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Abstract: This work applies the Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM)
to compute the 1st-order and unmixed 2nd-order sensitivities of a polyethylene-reflected plutonium
(PERP) benchmark’s leakage response with respect to the benchmark’s imprecisely known isotopic
number densities. The numerical results obtained for these sensitivities indicate that the 1st-order
relative sensitivity to the isotopic number densities for the two fissionable isotopes have large
values, which are comparable to, or larger than, the corresponding sensitivities for the total cross
sections. Furthermore, several 2nd-order unmixed sensitivities for the isotopic number densities
are significantly larger than the corresponding 1st-order ones. This work also presents results for
the first-order sensitivities of the PERP benchmark’s leakage response with respect to the fission
spectrum parameters of the two fissionable isotopes, which have very small values. Finally, this work
presents the overall summary and conclusions stemming from the research findings for the total of
21,976 first-order sensitivities and 482,944,576 second-order sensitivities with respect to all model
parameters of the PERP benchmark, as presented in the sequence of publications in the Special Issue
of Energies dedicated to “Sensitivity Analysis, Uncertainty Quantification and Predictive Modeling of
Nuclear Energy Systems”.

Keywords: polyethylene-reflected plutonium sphere; 1st- and 2nd-order sensitivities; isotopic number
density; fission spectrum; expected value; variance and skewness of leakage response

1. Introduction

In Parts I−V [1–5], which are precursors of this work, the Second-Order Adjoint Sensitivity Analysis
Methodology (2nd-ASAM) conceived by Cacuci [6–9] has been successfully applied to the subcritical
polyethylene-reflected plutonium (acronym: PERP) metal fundamental physics benchmark [10] to
compute the exact values of the sensitivities of the PERP’s benchmark leakage response with respect to
the PERP model parameters, as follows:

(i) The 1st- and 2nd-order unmixed and mixed response sensitivities to the 180 group-averaged total
microscopic cross sections [1];

(ii) The 1st- and 2nd-order unmixed and mixed response sensitivities to the 21,600 group-averaged
scattering microscopic cross sections [2];
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(iii) The 1st- and 2nd-order unmixed and mixed response sensitivities to the 120 fission process
parameters [3];

(iv) The 1st- and 2nd-order unmixed and mixed response sensitivities to the 10 source
parameters [4]; and

(v) The 2nd-order mixed response sensitivities involving the isotopic number densities and the other
parameters of the PERP benchmark [5].

Although the geometrical dimensions and material composition of the PERP benchmark have
been detailed in Part I [1], they are summarized for convenient reference in Table 1.

Table 1. Dimensions and material composition of the PERP benchmark.

Materials Isotopes Weight Fraction Density (g/cm3) Zones

Material 1
(plutonium metal)

Isotope 1 (239Pu) 9.3804 × 10−1

19.6
Material 1 is assigned to

zone 1, which has a radius
of 3.794 cm.

Isotope 2 (240Pu) 5.9411 × 10−2

Isotope 3 (69Ga) 1.5152 × 10−3

Isotope 4 (71Ga) 1.0346 × 10−3

Material 2
(polyethylene)

Isotope 5 (C) 8.5630 × 10−1

0.95

Material 2 is assigned to
zone 2, which has an inner
radius of 3.794 cm and an
outer radius of 7.604 cm.

Isotope 6 (1H) 1.4370 × 10−1

As shown in Table 1, the six isotopic number densities correspond to each of the isotopes contained
in the PERP benchmark, respectively. The isotopic number density is one of important parameters that
contribute to the accuracy of the neutron transport calculation, as it appears in the total, scattering
and fission macroscopic cross sections, as well as the source term of the neutron transport equation.
The 1st-order and 2nd-order sensitivities of the leakage response with respect to the isotopic number
densities will be computed by specializing the general expressions derived by Cacuci [6–8] to the PERP
benchmark, and summarizing the respective contributions stemming from the total, scattering and
fission macroscopic cross sections, and the sources, respectively. In addition, this work also presents
results for the 1st-order sensitivities of the leakage response with respect to the fission spectrum
parameters of the two fissionable isotopes, 239Pu and 240Pu, contained in the PERP benchmark.

The 2nd-order sensitivity analysis of the PERP benchmark is completed and concluded in this
work, which is structured as follows: Section 2 presents the computational results for the six first-order
sensitivities of the leakage response with respect to the benchmark’s isotopic number densities. Section 3
presents the 6 × 6 second-order unmixed and mixed sensitivities of the leakage response solely with
respect to the benchmark’s isotopic number densities. Section 4 illustrates the impact of the 1st- and
2nd-order sensitivities on the uncertainties induced in the leakage response by the imprecisely known
isotopic number densities. Section 5 reports the numerical results for the 60 first-order sensitivities to
the fission spectrum. Finally, Section 6 highlights the overall conclusions arising from the pioneering
computations presented in [1–5] and in this work of the 21,976 first-order sensitivities and 482,944,576
second-order sensitivities of the PERP benchmark’s leakage response with respect to the imprecisely
known model parameters of the PERP benchmark.

2. Computation of 1st-Order Sensitivities of the PERP Leakage Response to Isotopic
Number Densities

As described in Part I [1], the neutron flux is computed by solving numerically the neutron
transport equation using the PARTISN [11] multigroup discrete ordinates transport code with a
spontaneous fission source provided by the code SOURCES4C [12] and employing the MENDF71X [13]
618-group cross sections collapsed to G = 30 energy groups, as detailed in [1]. For the PERP benchmark
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under consideration, PARTISN [11] solves the following multi-group approximation of the neutron
transport equation:

Bg(α)ϕg(r, Ω) = Qg(r), g = 1, . . . , G, (1)

ϕg(rd, Ω) = 0, Ω · n < 0, g = 1, . . . , G, (2)

where rd denotes the external radius of the PERP benchmark, and where:

Bg(α)ϕg(r, Ω) , Ω·∇ϕg(r, Ω) + Σg
t (r)ϕ

g(r, Ω)

−

G∑
g′=1

∫
4π

Σg′→g
s

(
r, Ω

′

→ Ω
)
ϕg′

(
r, Ω

′
)
dΩ

′

− χg(r)
G∑

g′=1

∫
4π

(νΣ)g′

f (r)ϕ
g′
(
r, Ω

′
)
dΩ

′

, (3)

Qg(r) ,
N f∑
k=1

λkNk,1FSF
k ν

SF
k

 2√
πak

3bk

e−
akbk

4

∫ Eg

Eg+1
dE e−E/ak sinh

√
bkE. (4)

The vector of model parameters α ,
[
σt;σs;σ f ;ν; p; q; N

]†
, which appears in Equation (1), has

been defined in previous works [1–5] and is reproduced, for convenience, in Appendix A. The total
neutron leakage from the PERP sphere is denoted [1–5] as L(α) and is defined [1–5] as follows:

L(α) ,
∫
Sb

dS
G∑

g=1

∫
Ω·n>0

dΩ Ω · nϕg(r, Ω), (5)

where Sb is the external surface area of the PERP ball.
Of course, L(α) depends on the imprecisely known model parameters through the neutron flux.

