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Abstract: In this paper, we investigate the effect of pore size heterogeneity on fluid composition
distribution of multicomponent-multiphase hydrocarbons and its subsequent influence on mass
transfer in shale nanopores. The change of multi-contact minimum miscibility pressure (MMP)
in heterogeneous nanopores was investigated. We used a compositional simulation model with a
modified flash calculation, which considers the effect of large gas–oil capillary pressure on phase
behavior. Different average pore sizes for different segments of the computational domain were
considered and the effect of the resulting heterogeneity on phase change, composition distributions,
and production was investigated. A two-dimensional formulation was considered here for the
application of matrix–fracture cross-mass transfer and the rock matrix can also consist of different
segments with different average pore sizes. Both convection and molecular diffusion terms were
included in the mass balance equations, and different reservoir fluids such as ternary mixture syntactic
oil, Bakken oil, and Marcellus shale condensate were considered. The simulation results indicate
that oil and gas phase compositions vary in different pore sizes, resulting in a concentration gradient
between the two adjacent pores of different sizes. Given that shale permeability is extremely small, we
expect the mass transfer between the two sections of the reservoir/core with two distinct average pore
sizes to be diffusion-dominated. This observation implies that there can be a selective matrix–fracture
component mass transfer as a result of confinement-dependent phase behavior. Therefore, the
molecular diffusion term should be always included in the mass transfer equations, for both primary
and gas injection enhanced oil recovery (EOR) simulation of heterogeneous shale reservoirs.

Keywords: pore size heterogeneity; multicomponent-multiphase hydrocarbons; mass transfer; shale;
minimum miscibility pressure (MMP); large oil-gas capillary pressure

1. Introduction

Benefiting from hydraulic fracturing and horizontal drilling, the production of unconventional oil
and gas has grown rapidly in the past decades, making a great contribution to hydrocarbon production
in North America [1,2].

The pore size in tight rocks is nano-scale, typically 50 nm or even smaller [3]. Due to the nano-scale
radius of curvature of the gas/liquid interface, gas–oil capillary pressure can be up to several hundreds
of psi, and such large capillary pressure may change the properties of hydrocarbon mixtures, such as
phase compositions, density, and viscosity [4–6]. Brusilovsky [7] studied the effect of capillary pressure
on phase behavior by incorporating the capillary pressure in the phase fugacity equations. The results
showed that for hydrocarbon mixtures, the bubble-point pressure decreased, and dew-point pressure
increased as the pore size became smaller. Even though he mentioned that such curvatures were
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unlikely to exist in hydrocarbon reservoirs, recent extensive studies of tight oil resources revealed that
such a phenomenon occurred in the confined space. Nojabaei et al. (2013) [5] further investigated the
effect of high capillary pressure on the entire P-T phase envelop for binary mixtures and the Bakken
fluid. They discovered that, far from the critical point, the shape of phase envelop would change
and including the large oil–gas capillary pressure effect in phase behavior calculations resulted in
bubble-point pressure reduction, while the dew-point pressure either decreased or increased depending
on the pressure. Furthermore, they found that the two-phase oil and gas density and viscosity, as well as
the phase compositions, would be altered by including the capillary pressure effect in flash calculations.

Based on another group of previous studies, the phase behavior of hydrocarbon fluid mixture
deviated from the original pattern in confined spaces due to the shift of critical properties [8,9]. Studies
revealed that the nano-confined physical space could alter the critical pressure and temperatures
as well as the phase envelope. Teklu et al. [10] showed that including critical property shifts could
significantly change the bubble-point and dew-point pressures of mixtures. However, it is still an
open question whether the critical point should change in a confined space, such as a shale matrix.
Furthermore, van der Waals force also affects phase behaviors but the contribution of van der Waals
forces is smaller compared to capillary pressure [11].

