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Abstract: This paper introduces a family of single-stage buck-boost DC/AC inverters for photovoltaic
(PV) applications. The high-gain feature was attained by applying a multi-winding tapped inductor,
and thus, the proposed topologies can generate a grid-level AC output voltage without using
additional high step-up stages. The proposed topologies had a low component count and consisted
of a single magnetic device and three or four power switches. Moreover, the switches were
assembled in a push-pull or half/full-bridge arrangement, which allowed using commercial low-cost
driver-integrated circuits. In this paper, the operation principle and comparison of the proposed
topologies are presented. The feasibility of the proposed topologies was verified by simulations and
experimental tests.
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1. Introduction

The continuous development of distributed photovoltaic (PV) power generation systems arouses
much interest in MIEs/MICs, also known as microinverters. Unlike the string inverters using
series-connected PV panels to achieve a high voltage, microinverters are designed to directly connect
a single PV panel with a low voltage to the grid while providing an individual MPPT and, in turn,
avoiding mismatch losses within the PV array. The “plug-and-play” feature of the microinverter
allows the incorporation of PV modules of different types into a single array, also facilitating its future
expansion and maintenance. To some extent, the labor cost can also be reduced.

In practice, the low DC voltage produced by the PV module (e.g., 20–30 V) and the relatively
high AC voltage of the utility (e.g., 230 V RMS) imply that a high step-up DC-DC stage followed by a
regular inverter is required. Such a straightforward scheme is referred to as the two-stage approach
and is quite popular due to its ease of implementation and control. Yet, the two-stage solution is
costly and the efficiency is reduced. The single-stage microinverter that combines both the voltage
step-up and inversion functions in one power stage can possibly lead to a lower component count
and a reduced cost. Thus, the single-stage inverters have been the focus of recent research activities.
Numerous single-stage boost-derived topologies have been proposed in the literature due to the
inherent voltage step-up capability [1]. The limited voltage gain of the boost-type converter can be
improved by means of integrating tapped inductors, as discussed in [2,3].

Additionally, due to the voltage step-up/down capability, the buck-boost derived topologies can also
be a viable solution for single-stage inverter applications. Thus, a number of buck-boost type single-stage
inverters with low component counts were reported. For instance, single-stage buck-boost inverters
with only three switches were proposed in [4,5], as shown in Figure 1a, where a tapped inductor was
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used as a regular inductor in one half-line cycle and as a fly-back transformer in the subsequent half-line
cycle. Unfortunately, this type of inverter cannot attain the required voltage step-up. As shown in
Figure 1b, a four-switch, single-stage, buck-boost inverter was then presented in [6], which employed
a tapped inductor and the SEPIC converter to increase the voltage gain. However, according to the
operational principles, the turns ratio of the tapped inductor has to be equal to unity, and consequently,
the voltage gain is still limited. Topologies in [7,8] also have only four switches to realize the single-stage
conversion and have the merit of a common terminal between input and output ports. Figure 1c shows
the circuit diagram of the converter in [7]. Another single-stage, buck-boost inverter has the advantage of
reduced magnetic volume and low leakage currents [9]. The topologies in [10–12] were conceived to also
eliminate the leakage currents, but the number of active switches is increased, as observed in Figure 1d.
Furthermore, a differential buck-boost inverter with active power decoupling capability was proposed
in [13,14], where no extra components are required. It has only four switches; on the contrary, a rather
complicated control method is needed. An active buck-boost inverter using an “AC/AC unit” to realize the
buck-boost conversion was introduced in [15,16], as presented in Figure 1e. Yet, each unit consisted of four
switches, and, thus, in total, eight switches are needed for the microinverter. The authors of [17] expanded
this idea to cascaded multilevel buck-boost inverters using H-bridges for each PV panel and a central
AC/AC unit. To improve the efficiency and system reliability, a solution for the current shoot-through
issue was discussed in [18,19] to eliminate the dead-time effect. Moreover, ref. [18] presented a converter
with eight switches and four inductors, while [19] has four switches, four diodes, and six inductors,
which make the topologies quite complicated. The topology in [20] has merits of a wide input voltage
range, low leakage currents, small grid current ripples, and low common-mode voltages. However,
as seen in Figure 1f, it has four high-frequency switches and two bidirectional switches, which are realized
by connecting back-to-back MOSFETs in series. Doing so significantly increases the total number of
switches (i.e., eight). Although the ideas of [4–20] are very interesting, their attained voltage gain is
comparable to the traditional buck-boost converter.