For convenient reference, the histogram plot of the leakage for each energy group for the PERP
benchmark is reproduced [1–4] in Figure 1. The value of the total leakage computed using Equation (5)
for the PERP benchmark is 1.7648 × 106 neutrons/sec.
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Figure 1. Histogram plot of the leakage for each energy group for the PERP benchmark.
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The PERP benchmark comprises six isotopes (I = 6) and two materials (M = 2). Since the
respective isotopes are all distinct materials, as specified in Table 1, it follows that only the following
isotopic number densities exist for this benchmark: N1,1, N2,1, N3,1, N4,1, N5,2, N6,2, which implies that:

N ,
[
n1, . . . , nJn

]†
, [N1,1, N2,1, N3,1, N4,1, N5,2, N6,2]

†, Jn = 6. (6)

The isotopic number densities are components of the vectors t, s, f and q, respectively, as defined in
Appendix A. Therefore, the vector of first-order sensitivity of the PERP leakage response to the isotopic
number densities, which will be denoted as ∂L(α)/∂N, comprises the following four components:

∂L(α)
∂n j

=

[
∂L(α)
∂tJσt+ j

]
t=N

+

[
∂L(α)
∂sJσs+ j

]
s=N

+

 ∂L(α)
∂ fJσ f +Jν+ j


f=N

+

∂L(α)
∂qJq+ j


q=N

, j = 1, . . . , Jn. (7)

The contributions arising from the macroscopic total cross sections are computed using the
following particular form of Equation (150) derived in [7]:[

∂L(α)
∂n j

](1)
=

[
∂L(α)
∂tJσt+ j

]
t=N

= −
G∑

g=1

∫
dV

∫
4π

dΩψ(1),g(r, Ω)ϕg(r, Ω)
∂Σg

t (t)

∂n j
, j = 1, . . . , Jn. (8)

The multigroup adjoint fluxesψ(1),g(r, Ω), g = 1, . . . , G, appearing in Equation (8) are the solutions
of the following 1st-Level Adjoint Sensitivity System (1st-LASS) presented in Equations (156) and (157)
of [7]:

A(1),g(α)ψ(1),g(r, Ω) = Ω · nδ(r− rd), g = 1, . . . , G, (9)

ψ(1),g(rd, Ω) = 0, Ω · n > 0, g = 1, . . . , G, (10)

where the adjoint operator A(1),g(α) takes on the following particular form of Equation (149) in [7]:

A(1),g(α)ψ(1),g(r, Ω)

, −Ω·∇ψ(1),g(r, Ω) + Σg
t (t)ψ

(1),g(r, Ω) −
G∑

g′=1

∫
4π

dΩ
′

Σg→g′
s

(
s; Ω→ Ω

′
)
ψ(1),g′

(
r, Ω

′
)

−νΣg
f (f)

G∑
g′=1

∫
4π

dΩ
′

χg′ ψ(1),g′
(
r, Ω

′
)
, g = 1, . . . , G.

(11)

For the PERP benchmark, the parameter n j, j = 1, . . . , Jn corresponds to the isotopic number
density, i.e., n j ≡ Ni j,m j , where the subscripts i j and m j denote, respectively, the isotope and material
associated with the parameter n j. Hence, the following relation holds:

∂Σg
t (t)

∂n j
=
∂Σg

t (t)

∂Ni j,m j

=

∂

[
M∑

m=1

I∑
i=1

Ni,mσ
g
t,i

]
∂Ni j,m j

= σ
g
t,i j

. (12)

Inserting Equation (12) into Equation (8) yields:[
∂L(α)
∂n j

](1)
=

[
∂L(α)
∂tJσt+ j

]
t=N

= −
G∑

g=1

∫
dVσg

t,i j

∫
4π

dΩψ(1),g(r, Ω)ϕg(r, Ω) , j = 1, . . . , Jn. (13)
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The contributions resulting from the macroscopic scattering cross sections are computed using
the following particular form of Equation (151) in [7]:[

∂L(α)
∂n j

](2)
=

[
∂L(α)
∂sJσs+ j

]
s=N

=
G∑

g=1

∫
dV

∫
4π

dΩ ψ(1),g(r, Ω)
G∑

g′=1

∫
4π

dΩ
′ ∂Σg′→g

s (s;Ω
′

→Ω)
∂n j

ϕg′
(
r, Ω

′
)

,

f or j = 1, . . . , Jn.
(14)

Noting that:

∂Σg′→g
s (s;Ω

′

→Ω)
∂n j

=
∂Σg′→g

s (s;Ω
′

→Ω)
∂Ni j ,mj

=
∂

[
M∑

m=1

I∑
i=1

Ni,mσ
g′→g
s,i (s;Ω

′

→Ω)

]
∂Ni j ,mj

=
∂

[
M∑

m=1

I∑
i=1

ISCT∑
l=0

Ni,m(2l+1)σg′→g
s,l,i Pl(Ω

′

·Ω)
]

∂Ni j ,mj
=

ISCT∑
l=0

(2l + 1)σg′→g
s,l,i j

Pl
(
Ω
′

·Ω
)
.

(15)

Inserting Equation (15) into Equation (14), using the addition theorem for spherical harmonics in
one-dimensional geometry, and performing the respective angular integrations yields:[

∂L(α)
∂n j

](2)
=

[
∂L(α)
∂sJσs+ j

]
s=N

=
G∑

g=1

ISCT∑
l=0

(2l + 1)
∫

dVξ(1),gl (r)
G∑

g′=1

σ
g′→g
s,l,i j

ϕ
g′

l (r), j = 1, . . . , Jn, (16)

where:

ϕ
g
l (r) ,

∫
4π

dΩ Pl(Ω)ϕg(r, Ω), (17)

ξ
(1),g
l (r) ,

∫
4π

dΩ Pl(Ω)ψ(1),g(r, Ω). (18)

The contributions stemming from the macroscopic fission cross sections are computed using the
following particular form of Equation (152) in [7]:

[
∂L(α)
∂n j

](3)
=

[
∂L(α)

∂ fJσ f +Jν+ j

]
f=N

=
G∑

g=1

∫
V dV

∫
4π dΩψ(1),g(r, Ω)

G∑
g′=1

∫
4π dΩ

′
∂
[
(νΣ f )

g′
(f)

]
∂n j

χgϕg′
(
r, Ω

′
)

,

f or j = 1, . . . , Jn.

(19)

Inserting the result below:

∂
[(
νΣ f

)g′
(f)

]
∂n j

=
∂
[(
νΣ f

)g′
(f)

]
∂Ni j,m j

=

∂
M∑

m=1

I∑
i=1

Ni,m
(
νσ f

)g′

i

∂Ni j,m j

=

∂
M∑

m=1

I∑
i=1

Ni,mν
g′

i σ
g′

f ,i

∂Ni j,m j

= ν
g′

i j
σ

g′

f ,i j
, (20)

into Equation (19) and performing the respective angular integrations yields:

[
∂L(α)
∂n j

](3)
=

 ∂L(α)
∂ fJσ f +Jν+ j


f=N

=
G∑

g=1

∫
V

dVξ(1),g0 (r)χg
G∑

g′=1

ν
g′

i j
σ

g′

f ,i j
ϕ

g′

0 (r) , j = 1, . . . , Jn, (21)

where:
ϕ

g
0(r) ,

∫
4π

dΩϕg(r, Ω), (22)

ξ
(1),g
0 (r) ,

∫
4π

dΩψ(1),g(r, Ω). (23)
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The contributions arising from the source are computed using the following particular form of
Equation (154) in [7]:

[
∂L(α)
∂n j

](4)
=

∂L(α)
∂qJq+ j


q=N

=
G∑

g=1

∫
V

dV
∫

4π
dΩψ(1),g(r, Ω)

∂Qg(q; r, Ω)

∂n j
, j = 1, . . . , Jn, (24)

where the source Qg is the sum of all sources of neutrons in in group g. Since the PERP benchmark
contains just spontaneous fission sources, it follows that:

Qg = Qg
SF, (25)

where Qg
SF denotes the total spontaneous fission source rate density in group g. The spontaneous

fission source rate density Qg
SF,k in group g for isotope k for the PERP benchmark is modeled by the

following expression:

Qg
SF,k = λkNk,mχ

g
SF,k = λkNk,mFSF

k νSF
k

 2√
πak

3bk
e−

akbk
4

∫ Eg

Eg+1
dE e−E/ak sinh

√
bkE, (26)

where λk is the decay constant for isotope k, and χg
SF,k includes the spontaneous fission branch ratio and

the spontaneous fission neutron spectra, which are approximated by a Watt’s fission spectrum using
two evaluated parameters (ak and bk). The total spontaneous fission source rate density in group g, Qg

SF,
is the sum over all fissionable isotopes, i.e.,:

Qg
SF =

M∑
m=1

N f∑
k=1

Qg
SF,k =

M∑
m=1

N f∑
k=1

λkNk,mχ
g
SF,k. (27)

Since:

∂Qg(q; r, Ω)

∂n j
=

∂Qg
SF

∂Ni j,m j

=

∂
M∑

m=1

N f∑
k=1

λkNk,mχ
g
SF,k

∂Ni j,m j

= λi jχ
g
SF,i j

=
Qg

SF,i j

Ni j,m j

=
Qg

SF,i j

n j
, (28)

the last term on the right side of Equation (28) is inserted into Equation (24), which enables performing
the respective angular integrations to obtain:

[
∂L(α)
∂n j

](4)
=

∂L(α)
∂qJq+ j


q=N

=
1
n j

G∑
g=1

∫
V

dVξ(1),g0 (r)Qg
SF,i j

, j = 1, . . . , Jn. (29)

Adding the partial contributions from Equations (13), (16), (21) and (29) yields the following
complete expression for ∂L(α)/∂n j in terms of the isotopic number density parameter n j ≡ Ni j,m j :

∂L(α)
∂n j

=
4∑

i=1

[
∂L(α)
∂n j

](i)
= −

G∑
g=1

∫
dVσg

t,i j

∫
4π

dΩψ(1),g(r, Ω)ϕg(r, Ω) +
G∑

g=1

ISCT∑
l=0

(2l + 1)
∫

dVξ(1),gl (r)
G∑

g′=1
σ

g′→g
s,l,i j

ϕ
g′

l (r)

+
G∑

g=1

∫
V dVξ(1),g0 (r)χg

G∑
g′=1

ν
g′

j σ
g′

f ,i j
ϕ

g′

0 (r) + 1
n j

G∑
g=1

∫
V dVξ(1),g0 (r)Qg

SF,i j
, f or j = 1, . . . , Jn.

(30)

The 1st-order relative sensitivities corresponding to ∂L(α)/∂n j are defined as S(1)
(
Ni,m

)
,(

∂L/∂N j,m
)(

N j,m/L
)
, i = 1, . . . , I; m = 1, . . . , M. The numerical values of the 1st-order relative sensitivities

S(1)
(
Ni,m

)
of leakage response with respect to the isotope number densities for the six isotopes contained

in the PERP benchmark will be presented in Section 3, below, in the table that comparing these
values with the numerical values of the corresponding 2nd-order unmixed relative sensitivities
S(2)

(
Ni,m, Ni,m

)
,

(
∂2L/∂Ni,m∂Ni,m

)(
Ni,mNi,m/L

)
, j = 1, . . . , I; m = 1, . . . , M.
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3. Computation of the 2nd-Order Mixed and Unmixed Sensitivities of the PERP Leakage
Response with Respect to the Isotopic Number Densities

The complete expression of the 2nd-order sensitivities ∂2L(α)/∂N∂N comprises 16 components,
which stem from the neutron sources and from the total, scattering and fission macroscopic cross
sections. The expression of ∂2L(α)/∂N∂N is as follows:

∂2L
∂n j∂nm2

=
[

∂2L
∂tJσt+ j∂tJσt+m2

]
t=N,t=N

+
[

∂2L
∂tJσt+ j∂sJσs+m2

]
t=N,s=N

+

[
∂2L

∂tJσt+ j∂ fJσ f +Jν+m2

]
t=N, f=N

+
[

∂2L
∂tJσt+ j∂qJq+m2

]
t=N,q=N

+
[

∂2L
∂sJσs+ j∂tJσt+m2

]
s=N,t=N

+
[

∂2L
∂sJσs+ j∂sJσs+m2

]
s=N,s=N

+

[
∂2L

∂sJσs+ j∂ fJσ f +Jν+m2

]
s=N, f=N

+
[

∂2L
∂sJσs+ j∂qJq+m2

]
s=N,q=N

+

[
∂2L

∂ fJσ f +Jν+ j∂tJσt+m2

]
f=N,t=N

+

[
∂2L

∂ fJσ f +Jν+ j∂sJσs+m2

]
f=N,s=N

+

[
∂2L

∂ fJσ f +Jν+ j∂ fJσ f +Jν+m2

]
f=N, f=N

+

[
∂2L

∂ fJσ f +Jν+ j∂qJq+m2

]
f=N,q=N

+
[

∂2L
∂qJq+ j∂tJσt+m2

]
q=N,t=N

+
[

∂2L
∂qJq+ j∂sJσs+m2

]
q=N,s=N

+

[
∂2L

∂qJq+ j∂ fJσ f +Jν+m2

]
q=N, f=N

+
[

∂2L
∂qJq+ j∂qJq+m2

]
q=N,q=N

, f or j = 1, . . . , Jn; m2 = 1, . . . , Jn.

(31)

The 16 components shown on the right-side of Equation (31) are obtained by particularizing
Equations (158), (159), (160), (162), (167), (168), (169), (171), (177), (178), (179), (181), (204), (205), (206)
and (208) in [7] to the PERP benchmark. Thus, the contribution stemming from the macroscopic total
cross sections is obtained by particularizing Equation (158) in [7] to the PERP benchmark, to obtain:

(
∂2L

∂n j∂nm2

)(1)
=

[
∂2L

∂tJσt+ j∂tJσt+m2

]
t=N,t=N

= −
G∑

g=1

∫
V dV

∫
4π dΩψ(1),g(r, Ω)ϕg(r, Ω)

∂2Σt
g(t)

∂n j∂nm2

−

G∑
g=1

∫
V dV

∫
4π dΩ

[
ψ
(2),g
1,i (r, Ω)ψ(1),g(r, Ω) +ψ

(2),g
2,i (r, Ω)ϕg(r, Ω)

]
∂Σt

g(t)
∂nm2

,

f or j = 1, . . . , Jn; m2 = 1, . . . , Jn.

(32)

The 2nd-level adjoint functions ψ(2),g
1,i and ψ

(2),g
2, j , j = 1, . . . , Jn; g = 1, . . . , G, in Equation (32) are the

solutions of the following 2nd-Level Adjoint Sensitivity System (2nd-LASS) presented in Equations
(164)–(166) of [7]:

Bg
(
α0

)
ψ
(2),g
1,i (r, Ω) = −ϕg(r, Ω)

∂Σt
g(t)
∂ni

, i = 1, . . . , Jn; g = 1, . . . , G, (33)

ψ
(2),g
1,i (rd, Ω) = 0, Ω · n < 0; i = 1, . . . , Jn; g = 1, . . . , G, (34)

A(1),g
(
α0

)
ψ
(2),g
2,i (r, Ω) = −ψ(1),g(r, Ω)

∂Σt
g(t)
∂n j

, i = 1, . . . , Jn; g = 1, . . . , G, (35)

ψ
(2),g
2,i (rd, Ω) = 0, Ω · n > 0; i = 1, . . . , Jn; g = 1, . . . , G. (36)

The parameters n j, j = 1, . . . , Jn and nm2 , m2 = 1, . . . , Jn which appear in Equation (32) correspond
to the following isotopic number densities: n j ≡ Ni j,m j and nm2 ≡ Nim2 ,mm2

