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Abstract: A novel state estimation algorithm based on the parameters of a self-learning unscented
Kalman filter (UKF) with a model parameter identification method based on a collaborative
optimization mechanism is proposed in this paper. This algorithm can realize the dynamic self-learning
and self-adjustment of the parameters in the UKF algorithm and the automatic optimization setting
Sigma points without human participation. In addition, the multi-algorithm collaborative optimization
mechanism unifies a variety of algorithms, so that the identification method has the advantages of
member algorithms while avoiding the disadvantages of them. We apply the combination algorithm
proposed in this paper for state of charge (SoC) estimation of power batteries and compare it with
other model parameter identification algorithms and SoC estimation methods. The results showed
that the proposed algorithm outperformed the other model parameter identification algorithms in
terms of estimation accuracy and robustness.

Keywords: unscented Kalman filter; parameter identification; battery management system; state
of charge

1. Introduction

In the past few years, due to the closed-loop self-correction structure of the AF (Adaptive Filtering)
algorithms taking observation residuals as input, the estimation accuracy of states is high, so AF
algorithms have received more attention and have more research results in the field of battery SoC
estimation [1].

For many AF algorithms, the Kalman filter (KF) algorithm is a method for the state estimation of
linear dynamic systems. The advantage of KF is that it can filter out interference signals such as noise,
high changes in measured values, and other inaccuracies in the system, so that it can accurately estimate
the state. To identify system parameters, KF can be used as a unit of Jacobian transformation [2].
However, since most systems, like batteries, are non-linear, the extended Kalman filter (EKF) is proposed
as a variant of the KF algorithm and has been used to deal with the non-linearity of the system [3].
Recently, EKF has attracted wide interest as a method for measuring SoC [4]. In EKF, the nonlinear
system dynamics and model measurements are extended by the Taylor series linearization method,
which linearizes the batteries models at each time step. The state space model compares the predicted
value with the measured value to improve the SoC estimation accuracy of the power battery [2].
However, when a system (such as a lithium-ion battery) has strong non-linearity, the performance
of the EKF algorithm will be severely affected. This is because EKF mainly relies on Taylor series
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linearization to spread the mean and covariance of the state, and the accuracy is so low that it cannot
provide a definitive estimate [3]. In order to improve the state estimation accuracy of EKF in nonlinear
systems, the particle filter (PF) and unscented Kalman Filtering (UKF) are proposed separately. In PF,
Monte Carlo approximation is used for state estimation [3]. The idea is to approximate the conditional
probability density function by selecting some random large particles [3]. This method has higher
efficiency, but at the cost of more complexity. For the UKF, the covariance and average of the states
represented by the fewest sampling points can be achieved by calculating the “sigma point filter”
method. It can minimize errors caused by linearization of non-linear systems. The advantage of UKF is
that it is easier to evaluate the probability distribution than a random nonlinear function [2]. Moreover,
UKF can accurately predict the state of higher-order nonlinear systems (such as a lithium-ion battery)
without calculating a Jacobian matrix. The UKF was implemented in several studies for the SoC
estimation of the batteries. As in References [5,6], an adaptive unscented Kalman filter (AUKF) is
proposed for SoC estimation, which reduces the complexity by adaptively adjusting the covariance of
state values and selecting a zero-state battery hysteresis model. However, from the implementation of
the UKF algorithm, we can find that the position of the Sigma points directly affects the accuracy of
the state estimation by the UKF algorithm. Reference [7] pointed out that when all Sigma points are
distributed in an appropriate ellipsoid centered on the mean, the state estimation based on UKF will
reach the optimal.

In addition, it is known that the estimation accuracy of the AF-based estimator also depends on
the accuracy of the state model and model parameters. Therefore, in recent years, there are a wide
variety of parameter identification methods that have been developed, such as, least square (LS) [8],
intelligent algorithms (such as genetic algorithm (GA) and particle swarm optimization (PSO)) [7,9],
and so on. Simpler LS algorithm can quickly determine the optimal solution of model parameters,
but its advantage is only for linear systems, it has certain limitations for non-linear systems such as
power batteries. Intelligent algorithms can well describe the dynamic characteristics of nonlinear
systems due to good optimization capabilities and low mathematical model requirements. However,
the parameter identification methods based on the intelligent optimization algorithms also have their
own problems. For example, the GA algorithm has the disadvantages of the slow calculation speed
and large computing complexity. The disadvantage of the PSO algorithm is that it is easy to fall into a
local optimum. So, we think that any single algorithm has its advantages and disadvantages.