In conventional reservoirs, the transportation of hydrocarbon mixture in porous media is governed
by Darcy’s flow. However, in ultra-tight low permeability shales, the pressure gradient and gravitational
drainage are inefficient [12–14]. In such a condition, molecular diffusion may play an important role
in oil recovery and influence mass transport. Numerous computational and experimental research
studies have been done to study the effect of diffusion on oil and gas recovery in fractured shale
reservoirs. Ghorayeb and Firoozabadi [15] studied the fracture parameters on the fluid compositional
distribution. The simulation results revealed that convection took place in high permeability fractures,
and the composition gradient was higher for fractures with a larger width. Darvish et al. [16]
simulated CO2 injection in a fractured reservoir and concluded that the main recovery mechanism
was diffusion and the contribution of gravity drainage was very small. They also pointed out that
cross-phase diffusion was important. Similarly, Hoteit and Firoozabadi [17] also stated that cross-phase
diffusion should be considered and based on the theory of crossflow equilibrium. They proposed
a method by assuming that gas and liquid phases were in equilibrium at the interface. Moortgat
and Firoozabadi [13] indicated the existence of a numerical issue of classical Fick’s model due to
the exclusive definition of the compositional gradient within each phase, and they had numerical
errors when two neighboring grid cells contained single-phase fluids. This problem often occurs with
sharp phase boundaries such as in CO2 saturated fractures. They proposed an alternative model to
evade this problem by replacing the compositional gradient with a chemical potential gradient as
the driving force. Simonnin et al. [18] derived analytical expressions to account for the finite-size
effects on diffusion in confined fluids. Many other studies [19–22] also investigated phase behaviors
and thermodynamic properties under confinement effects. Given that a dual-porosity model is not
appropriate for the simulation of matrix–fracture exchange for a discrete fracture network (DFN), some
researchers [23] used an embedded discrete fracture model (EDFM). Elputranto and Akkutlu [24]
proposed the capillary-end effect phenomenon. The invaded fracturing water could result in a
large gas–water capillary pressure at the fracture-matrix interface and amplify the liquid bock in
the formation.

Regarding the importance of minimum miscibility pressure (MMP) in shale and tight rocks,
Cronin et al. [25] pointed out that traditional concept of multi-contact minimum miscibility pressure
(MCMMP) is based on advection-dominated transport within matrix but not diffusion-dominated mass
transfer and in low permeability rocks, only first contact MMP is important. Other studies pointed out
that the value of MMP would be affected by the nanopore confinement effect (critical properties shift)
in shale [26,27]. Recently, Zhang et al. [28] studied the effect of gas–oil capillary pressure on MMP in
tight rocks, where diffusion is still minimal, and concluded that capillary pressure may influence the
MCMMP, but such effect was negligible for the cases that were examined.
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The effect of nanopore confinement on phase behavior commonly occurs at the nanopore throat of
the shale matrix and will alter the composition of oil and gas compared to the bulk region. In this paper,
we investigated the effect of pore size heterogeneity on the composition distribution of multicomponent
hydrocarbon fluids and its influence on fluid properties, such as density and viscosity. The influence
of diffusion on CO2 MMP within heterogeneous pore size reservoirs is also discussed. We used an
open-source and multifunction reservoir simulator (Matlab Reservoir Simulation Toolbox, MRST [29])
and modified the compositional model of this simulator by including the effect of large gas–oil capillary
pressure on phase behavior in flash calculations and adding the diffusion term in the mass balance
equations. Meanwhile, a core-scale heterogeneous model (using different average pore sizes for
different segments of the computational domain) was considered, and its influence on phase and
composition distributions and production was investigated. A two-dimensional formulation was
considered here to model matrix–fracture cross-mass transfer and both convection and molecular
diffusion terms were included in the mass balance equations. The diffusion behavior of three types of
reservoir fluids, including a ternary mixture, Bakken oil, and Marcellus condensate in heterogeneous
reservoirs was examined.

To estimate MMP of CO2 and oil in a heterogeneous pore size setup, we use a one-dimensional
fully compositional formulation to estimate recoveries.

2. Model and Methodology

The effect of heterogeneous pore-size on fluid transportation and composition distribution was
investigated by using a 2-D compositional simulation model, which considers the effect of the large
gas–oil capillary pressure in the flash calculation, and diffusion in the mass transport model. We
assumed that the equation of states is applicable in nanopores, and the concept of capillary pressure is
still valid in such small pores. We also assumed that Fick’s law is valid in nanopores to describe the
diffusion behavior, however, to accurately evaluate the applicability of such pragmatic larger-scale
concepts and equations depending on the fluid type and pore size, further molecular-scale research
is needed.

Here we explain our flash calculation model, the inclusion of diffusion term, and the
implementation design of pore size heterogeneity in our calculations.