, respectively; the subscripts
im2 and mm2 denote the isotope and material associated with the parameter nm2 . Consequently, the
following results hold:

∂2Σt
g(t)

∂n j∂nm2

=
∂2Σt

g(t)
∂Ni j,m j∂Nim2 ,mm2

= 0, (37)

∂Σt
g(t)

∂nm2

=
∂Σt

g(t)
∂Nim2 ,mm2

=

∂

(
M∑

m=1

I∑
i=1

Ni,mσ
g
t,i

)
∂Nim2 ,mm2

= σ
g
t,im2

, (38)
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∂Σt
g(t)
∂n j

=
∂Σt

g(t)
∂Ni j,m j

=

∂

(
M∑

m=1

I∑
i=1

Ni,mσ
g
t,i

)
∂Ni j,m j

= σ
g
t,i j

. (39)

Inserting Equations (37)–(39) into Equation (32) yields:

(
∂2L

∂n j∂nm2

)(1)
= −

G∑
g=1

∫
V dV

∫
4π dΩ

[
ψ
(2),g
1, j (r, Ω)ψ(1),g(r, Ω) +ψ

(2),g
2, j (r, Ω)ϕg(r, Ω)

]
σ

g
t,im2

,

f or j = 1, . . . , Jn; m2 = 1, . . . , Jn,
(40)

where the 2nd-level adjoint functions ψ(2),g
1, j , and ψ

(2),g
2, j , j = 1, . . . , Jn; g = 1, . . . , G, are the solutions of the

following particular forms of Equations (33) and (35):

Bg
(
α0

)
ψ
(2),g
1, j (r, Ω) = −σ

g
t,i j
ϕg(r, Ω), j = 1, . . . , Jn; g = 1, . . . , G, (41)

A(1),g
(
α0

)
ψ
(2),g
2, j (r, Ω) = −σ

g
t,i j
ψ(1),g(r, Ω), j = 1, . . . , Jn; g = 1, . . . , G, (42)

while being subject to the boundary conditions shown in Equations (34) and (36).
The contribution stemming from the macroscopic total and scattering cross sections is obtained by

particularizing Equation (159) in [7] to the PERP benchmark, which yields:

(
∂2L

∂n j∂nm2

)(2)
=

[
∂2L

∂tJσt+ j∂sJσs+m2

]
t=N,s=N

=
G∑

g=1

∫
V dV

∫
4π dΩψ

(2),g
1, j (r, Ω)

G∑
g′=1

∫
4π dΩ

′

ψ(1),g′
(
r, Ω

′
) ∂Σg→g′

s (s;Ω→Ω
′

)
∂nm2

+
G∑

g=1

∫
V dV

∫
4π dΩψ

(2),g
2, j (r, Ω)

G∑
g′=1

∫
4π dΩ

′

ϕg′
(
r, Ω

′
) ∂Σg′→g

s (s;Ω
′

→Ω)
∂nm2

,

f or j = 1, . . . , Jn; m2 = 1, . . . , Jn.

(43)

Note the following relations:

∂Σg→g′
s (s; Ω→ Ω

′

)

∂nm2

=
∂Σg→g′

s (s; Ω→ Ω
′

)

∂Nim2 ,mm2

=
ISCT∑
l=0

(2l + 1)σg→g′

s,l,im2
Pl

(
Ω
′

·Ω
)
, (44)

∂Σg′→g
s (s; Ω

′

→ Ω)

∂nm2

=
∂Σg′→g

s (s; Ω
′

→ Ω)

∂Nim2 ,mm2

=
ISCT∑
l=0

(2l + 1)σg′→g
s,l,im2

Pl
(
Ω
′

·Ω
)
. (45)

Inserting the results obtained in Equations (44) and (45) into Equation (43) and performing the
respective angular integrations yields the following expression for Equation (43):

(
∂2L

∂n j∂nm2

)(2)
=

G∑
g=1

ISCT∑
l=0

(2l + 1)
∫

V dVξ(2),g1, j;l (r)
G∑

g′=1
σ

g→g′

s,l,im2
ξ
(1),g′

l (r)

+
G∑

g=1

ISCT∑
l=0

(2l + 1)
∫

V dVξ(2),g2, j;l (r)
G∑

g′=1
σ

g′→g
s,l,im2

ϕ
g′

l (r), f or j = 1, . . . , Jn; m2 = 1, . . . , Jn,
(46)

where:
ξ
(2),g
1, j;l (r) ,

∫
4π

dΩ Pl(Ω)ψ
(2),g
1, j (r, Ω), (47)

ξ
(2),g
2, j;l (r) ,

∫
4π

dΩ Pl(Ω)ψ
(2),g
2, j (r, Ω). (48)
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The contribution stemming from the macroscopic total and fission cross sections is obtained by
particularizing Equation (160) in [7] to the PERP benchmark, which yields:

(
∂2L

∂n j∂nm2

)(3)
=

[
∂2L

∂tJσt+ j∂ fJσ f +Jν+m2

]
t=N, f=N

=
G∑

g=1

∫
V dV

∫
4π dΩψ

(2),g
2, j (r, Ω)

G∑
g′=1

∫
4π dΩ

′

ϕg′
(
r, Ω

′
)
χg

∂
[
(νΣ f )

g′
(f)

]
∂nm2

+
G∑

g=1

∫
V dV

∫
4π dΩψ

(2),g
1, j (r, Ω)

∂[(νΣ f )
g
(f)]

∂nm2

G∑
g′=1

∫
4π dΩ

′

χg′ψ(1),g′
(
r, Ω

′
)
,

f or j = 1, . . . , Jn; m2 = 1, . . . , Jn.

(49)

Note that:

∂
(
νΣ f

)g
(f)

∂nm2

=

∂
M∑

m=1

I∑
i=1

Ni,m
(
νσ f

)g

i

∂Nim2 ,mm2

=

∂
M∑

m=1

I∑
i=1

Ni,mν
g
i σ

g
f ,i

∂Nim2 ,mm2

= ν
g
im2
σ

g
f ,im2

, (50)

∂
(
νΣ f

)g′
(f)

∂nm2

=

∂
M∑

m=1

I∑
i=1

Ni,m
(
νσ f

)g′

i

∂Nim2 ,mm2

=

∂
M∑

m=1

I∑
i=1

Ni,mν
g′

i σ
g′

f ,i

∂Nim2 ,mm2

= ν
g′

im2
σ

g′

f ,im2
. (51)

Inserting Equations (50) and (51) into Equation (49) and performing the respective angular
integrations yields the following expression for Equation (49):

(
∂2L

∂n j∂nm2

)(3)
=

G∑
g=1

∫
V dVχgξ

(2),g
2, j;0 (r)

G∑
g′=1

ν
g′

im2
σ

g′

f ,im2
ϕ

g′

0 (r) +
G∑

g=1

∫
V dVνg

im2
σ

g
f ,im2

ξ
(2),g
1, j;0 (r)

G∑
g′=1

χg′ξ
(1),g′

0 (r),

f or j = 1, . . . , Jn; m2 = 1, . . . , Jn,
(52)

where:
ξ
(2),g
1, j;0 (r) ,

∫
4π

dΩψ
(2),g
1, j (r, Ω), (53)

ξ
(2),g
2, j;0 (r) ,

∫
4π

dΩψ
(2),g
2, j (r, Ω). (54)

The contribution stemming from the macroscopic total cross sections and the source term is
obtained by particularizing Equation (162) in [7] to the PERP benchmark, which yields:

(
∂2L

∂n j∂nm2

)(4)
=

[
∂2L

∂tJσt+ j∂qJq+m2

]
t=N,q=N

=
G∑

g=1

∫
V dV

∫
4π dΩψ

(2),g
2, j (r, Ω)