Additional attempts to increase the gain of the buck-boost derived topologies were reported.
For example, in [21] a series connection between a buck-boost converter and the PV array was introduced
to have a higher gain, but the gain improvement was limited. The topology in [22], see Figure 2a,
employed a switched inductor, which can improve the gain by the factor of

√
2 over that of the traditional

buck-boost converter. However, in total, the topology in [22] had four switches, eight diodes, and
four inductors. The tapped-inductor buck-boost inverter topologies presented in [23,24], as shown in
Figure 2b,c, respectively, can achieve a much higher voltage gain than the traditional ones, but the switch
counts were up to eight, whereas [25,26] had five switches, as presented in Figure 2d. The advantage of the
topologies in [25,26] is that only one high-frequency switch was used, and thus, the switching losses were
lower. For the topologies in Figure 2, the main characteristics are further compared in Table 1. According
to Table 1, most of the topologies had a high semiconductor count, from 7 up to 12. The experimental
efficiency of more than 96% was reported in [23]. However, the test was with an input of 100–200 V and a
110-V output, which cannot support the performance with a high-voltage step-up. An efficiency of 86%
was achieved in [25] with a 60-V input, a 230-V output, and 100-W output power, which is reasonable for
a tapped-inductor buck-boost inverter. Yet, the experimental efficiency of the other two proposals was not
reported clearly in the literature.

Table 1. Comparison of the main topologies of the existing single-stage, buck-boost inverters.

Ref. Switches
Count

Diodes
Count

Inductors
Count

Input
Voltage

Output
Voltage

Output
Power Efficiency

[22] 4 8 4 20 V 314 V 100 W /
[23] 8 0 1 Tapped 100–200 V 110 V 500 W >96%

Figure 2b [24] 8 0 1 Tapped 40 V 230 V / /
[25] 5 2 1 Tapped 60 V 230 V 100 W 86%
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Figure 1. Prior-art, single-stage, buck-boost inverters: (a) [5], (b) [6], (c) [7], (d) [12], (e) [15], and (f) [20].

The high switch count of the reviewed converters, the resulting circuit complexity, higher cost,
and lower efficiency, counter the main design goal of producing a simple and low-cost single-stage
inverter. Therefore, more efforts have been made to develop more single-stage, buck-boost inverter
topologies with a high gain and a low switch count. Recently, a family of single-stage, buck-boost
rectifiers with high power factor were proposed in [27], analyzed, and verified in [28]. With the same
principles, a family of tapped-inductor, buck-boost microinverters can be derived by reversing the
power flow. This calls for the application of bidirectional switches. The proposed tapped-inductor,
buck-boost type inverter family is illustrated in Figure 3. The basic operation and the preliminary
simulation study of the two topologies in the family were reported in [29,30], while the converters
have not been experimentally verified, and the design considerations are not fully addressed.
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2 introduces the proposed family, and the operation principles of the proposed family are 
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Section 4, including the analysis of the conversion ratio, turns ratio, and duty cycle constraints 
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2. Single-Stage, Buck-Boost Inverter Family 

As shown in Figure 3, the proposed inverter family makes use of a tapped inductor to attain a 
high step-up voltage conversion ratio. This helps to generate a grid-compatible voltage from a low 
DC voltage source. Two, three, and four winding, tapped-inductor structures are needed. The turns 

Figure 2. Prior-art, single-stage, buck-boost inverters with high gains: (a) [22], (b) [23], (c) [24],
and (d) [25].