2.1. Flash Calculation with Large Gas–Oil Capillary Pressure

In the study by Nojabaei et al. [30], oil pressure is the reference pressure and large gas–oil capillary
pressure is added to the oil pressure to calculate the gas phase pressure. Considering that there are
uncertainties about the choice of the reference pressure, we modified the phase pressures calculations
to allow for a reference pressure that can be either equal to the oil (liquid) pressure, equal to the gas
(vapor) pressure, or between vapor (PV) and liquid pressure (PL), as shown in the following equations:

PV = Pre f + re f × pc (1)

PL = Pre f − (1− re f ) × pc (2)

pc =
2σ
r

(3)

f V
i (T, PV, y1 · · · yNc) = f L

i (T, PL, x1 · · · xNc), i = 1−NC (4)

where pc is the capillary pressure, re f is the adjusting parameter for the reference pressure, which is
between zero and one, and σ is the oil–gas interfacial tension (IFT). The interfacial tension is calculated
with the Macleod and Sugden correlation [31]:

σ =

 Nc∑
i

Xi(xiρ
L
− yiρ

V)


4

(5)
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where Xi is the parachor of component i, xi is the molar fraction of component i in the liquid phase, yi
is the molar fraction of component i in the vapor phase, ρL is the mass density of the liquid phase, and
ρV is the mass density of the vapor phase.

2.2. Molecular Diffusion Model

For a multicomponent fluid system, the mass conservation for each component is shown as follows

δ
δt
(φ

∑
α

ci
αραSα) + ∇ · (

∑
α

ci
αρα

→
vα +

→

J
i

α) =
∑
α

ci
αραqα (6)

where
→
vα is the overall velocity of phase α, qα is the source term and

→

J
i

α is the Fickian diffusion flow of
phase α. In hydrocarbon mixtures, each phase contains multiple components, and due to Brownian
motion, these components redistribute driven by the concentration or mass fraction gradient. In this
study, the classic Fickian diffusion model was used to describe the diffusion behavior according to

→

J
i

α = −ραSαDi
α∇ci

α (7)

where ci
α is the mass fraction of component i in phase α, ρα is the mass density of phase α, Sα is

the saturation of phase α, Di
α is the diffusion coefficient of component i in phase α. To calculate

diffusion coefficients of components in oil and gas phases, the commonly used Sigmund correlation
(1976a,b) [32,33] is applied:

Di
α =

1− ci
α∑

i, j
ci
α

Di j

(8)

where Di j is the binary diffusion coefficient between component i and j, which is calculated by

Di j =
∂0
αD0

i j

∂α
(0.99589 + 0.096016∂αr − 0.22035∂2

αr + 0.032874∂3
αr) (9)

where ∂α and ∂αr are the molar density and the reduced molar density of phase α; ∂0
αD0

i j is the zero
measure limit of the product and diffusivity in phase α. These factors can be calculated through
these functions:

∂0
αD0

i j =
0.0018583T1/2

σ2
i jΩi jR

(
1

Mi
+

1
M j

)1/2

(10)

∂αr = ∂α

∑nc
i=1 ci

αv5/3
ci∑nc

i=1 ci
αv2/3

ci

(11)

where Mi is the molar weight of component i; σi j is the collision diameter; Ωi j is the collision integral
of the Lennard–Jones potential, and vci is the critical volume of component i. The parameters of σi j and
Ωi j are calculated by the following equations:

σi j =
σi + σ j

2
(12)

σi = (2.3551− 0.087ωi)

(
Tci
Pci

)1/3

(13)

εi = kB(0.7915 + 0.1963ωi)Tci (14)

Ωi j =
1.06036
T0.1561

i j

+
0.193

exp(0.47635Ti j)
+

1.03587
exp(1.52996Ti j)

+
1.7674

exp(3.89411Ti j)
(15)
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where ωi is the acentric factor of component i, Pci and Tci are the critical pressure and temperature of
component i, εi is the characteristic Lennard–Jones energy (ergs), and kB is the Boltzmann’s constant.
The units of the parameters in the above equations are stated in the nomenclature section.

2.3. Heterogeneous Pore-Size Domain Set Up for Matrix–Fracture Interface

To investigate the effect of heterogeneous pore size distribution on fluid properties in fractured
reservoirs, we set up a 2D simulation domain with 10 m in length (y), and 3 mm in width (x) as shown
in Figure 1. The fracture (x = 0) refers to the hydraulic fracture with larger pores, and the matrix
(x = 3 mm) refers to the porous media with nano-scale pores. The half-length of the hydraulic fracture
is 10 m. The pore size is assumed to decrease along the transition zone (from the fracture to the matrix,
i.e., 0 < x < 3 mm). Considering that pore-size only changes in the x-direction and there is no production
well in the simulation domain, there is no viscous flow or mass transfer in the other directions.
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Figure 1. The 2D simulation domain setup, length of 10 m and width of 3 mm with pore size varying
along the x-direction.