∂Qg(q;r,Ω)
∂nm2

,

f or j = 1, . . . , Jn; m2 = 1, . . . , Jn.
(55)

Note that:

∂Qg(q; r, Ω)

∂nm2

=
∂Qg

SF
∂nm2

=

∂
M∑

m=1

N f∑
k=1

λkNk,mχ
g
SF,k

∂Nim2 ,mm2

= λm2χ
g
SF,im2

=
Qg

SF,im2

Nim2 ,mm2

=
Qg

SF,im2

nm2

. (56)

Inserting Equation (56) into Equation (55), yields the following simplified expression for
Equation (55):

(
∂2L

∂n j∂nm2

)(4)
=

1
nm2

G∑
g=1

∫
V

dVξ(2),g2, j;0 (r)Q
g
SF,im2

, j = 1, . . . , Jn; m2 = 1, . . . , Jn. (57)
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The contribution stemming from the macroscopic scattering and total cross sections is obtained by
particularizing Equation (167) in [7] to the PERP benchmark, which yields:

(
∂2L

∂n j∂nm2

)(5)
=

[
∂2L

∂sJσs+ j∂tJσt+m2

]
s=N,t=N

= −
G∑

g=1

∫
V dV

∫
4π dΩ

[
θ
(2),g
1, j (r, Ω)ψ(1),g(r, Ω) + θ

(2),g
2, j (r, Ω)ϕg(r, Ω)

]
∂Σt

g(t)
∂nm2

,

f or j = 1, . . . , Jn; m2 = 1, . . . , Jn,

(58)

where the 2nd-level adjoint functions θ(2),g1, j , and θ
(2),g
2, j , j = 1, . . . , Jn; g = 1, . . . , G, are the solutions of the

following 2nd-Level Adjoint Sensitivity System presented in Equations (164)–(166) of [7]:

Bg
(
α0

)
θ
(2),g
1, j (r, Ω) =

G∑
g′=1

∫
4π

dΩ
′ ∂Σg′→g

s (s; Ω
′

→ Ω)

∂n j
ϕg′

(
r, Ω

′
)
, j = 1, . . . , Jn; g = 1, . . . , G, (59)

θ
(2),g
1, j (rd, Ω) = 0, Ω · n < 0; j = 1, . . . , Jn; g = 1, . . . , G, (60)

A(1),g
(
α0

)
θ
(2),g
2, j (r, Ω) =

G∑
g′=1

∫
4π

dΩ
′

ψ(1),g′
(
r, Ω

′
) ∂Σg→g′

s (s; Ω→ Ω
′

)

∂n j
, j = 1, . . . , Jn; g = 1, . . . , G, (61)

θ
(2),g
2, j (rd, Ω) = 0, Ω · n > 0; j = 1, . . . , Jn; g = 1, . . . , G. (62)

For the PERP benchmark, the following relation holds:

∂Σg→g′
s (s; Ω→ Ω

′

)

∂n j
=
∂Σg→g′

s (s; Ω→ Ω
′

)

∂Ni j,m j

=
ISCT∑
l=0

(2l + 1)σg→g′

s,l,i j
Pl

(
Ω
′

·Ω
)
. (63)

Inserting Equations (15), (38) and (63) into Equations (59), (61) and (58) reduces the latter equation
to the following expression:

(
∂2L

∂n j∂nm2

)(5)
= −

G∑
g=1

∫
V dVσg

t,im2

∫
4π dΩ

[
θ
(2),g
1, j (r, Ω)ψ(1),g(r, Ω) + θ

(2),g
2, j (r, Ω)ϕg(r, Ω)

]
,

f or j = 1, . . . , Jn; m2 = 1, . . . , Jn,
(64)

where the 2nd-level adjoint functions θ(2),g1, j , and θ
(2),g
2, j , j = 1, . . . , Jn; g = 1, . . . , G, are the solutions of the

following particular forms of Equations (59) and (61):

Bg
(
α0

)
θ
(2),g
1, j (r, Ω) =

G∑
g′=1

ISCT∑
l=0

(2l + 1)σg′→g
s,l,i j

Pl(Ω)φ
g′

l (r), j = 1, . . . , Jn; g = 1, . . . , G, (65)

A(1),g
(
α0

)
θ
(2),g
2, j (r, Ω) =

G∑
g′=1

ISCT∑
l=0

(2l + 1)σg→g′

s,l,i j
Pl(Ω)ξ

(1),g′

l (r), j = 1, . . . , Jn; g = 1, . . . , G, (66)

while being subject to the boundary conditions shown in Equations (60) and (62). Due to symmetry, the

result obtained in Equation (64) for
(

∂2L
∂n j∂nm2

)(5)
=

[
∂2L

∂sJσs+ j∂tJσt+m2

]
s=N,t=N

must equal to the result obtained

in Equation (46) for
(

∂2L
∂n j∂nm2

)(2)
=

[
∂2L

∂tJσt+ j∂sJσs+m2

]
t=N,s=N

.
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The contribution stemming from the macroscopic scattering cross sections is obtained by
particularizing Equation (168) in [7] to the PERP benchmark, which yields:

(
∂2L

∂n j∂nm2

)(6)
=

[
∂2L

∂sJσs+ j∂sJσs+ j

]
s=N,s=N

=
G∑

g=1

∫
V dV

∫
4π dΩψ(1),g(r, Ω)

G∑
g′=1

∫
4π dΩ

′

ϕg′
(
r, Ω

′
) ∂2Σg′→g

s (s;Ω
′

→Ω)
∂n j∂nm2

+
G∑

g=1

∫
V dV

∫
4π dΩθ

(2),g
1, j (r, Ω)

G∑
g′=1

∫
4π dΩ

′

ψ(1),g′
(
r, Ω

′
) ∂Σg→g′

s (s;Ω→Ω
′

)
∂nm2

+
G∑

g=1

∫
V dV

∫
4π dΩθ

(2),g
2, j (r, Ω)

G∑
g′=1

∫
4π dΩ

′

ϕg′
(
r, Ω

′
) ∂Σg′→g

s (s;Ω
′

→Ω)
∂nm2

,

f or j = 1, . . . , Jn; m2 = 1, . . . , Jn.

(67)

Noting that:
∂2Σg′→g

s (s; Ω
′

→ Ω)

∂n j∂nm2

= 0, (68)

and inserting Equations (44) and (45) into Equation (67) yields the following expression for the
latter equation:

(
∂2L

∂n j∂nm2

)(6)
=

G∑
g=1

ISCT∑
l=0

(2l + 1)
∫

V dVΘ(2),g
1, j;l (r)

G∑
g′=1

σ
g→g′

s,l,im2
ξ
(1),g′

l (r) +
G∑

g=1

ISCT∑
l=0

(2l + 1)
∫

V dVΘ(2),g
2, j;l (r)

G∑
g′=1

σ
g′→g
s,l,im2

ϕ
g′

l (r),

f or j = 1, . . . , Jn; m2 = 1, . . . , Jn,
(69)

where:
Θ(2),g

1, j;l (r) ,
∫

4π
dΩ Pl(Ω)θ

(2),g
1, j (r, Ω), (70)

Θ(2),g
2, j;l (r) ,

∫
4π

dΩ Pl(Ω)θ
(2),g
2, j (r, Ω). (71)

The contribution stemming from the macroscopic scattering and fission cross sections is obtained
by particularizing Equation (169) in [7] to the PERP benchmark, which yields:

(
∂2L

∂n j∂nm2

)(7)
=

[
∂2L

∂sJσs+ j∂ fJσ f +Jν+m2

]
s=N, f=N

=
G∑

g=1

∫
V dV

∫
4π dΩθ

(2),g
1, j (r, Ω)

∂
[
(νΣ f )

g
(f)

]
∂nm2

G∑
g′=1

∫
4π dΩ

′

χg′ψ(1),g′
(
r, Ω

′
)

+
G∑

g=1

∫
V dV

∫
4π dΩθ

(2),g
2, j (r, Ω)

G∑
g′=1

∫
4π dΩ

′

ϕg′
(
r, Ω

′
)
χg

∂
[
(νΣ f )

g′
(f)

]
∂nm2

,

f or j = 1, . . . , Jn; m2 = 1, . . . , Jn.