Based on the above two aspects of analysis (state estimator and state model), in order to improve
the state estimation accuracy of the model-based UKF estimator, we should start from two aspects: one
is to try to achieve the optimal setting of the parameters of the UKF estimator, and the other is to try to
improve the accuracy of the state model. So, this paper proposed a combination algorithm. On the
one hand, the UKF estimator in the combination algorithm can realize the automatic optimal setting
of the parameters in the estimator without human intervention, so that the UKF estimator can run
in the optimal situation. The identification algorithm can realize the precise and rapid identification
of state model parameters through the cooperation of multiple intelligent parameter algorithms.
The improvement of the algorithm from the above two aspects (How to Determine State Estimator
Parameters and How to Identify State Model Parameters) can effectively improve the state estimation
performance of the UKF algorithm, including accuracy, robustness, etc.

The remaining Sections are organized as follows: In Section 2, the first part of the combination
algorithm, that is, the parameter self-learning UKF algorithm, will be introduced in detail. In Section 3,
the second part of the combination algorithm, which is a data-driven model parameter identification
algorithm, is described. Then, we take the SoC estimation of power battery as the application
background and give the overall framework of the combination algorithm proposed in this paper
in Section 4. Also taking the SoC estimation as the application background, the verification and
comparison of the algorithm will appear in Section 5. Finally, the conclusions for this paper are shown
in Section 6.
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2. The Parameter Self-Learning Unscented Kalman Filter Algorithm

As mentioned in Reference [10], that when all Sigma points are distributed in an appropriate
ellipsoid centered on the mean, the state estimation based on UKF will reach the optimal. In the
formula for determining the position of the Sigma points, there are two artificially adjusted parameters:
a spread parameter, α, and a scaling factor, κ. Among them, for the state estimation problem, a scaling
factor, κ, usually takes zero [11]. Therefore, a spread parameter, α, will become the only artificially set
parameter that affects the distribution of Sigma points. Therefore, we hope that the α value can also be
adjusted automatically, thereby improving the estimation accuracy of UKF.

First, the general form of the state and measurement Equation of the UKF algorithm is given as
follows [12]: {

xt = f (xt−1, ut, wt)

yt = h(xt, ut, vt)
(1)

In Equation (1), xt and yt represent the state and measured value at time t. wt and vt represent the
state and measured value noise. The Sigma points of state value are generated by:

x̃t(i) =


x+t−1, i = 0

x+t−1 +
√(

n + λ)P+
t−1 , i = 1, · · · , n

x+t−1 −

√(
n + λ)P+

t−1 , i = n + 1, · · · , 2n

(2)

In Equation (2), λ = α2(n + κ) − n is a scale parameter, α represents the divergence of the Sigma
points, and κ is a scaling factor. Generally, the value of κ is zero. n is the dimension of the state variable
and P+

t−1 is the covariance of the state variable.
The state variable weight and covariance weight for each sigma point are given as:

Wm(i) =

 λ
n+λ , i = 0

1
2(n+λ) , i , 0 (3)

Wc(i) =

 λ
n+λ +

(
1− α2 + β

)
, i = 0

1
2(n+λ) , i , 0

(4)

In Equations (3) and (4), Wm(i) and Wc(i) are the state variable weight and covariance weight for
each sigma point, respectively. β is used to represent the prior knowledge of the distribution of the
state variable. It is generally considered that the optimal value of β is 2.

From the above key steps of the UKF algorithm, it is known that the value of α is extremely
important because the value of α determines the position of the sigma points and the calculation
result of the two kinds of weights, which affects the execution accuracy of the UKF algorithm [13].
In addition, in the traditional UKF algorithm, the parameter α is not updated after the initial time of
the algorithm is set. However, the model parameters have dynamic changes for most systems (such as
the power battery system). Therefore, it is reasonable that the selection of α and the location of sigma
points should be dynamic and automatic [14,15].

Based on the above requirements, this paper proposes a self-learning mechanism of parameter α
based on a grid search algorithm to achieve the purpose of automatically setting and updating key
parameter α in the UKF algorithm.

Based on the grid search algorithm, firstly, we take the one-step estimated value of the state
variable x+t−1(i

)
i = 1, · · · , n as the center, then a certain range of the high-dimensional space Space is

divided into Gr(i) i = 1, · · · , n grid subspaces Sr(i) i = 1, · · · , n. Gr is the number of grid subspaces.
n is the dimension of the state variable. Then, the fitness value f it(Sr(i)) is calculated in each grid
subspace Sr(i) by:

f it(Sr(i)) =
∣∣∣∣h(x̃t

Gr(i), ut, vt
)
− yt

∣∣∣∣ (5)
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In Equation (5), x̃Gr
t (i) = x+t (i) + k·dsr(i), i = 1, · · · , n, k = 1, · · · , Gr(i) is the Sigma point

determined by the grid method and dsr(i) represents the width of each subspace Sr(i) i = 1, · · · , n.
So, the optimal fitness value is:

f itbest = min
∣∣∣ f it(Sr(i))

∣∣∣ (6)