The pore size (r) changes along x direction, from 10,000 nm (bulk region) to 10 nm (nanopore
region) and the pore size changes with x based on the following function.

r =
10−5(

1−cos( x
3π)

2 + 0.001
) (16)

The distribution of pore size and initial capillary pressure along the x-direction for different fluids
is shown in Figure 2. Here in our simulation, as x varies from 0 to 3 mm, the pore size (r) decreases from
0.01 mm (= 10000 nm) to 0.00001 mm (= 10 nm). Owing to that the pore-size variation that only occurs
in the x-direction and considering that no production well exists in the reservoir domain, there is no
viscous flow or mass transfer in the y-direction. The flow in the x-direction is driven by the capillary
pressure-induced pressure gradient as well as the concentration gradient-induced molecular diffusion.Energies 2019, 12, x FOR PEER REVIEW 6 of 22 
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2.4. Slim Tube Simulation

Minimum miscibility pressure (MMP) is a key design parameter for gas injection. We used slim
tube simulations to investigate the influence of molecular diffusion and heterogeneous pore size on
MMP. Slim tube experiments are the most common method used to estimate multi-contact MMP. In this
experiment, injection gas displaces oil in a slim tube and oil recovery factors were recorded after 1.2 pore
volume of gas was injected. The oil recovery curve was plotted against pressure and the bend of this
curve indicates MMP. Slim tube simulation is a numerical method to simulate the slim-tube experiment
and we implemented this simulation with MATLAB Reservoir Simulation Toolbox (MRST). Here we
implemented a heterogeneous pore size reservoir in the simulation, and the pore size distribution is
shown in Figure 3.
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3. Results

3.1. Matrix–Fracture System

Nanopores alter the phase behavior of multiphase multicomponent hydrocarbon mixtures, owing
to the large gas–oil capillary pressure. For heterogeneous porous media, phase compositions are
different in pores with different sizes, which would lead to a compositional gradient. As shown in
Figure 4, for a case without any source or sink term (e.g., no production or injection pressure different
from the reservoir pressure), the capillary pressure term in the mass balance equations provides a
pressure gradient for Darcy’s flow, and diffusion is driven by compositional gradient which is the
result of the effect of inclusion of capillary pressure on phase equilibrium calculations.

In this section, we investigate the effect of molecular diffusion on the phase composition changes
within a 2-D fracture-matrix set up for three different types of fluids, i.e., a simple ternary mixture,
Bakken shale oil, and Marcellus shale condensate. We used the ternary mixture to examine the effect of
capillary pressure on viscous flow and discuss the effect of using different reference pressures. In the
last section, we combine both molecular diffusion and capillary pressure in flow and examine this
combined effect on compositional profile and fluid properties.
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3.1.1. Effect of Diffusion on Mass Transfer

To study the effect of heterogeneous pore size on molecular diffusion and its subsequent influence,
we start with a ternary mixture with an overall composition of 45% C1, 35% C4, and 20% C10.
The original mixture is in two phases at the given temperature of 160 ◦F and pressure of 1200 psia.
Note that there is no pressure gradient introduced to the system. The size and properties of the 2D
fracture–matrix domain are shown in Table 1. Here we set large pore sizes for the fracture and very
small pores for the matrix, and we use only one value for permeability to exclude the other effects that
might be connected to heterogeneous permeability. As shown in Figure 3, the pore size changes along
the x-direction from 10,000 to 10 nm. The fluid properties and binary interaction parameters are given
in Tables 2 and 3. In the simulation model, re f = 1 is used to calculate the phase pressure and the
liquid pressure is the reference pressure here. The initial phase composition is altered due to the effect
of capillary pressure, as shown in Figure 5.

Table 1. Properties of the fracture–matrix 2D setup.

Cell Numbers 400 × 10

Size of the system/m 0.003 × 10

Initial pressure/psia 1200

Pore size/nm As shown in Figure 3

Porosity 0.06

Permeability/nd 0.1

Table 2. Compositional data for the C1/C4/C10 system.

Component
Critical

Pressure
(psia)

Critical
Temperature

(R)

Acentric
Factor

Molecular
Weight

(lbm/lb mol)
Parachor

C1 667.2 343.08 0.008 16.043 74.8
C4 551.1 765.36 0.193 58.124 189.6
C10 353.76 1070.831 0.5764 134 372.86

Table 3. Binary interaction parameters for the C1/C4/C10 system.