(72)

Inserting Equations (50) and (51) into Equation (72) yields the following expression for the
latter equation:

(
∂2L

∂n j∂nm2

)(7)
=

G∑
g=1

∫
V dVνg

im2
σ

g
f ,im2

Θ(2),g
1, j;0 (r)

G∑
g′=1

χg′ξ
(1),g′

0 (r) +
G∑

g=1

∫
V dVχgΘ(2),g

2, j;0 (r)
G∑

g′=1
ν

g′

im2
σ

g′

f ,im2
ϕ

g′

0 (r),

f or j = 1, . . . , Jn; m2 = 1, . . . , Jn.
(73)

where:
Θ(2),g

1, j;0 (r) ,
∫

4π
dΩθ

(2),g
1, j (r, Ω), (74)

Θ(2),g
2, j;0 (r) ,

∫
4π

dΩθ
(2),g
2, j (r, Ω). (75)
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The contribution stemming from the macroscopic scattering cross sections and the source term is
obtained by particularizing Equation (171) in [7] to the PERP benchmark, which yields:

(
∂2L

∂n j∂nm2

)(8)
=

[
∂2L

∂sJσs+ j∂qJq+m2

]
s=N,q=N

=
G∑

g=1

∫
V dV

∫
4π dΩθ

(2),g
2, j (r, Ω)

∂Qg(q;r,Ω)
∂nm2

,

f or j = 1, . . . , Jn; m2 = 1, . . . , Jn.
(76)

Inserting Equation (56) into Equation (76) yields the following expression for Equation (76):

(
∂2L

∂n j∂nm2

)(8)
=

1
nm2

G∑
g=1

∫
V

dVΘ(2),g
2, j;0 (r)Q

g
SF,im2

, j = 1, . . . , Jn; m2 = 1, . . . , Jn. (77)

The contribution stemming from the macroscopic fission and total cross sections is obtained by
particularizing Equation (177) in [7] to the PERP benchmark, which yields:

(
∂2L

∂n j∂nm2

)(9)
=

[
∂2L

∂ fJσ f +Jν+ j∂tJσt+m2

]
f=N,t=N

= −
G∑

g=1

∫
V dV

∫
4π dΩ

[
u(2),g

1, j (r, Ω)ψ(1),g(r, Ω) + u(2),g
2, j (r, Ω)ϕg(r, Ω)

]
∂Σt

g(t)
∂nm2

,

f or j = 1, . . . , Jn; m2 = 1, . . . , Jn,

(78)

where the 2nd-level adjoint functions u(2),g
1, j , and u(2),g

2, j , j = 1, . . . , Jn; g = 1, . . . , G, are the solutions of the
following 2nd-Level Adjoint Sensitivity System presented in Equations (183)–(185) of [7], namely:

Bg
(
α0

)
u(2),g

1, j (r, Ω) =
G∑

g′=1

∫
4π

dΩ
′

ϕg′
(
r, Ω

′
)
χg
∂
[(
νΣ f

)g′
(f)

]
∂n j

, j = 1, . . . , Jn; g = 1, . . . , G, (79)

u(2),g
1, j (rd, Ω) = 0, Ω · n < 0; j = 1, . . . , Jn; g = 1, . . . , G, (80)

A(1),g
(
α0

)
u(2),g

2, j (r, Ω) =
∂
[(
νΣ f

)g
(f)

]
∂n j

G∑
g′=1

∫
4π

dΩ
′

ψ(1),g′
(
r, Ω

′
)
χg′ , j = 1, . . . , Jn; g = 1, . . . , G, (81)

u(2),g
2, j (rd, Ω) = 0, Ω · n > 0; j = 1, . . . , Jn; g = 1, . . . , G. (82)

For the PERP benchmark, the following relation holds:

∂
[(
νΣ f

)g
(f)

]
∂n j

=
∂
[(
νΣ f

)g
(f)

]
∂Ni j ,m j

=

∂
M∑

m=1

I∑
i=1

Ni,mν
g
i σ

g
f ,i

∂Ni j ,m j

= ν
g
j σ

g
f ,i j

. (83)

Inserting Equations (20), (38) and (83) into Equations (79), (81) and (78) reduces the latter equation
to the following expression:

(
∂2L

∂n j∂nm2

)(9)
= −

G∑
g=1

∫
V dV

∫
4π dΩ

[
u(2),g

1, j (r, Ω)ψ(1),g(r, Ω) + u(2),g
2, j (r, Ω)ϕg(r, Ω)

]
σ

g
t,im2

,

f or j = 1, . . . , Jn; m2 = 1, . . . , Jn,
(84)

where the 2nd-level adjoint functions u(2),g
1, j , and u(2),g

2, j , j = 1, . . . , Jn; g = 1, . . . , G, are the solutions of the
following particular forms of Equations (79) and (81):

Bg
(
α0

)
u(2),g

1, j (r, Ω) = χg
G∑

g′=1

ν
g′

i j
σ

g′

f ,i j
ϕ

g′

0 (r), j = 1, . . . , Jn; g = 1, . . . , G, (85)

A(1),g
(
α0

)
u(2),g

2, j (r, Ω) = ν
g
i j
σ

g
f ,i j

G∑
g′=1

χg′ξ
(1),g′

0 (r), j = 1, . . . , Jn; g = 1, . . . , G, (86)
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while being subject to the boundary conditions shown in Equations (80) and (82). Due to symmetry,

the results obtained in Equation (52) for
(

∂2L
∂n j∂nm2

)(3)
=

[
∂2L

∂tJσt+ j∂ fJσ f +Jν+m2

]
t=N, f=N

must equal to those obtained

in Equation (84) for
(

∂2L
∂n j∂nm2

)(9)
=

[
∂2L

∂ fJσ f +Jν+ j∂tJσt+m2

]
f=N,t=N

.

The contribution stemming from the macroscopic fission and scattering cross sections is obtained
by particularizing Equation (178) in [7] to the PERP benchmark, which yields:

(
∂2L

∂n j∂nm2

)(10)
=

[
∂2L

∂ fJσ f +Jν+ j∂sJσs+m2

]
f=N,s=N

=
G∑

g=1

∫
V dV

∫
4π dΩ u(2),g

1, j (r, Ω)
G∑

g′=1

∫
4π dΩ

′

ψ(1),g′
(
r, Ω

′
) ∂Σg→g′

s (s;Ω→Ω
′
)

∂nm2

+
G∑

g=1

∫
V dV

∫
4π dΩ u(2),g

2, j (r, Ω)
G∑

g′=1

∫
4π dΩ

′

ϕg′
(
r, Ω

′
) ∂Σg′→g

s (s;Ω
′
→Ω)

∂nm2
,

f or j = 1, . . . , Jn; m2 = 1, . . . , Jn.

(87)

Inserting Equations (44) and (45) into Equation (87) and performing the respective angular
integrations yields the following simplified expression for Equation (87):

(
∂2L

∂n j∂nm2

)(10)
=

[
∂2L

∂ fJσ f +Jν+ j∂sJσs+m2

]
f=N,s=N

=
G∑

g=1

ISCT∑
l=0

(2l + 1)
∫

V dV U(2),g
1, j;l (r)

G∑
g′=1

σ
g→g′

s,l,im2
ξ
(1),g′

l (r) +
G∑

g=1

ISCT∑
l=0

(2l + 1)
∫

V dV U(2),g
2, j;l (r)

G∑
g′=1

σ
g′→g
s,l,im2

ϕ
g′

l (r),

f or j = 1, . . . , Jn; m2 = 1, . . . , Jn.