The position determined by the optimal fitness f itbest is the current best position of the sigma
points x̃Gr_best

t (i). That means:

x̃Gr_best
t (i) =


x+t−1, i = 0

x+t−1 +
√(

n + λ)P+
t−1 , i = 1, · · · , n

x+t−1 −

√(
n + λ)P+

t−1 , i = n + 1, · · · , 2n

(7)

From Equation (7), we can calculate the value of λ and α:

λ =

(
x̃Gr_best

t (i) − x+t−1

)2

P+
t−1

− n (8)

α =

√
λ+ n
n + κ

(9)

So far, the parameter self-learning UKF (SLUKF) algorithm proposed in this paper has realized the
automatic learning ability of α parameters. Further, according to the α value determined by the grid
search algorithm, we can calculate the value of the weights Wm(i) and Wc(i) by Equations (3) and (4).

3. State Model Parameter Identification Algorithm

The intelligent optimization algorithms have a wide range of applications due to their strong
global search ability and low mathematical requirements [16]. However, any single optimization
algorithm has its own shortcomings in certain environments, such as large computation and slow
search speed of GA, partial optimality of the PSO, and weak noise suppression of the LS algorithm.
Therefore, an intelligent method based on multi-algorithm collaborative optimization is proposed in
this paper for state model parameters’ identification. We use a mechanism of collaborative optimization
to unify the LS, GA, and PSO algorithms. The identification method has the advantages of the member
algorithms while avoiding the shortcomings of them. It has the high optimization accuracy of the
GA algorithm, and uses the LS algorithm to avoid the problem that GA is easily trapped in local
optimization. In addition, it has the advantages of fast convergence and low complexity of the PSO
algorithm and uses the initialization method based on the GA algorithm to avoid the disadvantage of
the low accuracy of the PSO algorithm (We named the identification algorithm proposed in this paper
is LGA_PSO algorithm). The general process is as follows:

• Determine the initial search space by the LS algorithm:

Step 1: Nonlinear state model is linearized by first-order Taylor series, which can get a rougher
linearization model.

Step 2: We use the LS algorithm to solve the rough linearization model obtained by first-order
Taylor series and get the initial solution of state model Para.

Step 3: Then, we use the initial solution Para as the center of the circle, r as the radius, and n (n is
the dimension of the state variable) as the spatial dimension, and determine the hyper sphere to obtain
the initial search space of the GA algorithm.

rangPara = [min, max] = [(Para − r) ± ε, (Para + r) ± ε] (10)
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where ε is a constant that ε→0.

• Get high accuracy initial population of PSO by the GA algorithm

The PSO population initialization flowchart is shown in Figure 1.

Energies 2020, 13, x FOR PEER REVIEW 5 of 20 

 

• Get high accuracy initial population of PSO by the GA algorithm 

The PSO population initialization flowchart is shown in Figure 1. 

 
Figure 1. The PSO algorithm population initialization flowchart. 

In Figure 1, “Parameter initialization” includes the iteration times ݉݃_ܣܩ, the cross probability ݔ݌, the mutation probability ݉݌ and fitness threshold ݂݅ݐ௦௘௧. 
“Randomly determine the initial population in the initial search space” uses the Equation (11). 

௔ܲ௥௔ீ஺(0)  = (0,1)݉݋ܴ݀݊ܽ  × ݔܽ݉) − ݉݅݊) + ௔ܲ௥௔ (11) 

“Calculating fitness”: Equation (12) is used to calculate the fitness values. ݂݅ݐ(݃)  = (݃)ොݕ|  −  (12) |(݃)ݕ

In Equation (12), ݂݅ݐ(݃) and ݕො(݃) are the fitness values and the estimation of measured value, 
respectively. ݃ =  0, ⋯ is the number of iterations. 

• Get the optimal solution through the PSO algorithm 
The flowchart of determining the optimal solution using the PSO algorithm is shown in Figure 

2. 
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In Figure 1, “Parameter initialization” includes the iteration times mg_GA, the cross probability
px, the mutation probability pm and fitness threshold f itset.

“Randomly determine the initial population in the initial search space” uses the Equation (11).

ParaGA(0) = Random(0, 1) × (max−min) + Para (11)

“Calculating fitness”: Equation (12) is used to calculate the fitness values.

f it(g) =
∣∣∣ŷ(g) − y(g)

∣∣∣ (12)

In Equation (12), f it(g) and ŷ(g) are the fitness values and the estimation of measured value,
respectively. g = 0, · · · is the number of iterations.

• Get the optimal solution through the PSO algorithm

The flowchart of determining the optimal solution using the PSO algorithm is shown in Figure 2.
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In Figure 2, “Parameter initialization” includes the iteration times mg_PSO, the acceleration c1, c2
and fitness threshold f itbest.