Component C1 C4 C10

C1 0 0.119 0.008
C4 0.119 0 0.0847
C10 0.008 0.0847 0
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Figure 5. Initial oil and gas phase compositions with and without capillary pressure, ternary mixture.
(In the legends, w. refers to with, and w/o. refers to without.).

It should be noted that here capillary pressure in flow is excluded, and as a result, Darcy flow does
not contribute to fluid transport because the pressure gradient is zero. Mass transfer is only driven
by molecular diffusion caused by the inclusion of the capillary pressure effect in the phase behavior
model. Owing to the large capillary pressure in flash, the phase composition of each component varies
at different pore radius (Figure 5) and changes with diffusion over time, as plotted in Figure 6. The red
horizontal line in Figure 6 represents the initial overall composition. As time goes by, the concentration
of the light component (C1) decreases in the matrix (x > 1.5 mm) but increases in the fracture domain
(x < 1.5 mm) and the concentration difference between them is about 6%. Intermediate components
(C4 and C10) move from the fracture to the tight matrix and the concentration difference is about 5%
and 1.5%, respectively.
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The large oil-gas capillary pressure not only influences the composition distribution but also alters
the phase properties, such as density and viscosity. In Figure 7, the initial viscosities and densities
of oil and gas vary at different locations with different pore sizes. Driven by molecular diffusion,
the densities of oil in fracture and gas in matrix increase while the densities of oil in matrix and gas
in fracture decrease and viscosities have a similar trend. Our results show that as time passes, the
difference of oil fluid properties between fractures and matrix changes up to 50%, while the difference
of gas fluid properties between fractures and matrix changes around 20%.
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ternary mixture.

We extended our investigations to real reservoir fluids, i.e., Bakken shale oil [5] and Marcellus
shale condensate [34] while using the same simulation setup. The reservoir temperatures of Bakken
shale oil and Marcellus shale condensate are at 240 and 150 ◦F, respectively.

The composition distribution and oil/gas viscosity and density of Bakken shale oil and Marcellus
shale condensate are plotted in Figures 8–11. The results of overall composition profiles are similar to
the ones for the ternary mixture. As shown in Figures 8 and 10, for both of these fluids, the composition
of the light component (C1) increases in fracture and decreases in the matrix, while the intermediate
components, i.e., C4, C7-C12 (Bakken oil), and C4, C7 (Marcellus condensate), transfer from the fracture
to the matrix. The change of fluid properties for Bakken fluid is also similar to the ternary mixture.
As shown in Figure 9, the densities and viscosities of oil in fracture and gas in matrix increase while
the densities and viscosities of oil in matrix and gas in fracture decrease. However, for Marcellus
shale condensate, the fluid proprieties are barely changed (Figure 11). This is because the methane
composition is larger (80%) compared to other components and the change methane composition is
minimal (around 3%), which had a negligible effect on the fluid properties.



Energies 2020, 13, 1680 10 of 22

Energies 2019, 12, x FOR PEER REVIEW 10 of 22 

 

increase while the densities and viscosities of oil in matrix and gas in fracture decrease. However, for 

Marcellus shale condensate, the fluid proprieties are barely changed (Figure 11). This is because the 

methane composition is larger (80%) compared to other components and the change methane 

composition is minimal (around 3%), which had a negligible effect on the fluid properties. 

 

Figure 8. The overall composition of C1 (left), C4 (middle), C7-C12 (right) at different times, Bakken shale oil. 

 

 

Figure 9. Oil and gas density/viscosity profiles at different times, Bakken shale oil. 

Figure 8. The overall composition of C1 (left), C4 (middle), C7-C12 (right) at different times, Bakken
shale oil.

Energies 2019, 12, x FOR PEER REVIEW 10 of 22 

 

increase while the densities and viscosities of oil in matrix and gas in fracture decrease. However, for 

Marcellus shale condensate, the fluid proprieties are barely changed (Figure 11). This is because the 

methane composition is larger (80%) compared to other components and the change methane 

composition is minimal (around 3%), which had a negligible effect on the fluid properties. 

 

Figure 8. The overall composition of C1 (left), C4 (middle), C7-C12 (right) at different times, Bakken shale oil. 

 

 

Figure 9. Oil and gas density/viscosity profiles at different times, Bakken shale oil. Figure 9. Oil and gas density/viscosity profiles at different times, Bakken shale oil.