Accordingly, in addition to the topologies in [29,30], this paper further introduces two more
practical topologies and all four topologies in the family are presented in detail. More importantly,
a comparison of the proposed family was done thoroughly in terms of the component count, the voltage
conversion ratio, the voltage stress, the peak current stress, and the RMS current stress, which can be
used in the design phase. What is more, more detailed simulation studies for all the topologies in the
family were presented. A prototype of the SSBBI of the proposed family was built and experimental
results are illustrated in this paper. The rest of the paper is organized as follows. Section 2 introduces
the proposed family, and the operation principles of the proposed family are demonstrated on a
topology (i.e., the SSBBI) in Section 3. Circuit characteristics are discussed in Section 4, including the
analysis of the conversion ratio, turns ratio, and duty cycle constraints together with voltage and current
stresses, as design considerations. Simulation results are given in Section 5, where the comparison of
the family is provided. Experimental tests are presented in Section 6 to validate the discussion. Finally,
concluding remarks are provided in Section 7.
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2. Single-Stage, Buck-Boost Inverter Family

As shown in Figure 3, the proposed inverter family makes use of a tapped inductor to attain a
high step-up voltage conversion ratio. This helps to generate a grid-compatible voltage from a low DC
voltage source. Two, three, and four winding, tapped-inductor structures are needed. The turns ratio,
n, of the tapped inductor is defined as follows. For the two-windings inverter topology in Figure 3a,
n = N2/N1. The three-windings topology in Figure 3b has an equal number of primary turns, N1 = N2,
and the turns ratio is defined as n = N3/N1 = N3/N2. The topologies in Figure 3c,d rely on a symmetrical
tapped-inductor structure with an equal turns ratio, defined as n = N3/N1 = N4/N2.

The topology in Figure 3a includes a floating source, a single ground-referenced PWM switch,
Q1, and a ground-referenced line frequency unfolding bridge, Q2–Q5. The topology in Figure 3b
includes a grounded source, a ground-referenced push-pull pair of PWM switches, Q1–Q2, and a
floating line frequency unfolding totem pole, Q3–Q4. The topology in Figure 3c includes a floating
source, a single ground-referenced PWM switch, Q1, and a floating line frequency unfolding totem
pole, Q2–Q3. The topology in Figure 3d includes a grounded source and a ground-referenced full
bridge. Here, the lower switches, Q1–Q3, are PWM devices, whereas the high switch pair can perform
either a simple line frequency unfolding function or be operated as synchronous rectifiers. Since the
body diodes of the high switches are exploited as rectifiers, the reverse recovery capability should be
considered. This can be an issue for silicon-based devices, while the emerging GaN MOSFETs can
deliver the required performance.

To summarize, the proposed inverters have the merits of:

(1) Generating a grid-level AC output voltage from a relatively low DC input voltage without extra
high gain DC-DC converters.

(2) Having a low component count as single-stage topologies consisting of a single magnetic device
and three or four switches.

(3) A push-pull or half/full-bridge arrangement of the switches, where the commercial low-cost
driver-integrated circuits can be easily used.

The proposed tapped-inductor, buck-boost inverter family in Figure 3 was then studied through
simulations. The exploration indicated that the topology in Figure 3d can also help to avoid much of
the practical grounding, driving, and controller interface issues. Additionally, considering the lowest
semiconductor count (see Table 2), the topology in Figure 3d appears as the most attractive candidate
in the family. Hereafter, this topology (i.e., the SSBBI in Figure 3d) is considered in the following
detailed analysis to exemplify the converter operation.

Table 2. Comparison of the component count of the tapped-inductor, buck-boost inverter family.

Topologies Switches Diodes Windings Filter Cap.

Figure 3a 5 1 2 1
Figure 3b 4 2 3 1
Figure 3c 3 2 4 1
Figure 3d 4 0 4 1

3. Operation Principles of the Proposed SSBBI

As shown in Figure 3d, the power stage of the proposed SSBBI included four switches, Q1–Q4,
in a full-bridge arrangement. A tapped inductor, Lcp, with four windings was employed. The output
filter capacitor here was Co and the load was an equivalent resistance, RL, for stand-alone applications.
The voltage across them was the AC output, vo. As mentioned previously, two symmetrical pairs of
windings were used for the tapped inductor. The turns of the primary windings must be the same, i.e.,
N1 = N2. Similarly, equal secondary windings were used, i.e., N3 = N4. The turns ratio of the tapped
inductor was then obtained as n = N3/N1 = N4/N2. The SSBBI can generate a bipolar output voltage
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with the help of the symmetrical structure, and thus, it can achieve the DC-AC inversion. The desired
output voltage can be obtained using any common control strategy of a constant frequency duty cycle.
The operation principle is detailed in the following.