“Individual historical optimal solutions and global optimal solutions” includes the best position
and fitness value of individual: pbest,k and f itbest,k, k represents the k-th individual, and the global best
position and fitness value of the whole swarm: pbest

G and f itbest
G.

“The Velocity and Position of the Particles Update” uses the following Equations:

Vk
(
g+

)
= ω×Vk(g) + c1× r1×

(
pbest,k − Partk(g)

)
+ c2× r2× (pbest

G
− Partk(g)

)
(13)

Partk
(
g+

)
= Partk(g) + Vk

(
g+

)
(14)

In Equation (13), r1 and r2 are the random variables distributed uniformly in the range (0, 1) and
ω is the inertia weight.

4. Application of Combination Algorithm in Battery SoC Estimation

The state of charge of batteries is an important indicator for describing the state of the battery [17,18].
Therefore, online high-precision SoC estimation is critical for battery management systems.

Currently, there are a wide variety of SoC estimation algorithms that have been developed to
upgrade the performance of the SoC estimator. Among them, the algorithms that are more suitable
for real-time SoC estimation can be roughly divided into: model-based estimation methods [19] and
data-driven estimation methods [20]. Model-based estimation methods mainly include AF algorithms
(such as EKF and UKF) and observer-based methods (such as sliding mode observer (SMO) and H∞
observer) [21], while data-driven algorithms mainly include Coulomb’s integral algorithm [22], neural
network (NN) algorithm [20], and so on. Because completely data-driven SoC estimation methods
completely consider the power batteries as a black box, the estimation accuracy depends too much on
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the training dataset and the quality of the data collected in real time. The observer-based SoC estimation
method is prone to the poor tracking performance or the undesired chattering phenomena due to
underestimated or overestimated switching gains. In contrast, due to the closed-loop self-correction
structure of the AF algorithms taking observation residuals as input, the estimation accuracy of states
is high, so AF algorithms have received more attention and have more research results [1].

Based on the above analysis and the detailed introduction of the algorithm in Sections 2 and 3,
we take the SoC estimation of battery as the application background in this part and give the complete
framework of the combination algorithm proposed in this paper.

4.1. Power Battery Model

The power battery is a complex system, which is manifested in strong non-linearity. It also has
slow time-varying parameters and fast time-varying parameters that change with time. The process
data has many transient spikes and contains complex environmental noise. It is almost impossible to
establish a simple linear model to characterize its properties. Therefore, the current more common
way is to use the equivalent circuit model (ECM) to simulate the complex charging and discharging
process of power batteries, such as the Rint model, the N-order RC (Resistor-Capacitance circuit)
model (N = 1, 2, · · · ), the Thevenin model, and the PNGV (The Partnership for a New Generation of
Vehicles) model [23]. Except for the Rint model, all are non-linear models. Since the PNGV model
is designed for electric vehicles, in this work, we adopted the PNGV model to introduce the model
parameter identification algorithm based on the data-driven collaboration mechanism. The PNGV
model is shown in Figure 3.
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In Figure 3, Uocv(SoC, T) represents the open circuit voltage related with SoC values and
temperatures, Cb represents the capacitance of battery, Re is the internal resistance of battery, Rp

is the polarized resistance of battery, Cp is the polarized capacitance of battery, Ud is the terminal
voltage of battery, I is the current value of battery, Ub is the voltage of battery across the capacitance Cb,
Up is the voltage of battery across the capacitance Cp, and the battery equivalent model expression is as
follows [9]: 

Ud = Uocv(SoC, T) −Ub −Up − I ×Re.
Ub = (1/Cb)I.

Up = −
(
1/(CpRp

)
)Up +

(
1/Cp

)
× I

(15)

In Equation (15),
.

Ub and
.

Up are the derivation operation of the voltage Ub and Up, respectively.
Then, the discrete model Equation can be obtained from Equation (15) as:

Ud,t = Uocv(SoCt, Tt) −Ub,t −Up,t − It ×Re

Ub,t = Ub,t−1 +
It×∆t

Cb

Up,t = exp
(
−

∆t
CpRp

)
Up,t−1 + Rp × It(1− exp

(
−

∆t
CpRp

)) (16)
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In Equation (16), Ud,t represents the terminal voltage at time t, Uocv(SoCt, Tt) represents the open
circuit voltage related with SoC values and temperatures at time t, Ub,t and Up,t represent the terminal
voltages across Cb and Cp at time t, ∆t represents the sample period, and It represents the current value
at time t.

Based on Equation (16), the parameter vector γ can be obtained. The expression is as follows:

γ =


Cb
Rp

Cp

Re


T

(17)

4.2. Application of Combination Algorithm in Battery SoC Estimation

Based on the PNGV model of Equation (16) and the Coulomb integral SoC calculation method,
the state Equation of the power battery is obtained as follows [24]:

SoCt = SoCt−1 +
η(Tt,It)·∆t

Cn
·It

Ud,t = Uocv(SoCt, Tt) −Ub,t−1 +
It×∆t

Cb
− exp

(
−

∆t
CpRp

)
Up,t−1 + Rp × It

(
1− exp

(
−

∆t
CpRp

))
− It ×Re

(18)

In Equation (18), t represents the sample moment, η(Tt, It) represents the battery capacity factor
related with Tt and It, and Cn represents the rated capacity.