Energies 2020, 13, 1680 11 of 22Energies 2019, 12, x FOR PEER REVIEW 11 of 22 

 

 

Figure 10. The overall composition of C1 (left), C4 (middle), C7 (right) at different times, Marcellus 

shale condensate. 

 

 

Figure 11. Oil and gas density/viscosity profile at different times, Marcellus shale condensate. 

In summary, due to the effect of heterogeneous pore-size distribution, molecular diffusion 

occurs at the fracture–matrix interface. In general, light components move from matrix region to 

fractures, while intermediate and heavier components migrate in the opposite direction, i.e., from 

Figure 10. The overall composition of C1 (left), C4 (middle), C7 (right) at different times, Marcellus
shale condensate.

Energies 2019, 12, x FOR PEER REVIEW 11 of 22 

 

 

Figure 10. The overall composition of C1 (left), C4 (middle), C7 (right) at different times, Marcellus 

shale condensate. 

 

 

Figure 11. Oil and gas density/viscosity profile at different times, Marcellus shale condensate. 

In summary, due to the effect of heterogeneous pore-size distribution, molecular diffusion 

occurs at the fracture–matrix interface. In general, light components move from matrix region to 

fractures, while intermediate and heavier components migrate in the opposite direction, i.e., from 

Figure 11. Oil and gas density/viscosity profile at different times, Marcellus shale condensate.

In summary, due to the effect of heterogeneous pore-size distribution, molecular diffusion occurs
at the fracture–matrix interface. In general, light components move from matrix region to fractures,
while intermediate and heavier components migrate in the opposite direction, i.e., from fracture to
matrix. We should note that the component redistribution happens for all fluids cases and the trends
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are similar, but the change of fluid properties varies with fluid compositions. For Bakken fluid, its
density and viscosity change by 3% and 5%, respectively, but for gas condensate fluid, the density and
viscosity barely change with time.

3.1.2. Inclusion of Capillary Pressure in Flow

Driven by compositional gradient only, fluid overall compositions change over time because
of molecular diffusion. However, capillary pressure itself acts as a driving force and influences the
composition distribution. In this section, we study the effect of capillary pressure inclusion in flow
and flash on mass transfer for the ternary mixture using the same 2D simulation setup. Note that
here molecular diffusion is not included. In our previous research studies [5,30] we found out that
the choice of reference pressure could moderately influence the calculated fluid properties. To assure
that this choice does not significantly influence the composition distributions, we examine different
choices of the reference pressure (re f = 1, re f = 0.5 and re f = 0) to analyze the effect on composition
redistribution. Figure 12 shows the results of composition profiles with different reference pressure
choices after 100 days. It is observed that the light component moves toward the bulk (fracture) region
and the intermediate component moves from the fracture to matrix and this trend is the same as the
previous results when diffusion is considered only. The selection of different reference pressures barely
changes the composition distribution. If the reference phase was chosen to be the liquid (vapor) phase,
i.e., re f = 1 (re f = 0), the composition difference between both sides will reach a maximum (minimum)
value and the difference between the maximum and the minimum value is around 1%.
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Next, the oil and gas properties are calculated with different reference pressure choices. As shown
in Figure 13, for any reference pressure choice, the difference between the fluid properties at the
two ends (matrix and fracture) decreases with time, and this observation is the opposite of what we
observed due to diffusion only. In addition, adopting different reference pressures yields different
density and viscosity distribution.

3.1.3. Diffusion and Capillary Pressure in Flow

To examine the effect of both pressure and concentration gradients, molecular diffusion and
capillary pressure in flow have been incorporated in our simulation model. The ternary mixture fluid
was used and the liquid pressure was selected as the reference pressure, i.e., ref = 1. The results and the
comparison with previous cases are shown in Figures 14 and 15. As shown in Figure 14, for the model
with consideration of only diffusion or capillary pressure (Pc) in flow, the light component accumulates
in the bulk (fracture) region and the concentration of the intermediate component increases in the
matrix nanopores. When both driving forces are considered, the trend of composition redistribution is
amplified compared to either of the single effects. The fluid properties difference at the two boundaries
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increase in the diffusion model but decrease in the model with capillary pressure in flow only. When
both molecular diffusion and capillary pressure in flow are considered, the two effects (black and green
lines) would cancel each other out and the final fluid properties (purple lines) are close to the initial
case (red lines).Energies 2019, 12, x FOR PEER REVIEW 13 of 22 
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3.2. Slim Tube Simulations and MMP

We used slim tube simulations (1D fully compositional model) to investigate the influence of
molecular diffusion and heterogeneous pore size on MMP for Bakken fluid. Three simulation cases are
considered with permeabilities of i.e., 10 µd, 1 µd, and 100 nd. Other reservoir properties are given in
Table 4. For each case, we test different models (with and without diffusion) and different pore size
distributions, i.e., homogenous (10 µm) or heterogeneous pore size (Figure 3). Note that the effect of
capillary pressure is considered in both flow and flash calculations.