Supposing the converter was operating in the CCM, the SSBBI had two switching states in each
half-line cycle, denoted as states A and B in the positive half-line cycle and A’ and B’ in the negative
half-line cycle. The switching states of the four switches are listed in Table 3, and further illustrated in
Figure 4.

Table 3. Switching states of semiconductor devices.

Switches
Positive Output Voltage Negative Output Voltage

State A State B State A’ State B’

Q1 On Off Off Off
Q2 Off On On On
Q3 Off Off On Off
Q4 On On Off On
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According to the equivalent circuit of state A shown in Figure 4a, the state started at the beginning
of each switching cycle in the positive half-line cycle. Here, the switch Q1 was turned on and the state
lasted for the duration of DTs. In this state, the tapped inductor was charged by the input source, Vin,
through the primary winding N1. The output capacitor, Co, can sustain the output voltage on the load.
As shown in Figure 4b, state B began when the switch Q1 was turned off and lasted for the duration of
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(1 − D)Ts. In this state, the energy stored in the tapped inductor was discharged and released to the
output side through all the four windings of the tapped inductor. During states A and B, when the
output voltage was positive, Q1 and Q2 were switched, while the switch Q3 was maintained off and
Q4 remained on. In comparison, the states A and B were replaced by the states A’ and B’ during the
negative output half-line cycle due to the symmetrical operation principle. The equivalent circuits of
state A’ and B’ are shown in Figure 4c,d, respectively.

The key waveforms of the SSBBI are described in Figure 5, where SQ1–SQ4 are the gating signals
for Q1–Q4 switches, respectively. Due to the symmetry of the SSBBI, it was sufficient to consider its
operation during the positive half cycle. When Q1 was turned on and Q2 was turned off, the primary
winding of the tapped inductor was energized. This caused the magnetizing current of the tapped
inductor to ramp up. When Q1 was turned off and Q2 was turned on, the tapped inductor was
discharged to support the output through all the windings. Thus, the magnetizing current of the
tapped inductor ramped down. Notably, in terms of control of the converter, in grid-tied applications,
the task of the control circuit is to shape the average output current, Io, into a sinusoidal waveform
(see iN4 in Figure 5), while the controller should regulate the output voltage in stand-alone applications.Energies 2019, 12, x FOR PEER REVIEW 8 of 21 
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4. Analysis and Design Considerations of the Proposed SSBBI

4.1. CCM Voltage Gain

In the CCM, the tapped inductor, Lcp, was charged by the input voltage source, Vin, only through the
primary winding N1 or N2 during the time of DTs (state A or A’). However, the output voltage, vo was
stressed on all the four windings of the tapped inductor during the time of (1 − D)Ts (state B or B’). Thus,
according to the volt-sec balance, it gives∫ DTs

0
Vindt+

∫ Ts

DTs

−vo

2n + 2
dt = 0 (1)

which led to that the quasi-steady-state voltage gain of the SSBBI to be calculated as

M =
vo

Vin
= 2(n + 1)

D
1−D

. (2)

It can be recognized from Equation (2) that the SSBBI was a buck-boost type topology and had the
function of voltage step-up/down. A higher gain can be achieved by choosing a proper turns ratio, n.
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4.2. Turns Ratio and Duty Cycle Constraints

It should be noticed that when the tapped inductor is discharged to the output side (see states B
and B’), the voltage across the primary winding must be always less than the DC input voltage,
Vin. Accordingly,

vo

2(n + 1)
< Vin. (3)

In this way, it prevented the discharging current of the tapped inductor to go back to the DC input
source through the body diode of the switch at the lower side. Such a condition should be avoided
since the output voltage would be clamped and the circulating current will lower the efficiency as
well. With this concern, the turns ratio should be designed sufficiently large to make the SSBBI work
properly. Thus,

n >
Vomax

2Vin
− 1. (4)

Moreover, it can be obtained by combining (2) and (3) that

D
1−D

< 1. (5)

Subsequently, the maximum duty ratio, Dmax, should be limited to

Dmax < 0.5. (6)