According to Equation (18) and the novel combination framework proposed in this paper, we can
build a flowchart of SoC estimation, which is shown in Figure 4.
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Figure 4. Implementation Flowchart of SoC Estimation Algorithm.

A: “Get initial SoC by Open Circuit Voltage Method” in the initialization part of flowchart: This
step is only used once at the initial moment when the electric vehicle battery management system
(BMS) is powered on. At this time, since the power battery has been left standing for a long enough
time, we think the Equation Ud,(0) = Uocv holds.
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B: In Equation (18), the open-circuit voltage value Uocv(SoCt, Tt) at different SoC and temperatures
is obtained according to the data of the power battery manual and laboratory measurement data.
During the operation of the algorithm proposed in this paper, Uocv(SoCt, Tt) is obtained by looking up
the table through different SoC values and temperatures.

5. Algorithm Verification Analysis and Comparison

Here, we take the battery SoC estimation as the application background and compare it with
traditional methods to verify the advantages of the proposed algorithm in terms of accuracy, robustness,
and complexity. Algorithm verification and comparison are from the following aspects:

• LGA_PSO algorithm accuracy verification and comparison: To achieve SoC estimation,
the LGA_PSO algorithm, LS_GA algorithm (The combination method by LS and GA), offline
identification algorithm, and PSO algorithm are combined with the SLUKF estimation method
proposed in this paper, separately. By comparing the SoC estimation results, the accuracy
advantage of the LGA_PSO algorithm proposed in this paper is verified from the side.

• SLUKF algorithm accuracy verification and comparison: The LGA_PSO algorithm is combined
with the SLUKF algorithm, the UKF algorithm, and the PF algorithm respectively, to realize the
SoC estimation, and the accuracy of the SLUKF algorithm proposed in this paper is verified by
comparing the SoC estimation results.

• In order to verify the robustness advantages of the SLUKF algorithm proposed in this paper,
the estimated performance of the UKF algorithm is compared with the SLUKF algorithm under
different α conditions.

• The complexity of the LGA_PSO_SLUKF algorithm (The combination of the SoC estimation method
proposed in this paper. That is LGA_PSO and SLUKF), GA_SLUKF algorithm (The combination
method by GA and SLUKF), and GA_UKF algorithm (The combination method by GA and UKF)
are compared to verify the complexity advantage of the LGA_PSO_SLUKF algorithm proposed in
this paper.

• The SoC estimation is performed under no-noise, Gaussian noise, and colored noise conditions
to verify the robustness of the LGA_PSO_UKF (The combination method by LGA_PSO and
UKF) algorithm.

5.1. Test Platform and Data Introduction

The experimental verification is divided into two parts:

• The first part: “the verification of the model parameter identification accuracy based on the
LGA_PSO algorithm by hardware-in-the-loop equipment [25]”. In this paper, we use a LG 18,650
battery parameter (shown in Table 1) to set the battery model in the HIL (Hardware-in-the-Loop
and is shown in Figure 5a), and use this battery model to simulate the characteristics of the actual
battery during charge and discharge in this verification process. For the power battery model in
this HIL, we take the actual NEDC (New European Driving Cycle) operating condition discharge
current (shown in Figure 5c) as the model input, measure the output of the power battery model,
and compare it with the LGA_PSO identification results proposed in this paper.

• The second part: “The verification and comparison of the parameter SLUKF algorithm effectiveness
by a test platform with battery charging and discharging equipment (shown in Figure 5b)”. During
this verification process, we use a real LG18650 battery to perform tests to make it discharge
according to the discharge current of the actual NEDC operating conditions (shown in Figure 5c),
and collect its measured SoC value (shown in Figure 5f) and terminal voltage (shown in Figure 5c)
as the true value to analyze and compare the performance of the parameters of the self-learning
UKF algorithm proposed in this article. Also, in this part of the verification process, in order to be
more realistic and close to the actual situation, we add Gaussian white noise and colored noise
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signals to the current under NEDC operating conditions and the collected terminal voltage to
generate noise-containing current and voltage signals (shown in Figure 5d,e).
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Figure 5. The test platform and data. (a) Battery Model in HIL, (b) Test platform. (c) Current values
and terminal voltage values under NEDC condition without noise. (d) Current values and terminal
voltage values under NEDC conditions with Gaussian noise. (e) Current values and terminal voltage
values under NEDC conditions with Color noise. (f) Measured SoC value.

Table 1. The LG 18,650 battery detailed information.

