lithium solubility decreasing the achievable capacity, namely the lithium ions which can
be stored in the host material. An increase of compressive stress is expected if surface constraints are
considered, because the particle expansion is prevented. Future works should analyse this issue which
can result in a not negligible achievable capacity reduction.
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Abbreviations

The following abbreviations are used in this manuscript:

C Concentration mol/m3

C0 Initial concentration mol/m3

Cmax Maximum concentration mol/m3

Cr Surface concentration mol/m3

D Diffusion coefficient m2/s
Deqv Equivalent diffusion coefficient m2/s
E Young Modulus MPa
F Faraday constant 96485.332 As/mol
I Current density A/m2

J Lithium flux mol/m2s
M Mobility mol· s/Kg
r Radius m
R Particle radius m
Rg Gas constant 8.3145 J/mol K
SOC State of charge -
T Temperature 298 K
u Displacement m
x Normalized radial coordinate -
εc Hoop strain -
εch Chemical strain -
εr Radial strain -
µ Chemical potential J/mol
µ0 Reference chemical potential J/mol
υ Poisson ratio -
σc Hoop stress MPa
σh Hydrostatic stress MPa
σr Radial stress MPa
τ Characteristic time -
Ω Partial molar volume m3/mol
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