4.3. Voltage and Current Stress

4.3.1. Voltage Stress of Switches

During state A, the input voltage, Vin, was imposed on the primary winding N1 of the tapped
inductor when the switch Q1 was on. Therefore, the voltage stress on the switch Q3 was the sum of
the input voltage and the induced voltage across the primary winding N2, which was twice the input
voltage, Vin as

VQ3max = 2Vin. (7)

Meanwhile, since the switch Q4 was in on-state, the voltage across the four windings of the tapped
inductor as well as the output voltage, vo, was stressed on the off-state switch Q2. Thus, the maximum
stress of the Q2 will lead to:

VQ2max = 2(n + 1)Vin + Vomax. (8)

The same results can be obtained for the switches Q1 and Q4 in state A’ because of the symmetrical
operation of the SSBBI. The voltage stresses for all the switches are summarized in Table 4.

Table 4. SSBBI switch voltage and current stresses.

Switches Voltage Stress Current Stress

Peak RMS

Q1, Q3 2Vin 2(n + 1)Im + ImVm
Vin

Iacrms

√
3
8

V2
m

V2
in
+ 8

3π
(n+1)Vm

Vin

Q2, Q4 2(n+1)Vin+Vomax Im + ImVm
2(n+1)Vin

Iacrms

√
1 + 4

3π
Vm

(n+1)Vin

4.3.2. Analysis of Current Stress

It was assumed that the output voltage and current of the SSBBI were ideally in phase without
harmonics as {

vo(t) = Vm sinωt
io(t) = Im sinωt

(9)



Energies 2020, 13, 1675 10 of 21

Furthermore, by applying Equations (2) and (9), and replacing the steady-state duty ratio D with
the time-varying duty ratio d(t), it can be obtained that

vo(t)
Vin

= 2(n + 1)
d(t)

1− d(t)
=

Vm sinωt
Vin

(10)

from which the duty ratio, d(t), can be derived as

d(t) =
Vm sinωt

2(n + 1)Vin + Vm sinωt
. (11)

For the proposed SSBBI, the average output current equaled to the average current of the upper
switch, 〈io(t)〉 = iQ2(t)[1 − d(t)], as shown in Figure 6. Therefore, assuming that the current ripples are
negligible, the current amplitude of the switch Q2 can be obtained by combining Equations (9) and
(11) as

iQ2(t) =
〈
io(t)

〉
1− d(t)

= Im sinωt +
ImVm sin2 ωt
2(n + 1)Vin

. (12)
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Thus, the maximum current of the switch Q2 at the peak output voltage can be obtained as

IQ2max = Im +
ImVm

2(n + 1)Vin
. (13)

The squared RMS current of the switch Q2 within a switching period is:

i2Q2rmsTs =
1
Ts

∫ t+Ts

t
i2Q2(t)dt = [1− d(t)]i2Q2(t). (14)

Subsequently, the squared value of the switch RMS current is:

I2
Q2rms =

1
T/2

∫ T/2

0
i2Q2rmsTsdt (15)

with T being the generated output voltage period. Substituting Equations (11), (12), and (14) into
(15) yields

I2
Q2rms =

1
T/2

∫ T/2

0
I2
m sin2 ωt +

I2
mVm sin3 ωt
2(n + 1)Vin

dt= I2
acrms

(
1 +

4
3π

Vm

(n + 1)Vin

)
. (16)

Thus, the RMS current of the switch Q2 is obtained as

IQ2rms = Iacrms

√
1 +

4
3π

Vm

(n + 1)Vin
. (17)
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The current amplitude of the lower switch Q1 is 2(n + 1) times higher than the upper switch
current due to the function of the tapped-inductor turns ratio, n. Thus,

iQ1(t) = 2(n + 1)iQ2(t)= 2(n + 1)Im sinωt +
ImVm sin2 ωt

Vin
. (18)

Therefore, the peak current through the lower switch, Q1, is:

iQ1max = 2(n + 1)Im +
ImVm

Vin
. (19)

The squared value of the lower switch RMS current through the switching period, Ts, is:

i2Q1rmsTs =
1
Ts

∫ t+Ts

t
i2Q1(t)dt = d(t)i2Q1(t). (20)

Since the low switch conducts for half the line period, the squared value of its RMS current on the
line period scale can be calculated as:

I2
Q1rms =

1
T

∫ T

0
i2Q1rmsTsdt. (21)

Substituting Equations (11), (18), and (20) into (21), gives

IQ1rms = Iacrms

√
3
8

V2
m

V2
g
+

8
3π

(n + 1)Vm

Vin
. (22)

With the above analysis, the voltage and current stresses of the SSBBI are summarized in Table 4.