Capacity Nominal Voltage Max Voltage Min Voltage

36 Ah 3.6 V 4.15 V 2.5 V

5.2. LGA_PSO Model Identification Algorithm Accuracy Verification and Comparison

In this part, the parameters’ determination capability of the LGA_PSO algorithm is analyzed.
We used the LGA_PSO algorithm to identify the parameter γ of ECM in Equation (12) within the SoC
range [0.3, 0.9], and based on the identification results, the total internal impedance value of the ECM
Resti is calculated. Then, Resti is compared with the parameter values measured from the battery
model, the results are shown in Table 2.

Table 2. Parameter Identification Results.

SoC (%) Uocv/V Resti/mΩ Rober/mΩ

30 3.5941 2.77 2.75
40 3.6242 1.78 1.79
50 3.6603 1.59 1.63
60 3.7302 1.65 1.62
70 3.8350 1.61 1.65
80 3.9260 1.66 1.68
90 4.0259 1.64 1.69

In Table 2, Uocv is measured open circuit voltage of the battery. Resti represents the total internal
impedance value of the ECM calculated by the LGA_PSO algorithm and Rober represents the total
internal impedance value from the battery model. The result shows that the MaxE (Maximum Error)
of the total internal impedance is 0.02 mΩ, the error is less than 1%. It shows that the LGA_PSO
algorithm proposed in this paper has excellent accuracy in model identification.

Furthermore, we combine the LGA_PSO-based parameter identification algorithm proposed in
this paper, the traditional PSO parameter identification algorithm, the LS_GA parameter identification
algorithm, and an offline algorithm (only using the parameter values given in the LG manual) with
the SLUKF algorithm, respectively. Then, through comparing accuracy of estimating SoC by different
combination algorithms to compare the performance of different model parameter identification
algorithms, the verification results are shown in Figure 6.
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Figure 6. Parameter identification comparison results. (a) Comparison of SoC estimation accuracy.
(b) Comparison of error. Note: The SLUKF (Parameters Self-learning Unscented Kalman Filter) in
the legend of the verification graphs indicate the parameter self-learning UKF algorithm proposed in
this paper.

According to Figure 6a, the comparison results of SoC by the different parameter identification
methods combined with the SLUKF estimator can be known, and the SoC estimation error of different
methods is shown in Figure 6b. It can be found that the SoC estimation error of the LGA_PSO_SLUKF
algorithm is less than 1% while the SoC estimation error of the offline_SLUKF (The combination method
by offline algorithm and SLUKF) method, the LS_ GA_SLUKF (The combination method by LS_GA
and SLUKF) algorithm, and the PSO_SLUKF (The combination method by PSO and SLUKF) algorithm
are about 5%, 2%, and 2.2%. The comparison results demonstrate that the LGA_PSO_SLUKF algorithm
can enhance the accuracy of the SoC estimation. This also reflects that the proposed LGA_PSO
collaborative optimization mechanism method has higher model parameter identification accuracy
than the traditional LS_GA algorithm and PSO algorithm. The reason for this is that although PSO has
a fast convergence speed, the accuracy is low, the GA algorithm converges so slowly that it is difficult
to achieve the desired accuracy in a limited calculation period, and the LS algorithm has poor accuracy
in nonlinear systems. Therefore, the performance of the above algorithms when used alone is worse
than that of a combination algorithm with a cooperative mechanism. In addition, due to the problem
of battery consistency, the offline parameters of the battery cannot reflect the true battery performance
anymore, so that the accuracy of the SoC estimation based on this is not satisfactory.

Finally, the SoC estimation is performed by repeatedly using the LGA_PSO algorithm, LS_GA
algorithm, PSO algorithm, and the offline method in combination with the SLUKF algorithm. The error
comparison results are shown in Table 3.

In Table 3, MaxE is maximum error, and RMSE is root mean square error. And Table 3 shows the
error results of the LGA_PSO_SLUKF method and other traditional methods after repeated operations.
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The results show that the LGA_PSO_SLUKF algorithm with MaxE less than 1% and RMSE less than
0.3% has better accuracy in model recognition than the usual offline _SLUKF method, LS_GA_SLUKF
algorithm, and PSO_SLUKF algorithm.

Table 3. Error stability comparison results.