Table 4. Properties of slim tube simulation setup.

Cell Numbers 50 × 1

Size of the system/m 50 × 1

Initial pressure/psia 1300/1500/2000/2500/3000/3500 psi

Pore size/nm 10 µm/heterogeneous (Figure 3)

Porosity 0.06

Permeability 10 µd/1 µd/100 nd

Wells position (Injection/production) Left end/Right end (x = 0 m/x = 50 m)
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Figures 16–18 show the recovery curves of C5-C6 of slim tube simulation with 10 µd, 1 µd, and
100 nd permeability, respectively. As shown in these figures, all the C5-C6 curves without diffusion
bend approximately at the same pressure, 2600 psi, even though the pore size distributions are different.
For pressures below this pressure, the C5-C6 recovery for the heterogeneous pore size reservoir is
lower than the case with a homogenous pore size (10 nm) by 15%, but it is higher than the case with a
homogenous pore size (10 µm) by 2%. For the cases with diffusion, it can be seen that the bend in
the recovery curve occurs at higher pressures as permeability is decreasing. If this bending pressure
is extrapolated to a permeability close to zero, as depicted in Figure 19, the extrapolated pressure is
the same as the first contact minimum miscibility pressure (FCMMP) of CO2 and Bakken oil, which
is 4940 psia from the swelling test calculations shown in Figure 20. These results are consistent with
the conclusion of Cronin et al. [25] who found that for diffusion-dominated systems, only FCMMP
is important and MCMMP is not applicable in gas flooding of ultra-tight reservoirs. Similarly, for
pressures lower than the MMP, the recovery of heterogeneous pore size reservoir is lower than 10 nm
pore size homogenous reservoir but higher than 10 µm pore size homogenous case. However, for any
pressure, the recovery of the case with diffusion is lower than the case without diffusion. Furthermore,
for the cases with the same pore size, the recovery difference between with and without diffusion
increases with decreasing of reservoir permeability. The average difference for each case is, 12% (10 µd),
20% (1 µd), and 30% (100 nd).
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4. Discussion

The results showed that the heterogeneous pore size distribution in nano-porous media influences
the distribution of fluid composition. The light components accumulate in the bulk region (or fracture)
and the heavier components accumulate in the nanopore region (shale matrix). Meanwhile, the fluid
properties also vary in these regions. Molecular diffusion and the capillary pressure driven convection
are the two important mechanisms of fluid transport.

Diffusion is driven by the concentration gradient which is a result of different phase compositions
in pores with different sizes. Note that diffusion tends to decrease this phase composition gradient
over time until an equilibrium state is reached. In our study, heterogeneous capillary pressure enlarges
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the concentration gradient due to its effect on phase equilibrium. If capillary pressure is not included
in phase equilibrium calculations, initially, there would not be any composition gradients for the
two-phase multicomponent mixture. Initially, the fraction of light component (i.e., methane) in the gas
phase in the bulk region is smaller than that in nanopores, and the composition of the intermediate
component in the oil phase (i.e., butane) is larger in the bulk region compared to that in the nanopores.
As shown in Figure 21a,b, diffusion reduces the composition gaps of methane in the gas phase and
butane in the oil phase between the fracture and the matrix by transporting methane in the gas phase
from the matrix to the fracture and butane from the fracture to the matrix. In addition, as shown in
Figure 22c, such component migration within phases enlarges the difference of oil (gas) saturation
between bulk and nanopore region. As a result, the overall composition redistributes by diffusion and
fluid properties change accordingly.
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Figure 22. Oil and gas pressure distribution at initial time step (t = 0 d) and final time step (t = 100 d)
for different models, ternary mixture, 1200 psi.