5. Simulation Results and Comparison

5.1. Basic System Operation

Referring to Figure 3d, simulations were carried out to verify the feasibility of the proposed SSBBI
in PSIM software. The key simulation parameters were: Output power Po = 200 W, input voltage
Vin = 48 V, output voltage vo = 110 V/60 Hz, switching frequency fs = 20 kHz, tapped-inductor
magnetizing inductance Lm = 150 µH, turns ratio n = 1.5, and output capacitance Co = 2 µF.
Several control strategies can be applied to control the proposed SSBBI. Initially, to validate the
basic operational principle, the simple open-loop SPWM was used. Simulation results are shown in
Figure 7, which demonstrates that the SSBBI can generate the desired output voltage. This provides
proof of concept of the proposed circuit family for single-stage microinverter applications.

Furthermore, as can be observed in Figure 7a, the circuit simulation results (key waveforms) were
in a close agreement with the analytical results in Figure 5. The gate-driving signals are further shown
in Figure 7b to demonstrate the controllability of the converter. Moreover, the output voltage of the
proposed inverter is given in Figure 7c, as well as the voltage across the switches. It can be observed in
Figure 7c that the SSBI can produce high-quality sinusoidal outputs, and the voltage stresses on the
switches were also in consistency with the analysis. Additionally, the currents flowing through the
power devices under the 200-W output power are presented in Figure 7d, which again agrees with the
theoretical analysis presented in Section 4.
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Figure 7. Key simulation waveforms of the proposed SSBBI: (a) Driving signal and currents on the
switching period scale; (b) driving signals for switches; (c) Vds of the switches in one leg, input,
and output voltage; (d) switch currents on the output period scale.
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The analytical results were further verified by simulations. Key simulated waveforms of the
proposed topologies in Figure 3a–c are shown in Figure 8. It is observed in Figure 8 that all the topologies
of the proposed family can generate a good-quality sinusoidal output voltage. Simulations also support
the theoretically predicted results of the current stress analysis. When comparing the performance of the
topologies in Figure 3a–c with the SSBBI, it can be seen that the four topologies had similar high-quality
output voltage waveforms and the comparable current stress at the same output power. However,
the SSBBI had the lowest semiconductor count and the easier driver implementation, which proved
again the competitiveness of the SSBBI in the family.
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5.2. Comparison of the Proposed Single-Stage, Buck-Boost Inverter Family

To better appreciate the merits of the proposed single-stage inverter family, a detailed comparison
of the proposed topologies is conducted in this section. The voltage conversion ratio of the proposed
family and its derivation under the assumption of the CCM operation is summarized in Table 5.
The benchmarking of the proposed topologies’ voltage conversion ratio with the same turns ratio
n = 2 is further shown in Figure 9a and with the same duty ratio D = 0.5 in Figure 9b. According to
Table 5 and Figure 9, the SSBBI had the largest voltage gain in the family. The peak voltage stress
analysis was performed and is summarized in Table 6. Lastly, Tables 7 and 8 present the results of
the peak current and the RMS current stress analysis of semiconductor devices. As can be seen from
Tables 6–8, the voltage and current stresses of the SSBBI were comparable to other topologies in the
family. Moreover, as mentioned previously, the SSBBI component count was lower by one or two
diodes. Thus, the SSBBI had the optimum circuit composition and characteristics in the family.

Table 5. Comparison of the voltage conversion ratio of the proposed topologies.

Topology Voltage Gain M = vo/Vin

Figure 3a Ma = (n + 1) D
1−D

Figure 3b Mb = (n + 2) D
1−D

Figure 3c Mc =
(n+1)

2
D

1−D

SSBBI M = 2(n + 1) D
1−D
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Table 6. Comparison of the voltage stress.