Algorithm Operation Times MaxE (%) RMSE (%)

Offline_SLUKF 70 [2.7887, 4.2642] [1.7424, 2.9302]
LS_GA_SLUKF 70 [2.1561, 3.8450] [1.1006, 2.5701]

PSO_SLUKF 70 [0.9269, 6.0511] [0.5214, 3.1489]
LGA_PSO_SLUKF 70 [0.3215, 0.7260] [0.1586, 0.2687]

5.3. SLUKF State Estimation Algorithm Accuracy Verification and Comparison

In order to compare and verify the accuracy advantages of the SLUKF-based SoC estimation
method, we used the second part of the test platform introduced in Section 5.1. The comparison
verification process is divided into three cases: a noiseless environment, a white noise environment, and
a colored noise environment [26]. In the above three noise situations, we used the LGA_PSO_SLUKF
algorithm, the LGA_PSO_UKF algorithm, and the LGA_PSO_PF algorithm (The combination method
by LGA_PSO and PF) to perform SoC estimation to compare the performance of each state estimation
method in estimation accuracy under the same model accuracy. Table 4 lists the initial parameters of
the LGA_PSO_SLUKF algorithm.

Table 4. Initial Parameters of SLUKF Algorithm.

α0 β κ popsize px pm ω

10−3 2 0 16 0.8 0.01 0.7928

1. Case 01: SoC estimation under noiseless condition: Firstly, the performance of the
LGA_PSO_SLUKF algorithm, LGA_PSO_UKF algorithm, and LGA_PSO_PF algorithm are
compared under noise-free conditions.

Figure 7 shows that the MaxE of the LGA_PSO_SLUKF estimator is less than 0.4%. The MaxE of
the LGA_PSO_UKF-based SoC estimate and the LGA_PSO_PF-based SoC estimate are about 0.5% and
0.6%, respectively. From the perspective of accuracy, in a noise-free environment, the performance of
the three state estimation methods is equivalent, and the accuracy of the SLUKF algorithm proposed
in this paper is slightly better. The reason is that in a noise-free environment, the system has fewer
disturbances. When the traditional UKF parameter α is selected reasonably, it also has better accuracy.
However, there is a stable error in the PF algorithm estimation.
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Figure 7. Comparison results of state of charge under the noiseless condition. (a) Comparison
of SoC estimation accuracy under noiseless condition. (b) Comparison of the SoC error under
noiseless condition.

2. Case 02: SoC estimation under the Gaussian noise condition. Secondly, under the condition
of Gaussian noise, we compared the performance of the LGA_PSO_SLUKF algorithm, the
LGA_PSO_UKF algorithm, and the LGA_PSO_PF algorithm.

The estimation results are shown in Figure 8. It can be expected that we can find that the
MaxE of the LGA_PSO_SLUKF SoC estimator is about 0.5%. However, the maximum MaxE of
the LGA_PSO_UKF SoC estimator and the maximum error of the LGA_PSO_PF SoC estimator are
approximately 1.1% and 0.8%, respectively. This is because it is difficult for the traditional UKF to give
the optimal position of the Sigma points when the system is disturbed, while the SLUKF algorithm
can still achieve the optimal position of the Sigma points by optimization. Therefore, even in a noisy
environment, the SLUKF algorithm still has good accuracy. In addition, because the number of particles
in the PF algorithm is larger than the number of Sigma points in the traditional UKF algorithm, the
tracking state variance is better, so its accuracy is relatively high. But, this accuracy comes at the
expense of computational complexity.
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Figure 8. Comparison results of state of charge under the Gaussian noise condition. (a) Comparison of
SoC estimation accuracy under the Gaussian noise condition. (b) Comparison of the SoC error under
the Gaussian noise condition.
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3. Case 03: SoC estimation under the colored noise condition. In this case, the performance of
the LGA_PSO_SLUKF method, LGA_PSO_UKF algorithm, and LGA_PSO_PF algorithm under
colored noise conditions will be compared, respectively. Colored noise is added to the current
and terminal voltage. And the comparison results are shown in Figure 9.Energies 2020, 13, x FOR PEER REVIEW 16 of 20 
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Figure 9. Comparison results of state of charge under the Colored noise condition. (a) Comparison of
SoC estimation accuracy under the Colored noise condition. (b) Comparison of the SoC error under the
Colored noise condition.

According to the above comparison process, it can be concluded that because the SLUKF algorithm
proposed in this paper can optimize the position of the Sigma point, it has better anti-interference
performance. The performance is significantly better than the traditional UKF algorithm in a noisy
environment. Because the traditional PF algorithm has a large number of particles, the ability to track
statistics such as state variance is better than UKF. Therefore, its performance is better than the UKF
algorithm in a noisy environment, and even comparable to the SLUKF proposed in this paper. But,
this comes at the expense of computational complexity, which will be explained in a later section.

5.4. Comparison of SLUKF Convergence under Different α Values

By comparing the estimated performance of the SLUKF algorithm and the traditional UKF
algorithm at different α values, the robustness of the proposed SLUKF algorithm and the self-adjusting
effectiveness of the scale parameter α are verified. We set different α values for the SLUKF algorithm
and the UKF algorithm, and then compared the performance of the SLUKF algorithm and the traditional
UKF algorithm. The comparison results are shown in Figure 10.