(88)

where:
U(2),g

1, j;l (r) ,
∫

4π
dΩ Pl(Ω)u(2),g

1, j (r, Ω), (89)

U(2),g
2, j;l (r) ,

∫
4π

dΩ Pl(Ω)u(2),g
2, j (r, Ω). (90)

The contribution stemming from the macroscopic fission cross sections is obtained by
particularizing Equation (179) in [7] to the PERP benchmark, which yields:

(
∂2L

∂n j∂nm2

)(11)
=

[
∂2L

∂ fJσ f +Jν+ j∂ fJσ f +Jν+m2

]
f=N, f=N

=
G∑

g=1

∫
V dV

∫
4π dΩψ(1),g(r, Ω)

G∑
g′=1

∫
4π dΩ

′

ϕg′
(
r, Ω

′
)
χg(r)

∂2
[
(νΣ f )

g′
(f)

]
∂n j∂nm2

+
G∑

g=1

∫
V dV

∫
4π dΩ u(2),g

1, j (r, Ω)
∂
[
(νΣ f )

g
(f)

]
∂nm2

G∑
g′=1

∫
4π dΩ

′

χg′ψ(1),g′
(
r, Ω

′
)

+
G∑

g=1

∫
V dV

∫
4π dΩ u(2),g

2, j (r, Ω)
G∑

g′=1

∫
4π dΩ

′

ϕg′
(
r, Ω

′
)
χg

∂
[
(νΣ f )

g′
(f)

]
∂nm2

,

f or j = 1, . . . , Jn; m2 = 1, . . . , Jn.

(91)

Noting that:
∂2

[(
νΣ f

)g′
(f)

]
∂n j∂nm2

=
∂2

[(
νΣ f

)g′
(f)

]
∂Ni j ,m j∂Nim2 ,mm2

= 0, (92)

and inserting Equations (50), (51) and (92) into Equation (91) yields:

(
∂2L

∂n j∂nm2

)(11)
=

G∑
g=1

∫
V dVνg

im2
σ

g
f ,im2

U(2),g
1, j;0 (r)

G∑
g′=1

χg′ξ
(1),g′

0 (r) +
G∑

g=1

∫
V dVχgU(2),g

2, j;0 (r)
G∑

g′=1
ν

g′

im2
σ

g′

f ,im2
ϕ

g′

0 (r),

f or j = 1, . . . , Jn; m2 = 1, . . . , Jn,
(93)

where:
U(2),g

1, j;0 (r) ,
∫

4π
dΩ u(2),g

1, j (r, Ω), (94)
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U(2),g
2, j;0 (r) ,

∫
4π

dΩ u(2),g
2, j (r, Ω). (95)

The contribution stemming from the macroscopic fission cross sections and the source term is
obtained by particularizing Equation (181) in [7] for the PERP benchmark, which yields:

(
∂2L

∂n j∂nm2

)(12)
=

[
∂2L

∂ fJσ f +Jν+ j∂qJq+m2

]
f=N,q=N

=
G∑

g=1

∫
V dV

∫
4π dΩ u(2),g

2, j (r, Ω)
∂Qg(q;r,Ω)

∂nm2
,

f or j = 1, . . . , Jn; m2 = 1, . . . , Jn.
(96)

Inserting Equation (56) into Equation (96) yields the following expression:

(
∂2L

∂n j∂nm2

)(12)

=
1

nm2

G∑
g=1

∫
V

dV U(2),g
2, j;0 (r)Q

g
SF,im2

, j = 1, . . . , Jn; m2 = 1, . . . , Jn. (97)

The contribution stemming from the source term and macroscopic total cross sections is obtained
by particularizing Equation (204) in [7] for the PERP benchmark, which yields:

(
∂2L

∂n j∂nm2

)(13)
=

[
∂2L

∂qJq+ j∂tJσt+m2

]
q=N,t=N

= −
G∑

g=1

∫
V dV

∫
4π dΩ g(2),g1, j (r, Ω)ψ(1),g(r, Ω)

∂Σt
g(t)

∂nm2
,

f or j = 1, . . . , Jn; m2 = 1, . . . , Jn,
(98)

where the 2nd-level adjoint functions, g(2),g1, j , j = 1, . . . , Jn; g = 1, . . . , G, are the solutions of the following
2nd-Level Adjoint Sensitivity System presented in Equations (200) and (202) of [7]:

Bg
(
α0

)
g(2),g1, j (r, Ω) =

∂Qg(q; r, Ω)

∂n j
, j = 1, . . . , Jn; g = 1, . . . , G, (99)

g(2),g1, j (rd, Ω) = 0, Ω · n < 0; j = 1, . . . , Jn; g = 1, . . . , G. (100)

Inserting Equations (28) and (38) into Equations (99) and (98) reduces the latter equation to the
following expression:

(
∂2L

∂n j∂nm2

)(13)

= −
G∑

g=1

∫
V

dVσg
t,im2

∫
4π

dΩ g(2),g1, j (r, Ω)ψ(1),g(r, Ω), j = 1, . . . , Jn; m2 = 1, . . . , Jn, (101)

where the 2nd-level adjoint functions, g(2),g1, j , j = 1, . . . , Jn; g = 1, . . . , G, are the solutions of the following
particular forms of Equation (99):

Bg
(
α0

)
g(2),g1, j (r, Ω) =

Qg
SF,i j

n j
, j = 1, . . . , Jn; g = 1, . . . , G, (102)

subject to the boundary conditions shown in Equation (100). Due to symmetry, the results obtained

from Equation (57) for
(

∂2L
∂n j∂nm2

)(4)
=

[
∂2L

∂tJσt+ j∂qJq+m2

]
t=N,q=N

must equal to that obtained from Equation (101)

for
(

∂2L
∂n j∂nm2

)(13)
=

[
∂2L

∂qJq+ j∂tJσt+m2

]
q=N,t=N

.

The contribution stemming from the source term and macroscopic scattering cross sections is
obtained by particularizing Equation (205) in [7] to the PERP benchmark, which yields:

(
∂2L

∂n j∂nm2

)(14)
=

[
∂2L

∂qJq+ j∂sJσs+m2

]
q=N,s=N

=
G∑

g=1

∫
V dV

∫
4π dΩ g(2),g1, j (r, Ω)

G∑
g′=1

∫
4π dΩ

′

ψ(1),g′
(
r, Ω

′
) ∂Σg→g′

s (s;Ω→Ω
′
)

∂nm2
, j = 1, . . . , Jn; m2 = 1, . . . , Jn.

(103)
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Inserting Equation (44) into Equation (103) and performing the respective angular integrations
yields the following expression for Equation (103):

(
∂2L

∂n j∂nm2

)(14)

=
G∑

g=1

ISCT∑
l=0

(2l + 1)
∫

V
dV G(2),g

1, j;l (r)
G∑

g′=1

σ
g→g′

s,l,im2
ξ
(1),g′

l (r), j = 1, . . . , Jn; m2 = 1, . . . , Jn, (104)

where:
G(2),g

1, j;l (r) ,
∫

4π
dΩ Pl(Ω)g(2),g1, j (r, Ω). (105)

Due to symmetry, the result obtained in Equation (77) for
(

∂2L
∂n j∂nm2

)(8)
=

[
∂2L

∂sJσs+ j∂qJq+m2

]
s=N,q=N

must

equal to that obtained in Equation (104) for
(

∂2L
∂n j∂nm2

)(14)
=

[
∂2L

∂qJq+ j∂sJσs+m2

]
q=N,s=N

.