Topology
Voltage Stress

Low Side Switches High Side Switches Diodes

Figure 3a Vin +
Vomax
n+1 Vomax (n+1)Vin+Vomax

Figure 3b 2Vin (n+2)Vin+Vomax (n+2)Vin+Vomax

Figure 3c Vin +
2Vomax

n+1 2Vomax
(n+1)Vin

2 + Vomax

SSBBI 2Vin 2(n+1)Vin+Vomax /
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Table 7. Comparison of the peak current stress.

Topology
Peak Current Stress

Low Side Switches High Side Switches Diodes

Figure 3a (n + 1)Im + ImVm
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6. Experimental Results and Discussion

6.1. Experimental Results of SSBBI

A 100-W laboratory prototype of the proposed SSBBI was built and tested. The key operation
parameters were: Input voltage, Vin = 48 V; output voltage, vo = 110 V/60 Hz; and switching frequency,
fs = 20 kHz. The prototype’s view and the components arrangement are shown in Figure 10. The board
was designed larger to reserve additional space needed for experimenting with various snubbers and
control schemes. The main components of the prototype are summarized in Table 9. The tapped
inductor was designed according to the design guide provided by Magnetics-Inc [31], including the
magnetic core, the turns, and the wire. A dSPACE system was used to implement the control for the
quick experimental study of the SSBBI.
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6. Experimental Results and Discussion 

6.1. Experimental Results of SSBBI 

A 100-W laboratory prototype of the proposed SSBBI was built and tested. The key operation 
parameters were: Input voltage, Vin = 48 V; output voltage, vo = 110 V/60 Hz; and switching frequency, 
fs = 20 kHz. The prototype’s view and the components arrangement are shown in Figure 10. The board 
was designed larger to reserve additional space needed for experimenting with various snubbers and 
control schemes. The main components of the prototype are summarized in Table 9. The tapped 
inductor was designed according to the design guide provided by Magnetics-Inc [31], including the 
magnetic core, the turns, and the wire. A dSPACE system was used to implement the control for the 
quick experimental study of the SSBBI. 

 
Figure 10. Photo of the experimental prototype of the proposed SSBBI.
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Table 9. Main components of the prototype of the proposed SSBBI.

Components Value/Model

High side switches IPW90R340C3
Low side switches IPW65R125C

Driver ICs 1EDI20N12AF
Primary magnetizing inductance 100 µH

Inductor core 55439A2
Inductor Turns 30/45

Output capacitor 2.2 µF

Experimental results are shown in Figures 11 and 12. Figure 11 presents the gate-driving signals
for switches at the line period scale and at the switching period scale, respectively. The output voltage
and the switch voltage are shown in Figure 12. Observations in Figure 12 clearly indicate that the
output voltage was sinusoidal. The THD of the experimental output voltage was around 5% with
the open-loop control. This verified that the experimental SSBBI prototype operated according to
the theoretical expectations. That is, the proposed SSBBI can achieve the inversion and produce a
high-quality sinusoidal output.
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In addition, as shown in Figure 12, when zooming into the switch voltage waveform, it was
revealed that a voltage spike appeared at the instant of the switch turning off. This is typical for
converters with coupled inductors [32]. For the first version of the prototype, a simple RCD snubber
was used to verify the basic operation principle of the proposed topologies. The efficiency of 75% was
achieved with 100-W output power, where the RCD snubber accounted for a large portion of the total
power losses. Moreover, the voltage spike can be suppressed with an appropriate snubber arrangement
and design to capture and recycle the leakage energy to achieve much higher efficiency according to
the analysis. Snubber details and verification are the subjects of the follow-up research work. What is
more, the voltage gain was slightly lower than the theoretical one due to the power losses. With the
planned regenerative snubber, the power losses will be less and, thus, the practical voltage gain should
be closer to the theoretical one. Overall, the simulation and experimental results were in agreement
with the theoretical analysis. Thus, the effectiveness of the proposed inverter family was verified,
which had the merits of single-stage conversion, low component count, and easy implementation.
These advantages are significant from PV applications, while the efficiency should be further enhanced.