The comparison results show that the traditional UKF and SLUKF have similar estimation accuracy
when the α parameter value is appropriate (α = 1e − 3), but when the α parameter manually set
by the traditional UKF algorithm is incorrect (α = 0.45 or 0.95), its accuracy is obviously worsened,
or it no longer converges (α = 0.95), while the SLUKF algorithm proposed in this paper can obtain
the appropriate value through its own optimization when the initial α parameter setting is incorrect,
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thereby ensuring the estimation accuracy of the algorithm. Therefore, it has strong robustness and is
suitable for SoC estimation under different working environments.
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Figure 10. Performance comparison of SLUKF and UKF algorithms at different α values. (a) The
comparison results of SoC estimation between SLUKF and UKF (α = 1e − 3). (b) The comparison results
of SoC estimation between SLUKF and UKF (α = 0.45). (c) The comparison results of SoC estimation
between SLUKF and UKF (α = 0.95).

5.5. Verification and Comparison of Computational Complexity of LGA_PSO_LSUKF Algorithm

Here, the complexity of the GA_SLUKF algorithm is compared with the GA_PF (The combination
method by GA and PF) algorithm to verify the advantages of the SLUKF algorithm in computing
complexity. At the same time, the complexity of the GA_SLUKF algorithm and the LGA_PSO_SLUKF
algorithm are compared to verify the advantages of the LGA_PSO collaborative optimization algorithm
proposed in this paper in terms of computational complexity. The comparison results are shown in
Table 5.
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Table 5. Time complexity of SoC estimation comparison results.

SoC Estimation Algorithm Operation Times One Iteration Total Time

GA_SLUKF 70 32.1 ms 96.3 s
GA_PF 70 38.6 ms 115.8 s

LGA_PSO_SLUKF 70 30.4 ms 91.2 s

According to Table 5, it can be seen that one operation time of the LGA_PSO_SLUKF method
is 30.4 ms, and the total time is 91.2 s. One iteration time of the GA_SLUKF algorithm is 32.1 ms,
and the total operation time is 96.3 s. The GA_PF algorithm has an iteration time of 38.6 ms and a
total operation time of 115.8 s. This shows that the convergence speed of the LGA_PSO algorithm
proposed in this paper is significantly better than that of the traditional GA algorithm, while the SLUKF
algorithm proposed in this paper is equivalent to the traditional PF algorithm in accuracy, but it is
significantly better than the traditional PF algorithm in calculation time.

5.6. Comparison of Stability of LGA_PSO_SLUKF Algorithm under Noise Conditions

We know that the stability of the optimization algorithms is relatively weak. The SoC estimator
has very high requirements for the stability of the algorithm. Therefore, the stability of the proposed
LGA_PSO_SLUKF algorithm under different noise environments is validated. The validation results
are plotted in Table 6.

Table 6. Stability verification results of LGA_PSO_SLUKF algorithms.

Noise Operation Times MaxE (%) RMSE (%)

Noiseless 70 [0.3215, 0.7260] [0.1586, 0.2687]
Gaussian Noise 70 [0.4340, 0.8036] [0.2457, 0.4253]
Colored Noise 70 [0.7177, 1.1729] [0.5311, 0.6998]

Based on verification results, we can conclude that the MaxE of the LGA_PSO_SLUKF SoC estimator
is less than 1.2%, and the RMSE is less than 0.7%. It indicates that the stability of the LGA_PSO_SLUKF
algorithm under noise condition is also better, which can meet the engineering requirements.

6. Conclusions

In this paper, we proposed a combined architecture of adaptive filtering. The core innovation
of the architecture is as follows: First, a novel parametric self-learning UKF (SLUKF) algorithm was
proposed in this paper. By optimizing the position of the Sigma points, dynamic self-learning and
self-adjustment of α parameters and weights in the UKF algorithm are achieved, thereby improving the
accuracy of the state estimation of the UKF algorithm. At the same time, for non-linear system models,
such as battery model equivalent circuit models, a collaborative optimization mechanism (LGA_PSO)
method was proposed to track the parameters’ change of the identification model. This mechanism
can well describe the dynamic characteristics of the state model, and quickly and accurately calculate
the model parameters in real time. Finally, this paper applied the proposed combined architecture to
the SoC estimation of power batteries, achieving better estimation accuracy and robustness.

In the verification part, we verified the accuracy, noise immunity, robustness, computational
complexity, and stability of the LGA_PSO and SLUKF algorithms proposed in this paper by comparing
with traditional algorithms. Experimental results showed that compared with the LS_GA algorithm
and the PSO algorithm, the proposed LGA_PSO algorithm has higher accuracy and better stability.
Compared with the traditional UKF algorithm, the SLUKF algorithm has stronger anti-noise and
robustness because it can automatically optimize the position of Sigma points. Compared with
the traditional PF algorithm, the SLUKF algorithm has the same calculation accuracy and lower
calculation complexity.
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