Besides the effect of inclusion of capillary pressure in phase equilibrium, which causes composition
gradients in heterogeneous porous media, the inclusion of capillary pressure in flow also helps transfer
gas from the nanopores to the bulk region. If capillary pressure in flow is considered, as shown in
Figure 22, for the two models with Pc in flow (black and blue lines, re f = 1), the oil pressure in the
fractures is higher than in the matrix so that oil flows from the fracture to the matrix. Meanwhile, the
gas pressure is higher in nanopores (matrix) so that gas flows into the fracture until an equilibrium
state is achieved. Therefore, in a heterogeneous reservoir with a pore size distribution, such as the
fracture–matrix system, the intermediate components would likely migrate with the oil phase from the
fracture into the matrix and light components would transport into the fracture.

Based on the results of the slim tube simulations, for the case of CO2 displacing Bakken fluid,
as reservoir permeability is decreased, the recovery of the intermediate component of Bakken fluid
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is reduced when molecular diffusion is considered. The CO2 composition path as a function of
dimensionless velocity is given in Figure 23. It can be seen that if diffusion is not considered, the CO2

flood is closer to a piston-like displacement, whereas diffusion flattens the CO2 front, which results in
a less effective flood. The results also show that for an ultra-low permeability reservoir, the MMP of
Bakken oil with CO2 increases about 200 psi when diffusion is accounted for. For pressures below the
MMP, the recovery of CO2 displacement decreases as permeability becomes smaller.
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In conclusion, our research suggests that in a nano-porous media with heterogeneous pore size,
there will be a phase and overall compositions redistribution with diffusion and capillary pressure
accounted for. The diffusion mass transfer is comparable to the convective flow only in ultra-tight
rocks with nano–darcy permeability. At the matrix–fracture interface, the light components tend to
move to the fracture and intermediate components tend to accumulate in the matrix. Such mass
transport mechanisms are valid for different shale fluids and the fluid properties will also deviate
from its original values in both fracture and matrix region. For CO2 gas injection, as shown from the
results of 1D simulations, heterogeneous pore size reservoir rarely changes the multi-contact MMP
(MCMMP) but MMP increases for smaller permeabilities when diffusion is considered in the mass
balance equations and it approaches the first-contact MMP (FCMMP) as permeability goes to zero,
which means mass transport is completely diffusion-dominated.

5. Conclusions

The key highlights of this research are:

• For the first time, we proposed a new drive for mass transfer of two-phase oil gas multicomponent
fluids in highly heterogeneous nano-porous media with pore size distribution.

• Owing to the high gas–oil capillary in nanopores, in heterogeneous porous media with a pore size
distribution, phase compositions are altered, and different phase compositions are observed in
pores with different sizes.

• Different phase compositions in neighboring pores (or fracture and matrix) with different pore
sizes result in composition gradients and this phase composition gradient is the driving force for
molecular diffusion.

• A selective component mass transfer is observed at the matrix–fracture interface.
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• Such selective matrix–fracture component mass transfer is caused by diffusion while the inclusion
of capillary pressure in flow will also that.

• The light components accumulate in the bulk region (or fracture) and the heavier components
accumulate in the nanopore region (shale matrix). The maximum compositional change is
around 10%.

• This selective component mass transfer is valid for different shale fluids and the fluid properties
also deviate from original values and the maximum difference is about 5%.

• During primary recovery, diffusion is only important for ultra-tight rocks with permeabilities
smaller than 1 nd. However, for gas injection, diffusion becomes important for reservoirs with
hither permeabilities.

• Based on our results, the heterogeneous pore size reservoir rarely changes the multi-contact MMP.
• The value of MCMMP increases with permeability decreasing and will get to the value of FCMMP

as mass transport is advection-free and completely diffusion-dominated (permeability equals
to zero).
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Nomenclature

PV vapor pressure (psi)
PL liquid pressure (psi)
pc capillary pressure (psi)
re f adjusting parameter for the reference pressure
Xi parachor of component i (g1/4

·cm3/(mol·s1/2))
qα flow of phase α (mol/s)
→

J
i

α
Fickian diffusion flow of phase α

ci
α mass fraction of component i in phase α

ρα mass density of phase α (g/cm3)
Sα saturation of phase α

Di
α diffusion coefficient of component i in phase α (cm2/s)

Di j binary diffusion coefficient between component i and j (cm2/s)
∂α molar density of phase α (mol/cm3)
∂αr reduced molar density of phase α

Mi molar weight of component i (g/mol)
σi j collision diameter
Ωi j collision integral of the Lennard-Jones potential
vci critical volume of component i (cm3/mol)
ωi acentric factor of component i
Pci critical pressure of component i (atm)
Tci critical temperature of component i (K)
εi characteristic Lennard-Jones energy (ergs)
kB Boltzmann’s constant (=1.3805 × −16 ergs/K)
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