6.2. Comparison of the SSBBI and the State of the Art

After the preliminary experimental test of the SSBBI prototype, the non-optimized performance
of the SSBBI could be compared with its counterparts. The comparison results are shown in Table 10.
According to Table 10, it is known that the SSBBI had the lowest semiconductor count, almost half of
its counterparts. The lower component count makes the SSBBI a simple structure, requiring simpler
driving and auxiliary power supplies. These advantages will lead to lower cost, which is a practical
concern for the microinverters.

Table 10. Comparison of the SSBBI with the state of the art.

Topologies Switches
Count

Diodes
Count

Inductors
Count

Input
Voltage

Output
Voltage

Output
Power Efficiency

[22] 4 8 4 20 V 314 V 100 W /
[23] 8 0 1 Tapped 100–200 V 110 V 500 W >96%

Figure 2b [24] 8 0 1 Tapped 40 V 230 V / /
[25] 5 2 1 Tapped 60 V 230 V 100 W 86%

SSBBI 4 0 1 Tapped 48 V 110 V 100 W 75%

The efficiency performance of the SSBBI was not outperforming, as mentioned previously. With the
theoretical analysis and simulations, the power losses on the RCD snubber were around 15%. Thus,
with a proper regenerative snubber, the efficiency will be more than 85% as predicted, where component
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optimization can further be applied to improve the efficiency. Nevertheless, the efficiency of 85% will
be reasonable for a 100-W, single-stage, buck-boost inverter and comparable with the experimental
efficiency in [25].

7. Conclusions

This paper introduced a family of single-stage, buck-boost inverter topologies. Compared to the
counterparts, the proposed topologies had a lower component count. The key feature of the proposed
family was the application of a multi-winding tapped inductor that helped to attain a higher voltage
gain required in PV applications, as microinverters. The operational principle was discussed in this
paper, which was supported by simulation and experimental results. A stand-alone experimental SSBBI
prototype was designed, built, and tested. Experimental results showed that the proposed topology is
capable of delivering a well-shaped sinusoidal output. However, the practical voltage gain was slightly
lower than theoretical prediction and the efficiency was not at a very satisfactory level due to the RCD
snubber losses and the un-optimized components of the converter, which will be the future work.
Overall, the proposed family can present a viable solution to single-stage microinverter applications.
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Nomenclature

n Turns ratio of the tapped inductor

N1, N2, N3, N4 Windings of the tapped inductor

Q1, Q2, Q3, Q4, Q5 Switches (MOSFETs)

D1, D2 Diodes

Lcp Tapped inductor

RL Equivalent load resistance

Co Output capacitor

Vin Input voltage

iin Input current

vo Output voltage

io Output current

vds1, vds2, vds3, vds4 Drain-source voltage of the switches Q1–Q4

ids1, ids2, ids3, ids4 Currents through the switches Q1–Q4

D Duty cycle

Ts Switching period

iN1, iN2, iN3, iN4 Currents through the windings

SQ1, SQ2, SQ3, SQ4 Gating signals the switches Q1–Q4

Io Average output current

M Voltage gain

Vomax Maximum output voltage

Dmax Maximum duty ratio

VQ1max, VQ2 max, VQ3 max, VQ4 max Voltage stress on the switches Q1–Q4
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vo(t) Time-varying output voltage

io(t) Time-varying output current

Vm Peak output voltage

Im Peak output current

ω Angular frequency

d(t) Time-varying duty ratio

IQ1max, IQ2max Maximum current of the switch Q1, Q2

i2Q1rmsTs, i2Q2rmsTs Squared RMS current of the switch Q1, Q2 within a switching period

I2
Q1rms, I2

Q2rms Squared RMS current of the switch Q1, Q2

IQ1rms, IQ2rms RMS current of the switch Q1, Q2

fs Switching frequency

Lm Tapped-inductor magnetizing inductance

Abbreviations

DC Direct current
AC Alternating current
PV
MIE/MIC

Photovoltaic
Module-integrated electronic/converter

MPPT Maximum power point tracking
SEPIC Single ended primary inductor converter
PWM
MOSFET

Pulse width modulation
Metal oxide semiconductor field-effect transistor

GaN Gallium nitride
SSBBI Single-stage, buck-boost inverter
CCM Continuous conduction mode
SPWM Sinusoidal pulse width modulation
THD
RMS

Total harmonic distortion
Root mean square

RCD Resistor-capacitor-diode
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