The contribution stemming from the source term and macroscopic fission cross sections is obtained
by particularizing Equation (206) in [7] for the PERP benchmark, which yields:

(
∂2L

∂n j∂nm2

)(15)
=

[
∂2L

∂qJq+ j∂ fJσ f +Jν+m2

]
q=N, f=N

=
G∑

g=1

∫
V dV

∫
4π dΩ g(2),g1, j (r, Ω)

∂
[
(νΣ f )

g
(f)

]
∂nm2

G∑
g′=1

∫
4π dΩ

′

χg′ψ(1),g′
(
r, Ω

′
)
, j = 1, . . . , Jn; m2 = 1, . . . , Jn.

(106)

Inserting Equation (50) into Equation (106) and performing the respective angular integrations
yields the following simplified expression for Equation (106):

(
∂2L

∂n j∂nm2

)(15)

=
G∑

g=1

∫
V

dVνg
im2
σ

g
f ,im2

G(2),g
1, j;0 (r)

G∑
g′=1

χg′ξ
(1),g′

0 (r), j = 1, . . . , Jn; m2 = 1, . . . , Jn. (107)

Due to symmetry, the result obtained in Equation (97) for
(

∂2L
∂n j∂nm2

)(12)
=

[
∂2L

∂ fJσ f +Jν+ j∂qJq+m2

]
f=N,q=N

must

equal to that obtained in Equation (107) for
(

∂2L
∂n j∂nm2

)(15)
=

[
∂2L

∂qJq+ j∂ fJσ f +Jν+m2

]
q=N, f=N

.

Finally, the contribution stemming from the source term is obtained by particularizing Equation
(208) in [7] for the PERP benchmark, which yields:

(
∂2L

∂n j∂nm2

)(16)
=

[
∂2L

∂qJq+ j∂qJq+m2

]
q=N,q=N

=
G∑

g=1

∫
V dV

∫
4π dΩψ(1),g(r, Ω)

∂Qg(q;r,Ω)
∂n j∂nm2

,

f or j = 1, . . . , Jn; m2 = 1, . . . , Jn.
(108)

Since:
∂Qg(q; r, Ω)

∂n j∂nm2

=
∂Qg(q; r, Ω)

∂N j,m∂Nm2 ,m′
= 0, (109)

it follows that the contribution from Equation (108) vanishes, i.e.,

(
∂2L

∂n j∂nm2

)(16)

= 0, j = 1, . . . , Jn; m2 = 1, . . . , Jn. (110)
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Collecting the partial contributions obtained in Equations (40), (46), (52), (57), (64), (69), (73), (77),
(84), (88), (93), (97), (101), (104), (107) and (110) yields the following result:

∂2L
∂n j∂nm2

=
16∑

i=1

(
∂2L

∂n j∂nm2

)(i)
= −

G∑
g=1

∫
V dV

∫
4π dΩ

[
ψ
(2),g
1, j (r, Ω)ψ(1),g(r, Ω) +ψ

(2),g
2, j (r, Ω)ϕg(r, Ω)

]
σ

g
t,im2

+
G∑

g=1

ISCT∑
l=0

(2l + 1)
∫

V dVξ(2),g1, j;l (r)
G∑

g′=1
σ

g→g′

s,l,im2
ξ
(1),g′

l (r) +
G∑

g=1

ISCT∑
l=0

(2l + 1)
∫

V dVξ(2),g2, j;l (r)
G∑

g′=1
σ

g′→g
s,l,im2

ϕ
g′

l (r)

+
G∑

g=1

∫
V dVχgξ

(2),g
2, j;0 (r)

G∑
g′=1

ν
g′

im2
σ

g′

f ,im2
ϕ

g′

0 (r) +
G∑

g=1

∫
V dVνg

im2
σ

g
f ,im2

ξ
(2),g
1, j;0 (r)

G∑
g′=1

χg′ξ
(1),g′

0 (r)

+ 1
nm2

G∑
g=1

∫
V dVξ(2),g2, j;0 (r)Q

g
SF,im2

−

G∑
g=1

∫
V dVσg

t,im2

∫
4π dΩ

[
θ
(2),g
1, j (r, Ω)ψ(1),g(r, Ω) + θ

(2),g
2, j (r, Ω)ϕg(r, Ω)

]
+

G∑
g=1

ISCT∑
l=0

(2l + 1)
∫

V dVΘ(2),g
1, j;l (r)

G∑
g′=1

σ
g→g′

s,l,im2
ξ
(1),g′

l (r) +
G∑

g=1

ISCT∑
l=0

(2l + 1)
∫

V dVΘ(2),g
2, j;l (r)

G∑
g′=1

σ
g′→g
s,l,im2

ϕ
g′

l (r)

+
G∑

g=1

∫
V dVνg

im2
σ

g
f ,im2

Θ(2),g
1, j;0 (r)

G∑
g′=1

χg′ξ
(1),g′

0 (r) +
G∑

g=1

∫
V dVχgΘ(2),g

2, j;0 (r)
G∑

g′=1
ν

g′

im2
σ

g′

f ,im2
ϕ

g′

0 (r)

+ 1
nm2

G∑
g=1

∫
V dVΘ(2),g

2, j;0 (r)Q
g
SF,im2

−

G∑
g=1

∫
V dV

∫
4π dΩ

[
u(2),g

1, j (r, Ω)ψ(1),g(r, Ω) + u(2),g
2, j (r, Ω)ϕg(r, Ω)

]
σ

g
t,im2

+
G∑

g=1

ISCT∑
l=0

(2l + 1)
∫

V dV U(2),g
1, j;l (r)

G∑
g′=1

σ
g→g′

s,l,im2
ξ
(1),g′

l (r) +
G∑

g=1

ISCT∑
l=0

(2l + 1)
∫

V dV U(2),g
2, j;l (r)

G∑
g′=1

σ
g′→g
s,l,im2

ϕ
g′

l (r)

+
G∑

g=1

∫
V dVνg

im2
σ

g
f ,im2

U(2),g
1, j;0 (r)

G∑
g′=1

χg′ξ
(1),g′

0 (r) +
G∑

g=1

∫
V dVχgU(2),g

2, j;0 (r)
G∑

g′=1
ν

g′

im2
σ

g′

f ,im2
ϕ

g′

0 (r)

+ 1
nm2

G∑
g=1

∫
V dV U(2),g

2, j;0 (r)Q
g
SF,im2

−

G∑
g=1

∫
V dVσg

t,im2

∫
4π dΩ g(2),g1, j (r, Ω)ψ(1),g(r, Ω)

+
G∑

g=1

ISCT∑
l=0

(2l + 1)
∫

V dV G(2),g
1, j;l (r)

G∑
g′=1

σ
g→g′

s,l,im2
ξ
(1),g′

l (r) +
G∑

g=1

∫
V dVνg

im2
σ

g
f ,im2

G(2),g
1, j;0 (r)

G∑
g′=1

χg′ξ
(1),g′

0 (r),

f or j = 1, . . . , Jn; m2 = 1, . . . , Jn.

(111)

The numerical values of the 2nd-order absolute sensitivities ∂2L/∂Ni,m∂Nk,m′ , i, k = 1, . . . , I; m, m′ =

1, . . . , M, where I = 6 and M = 2, of the PERP benchmark’s leakage response with respect to the isotopic
number densities are computed using Equation (111). The matrix ∂2L/∂Ni,m∂Nk,m′ , i, k = 1, . . . , 6; m, m′ = 1, 2

of 2nd-order absolute sensitivities has dimensions Jn × Jn (= 6 × 6). For convenient comparisons, the
numerical results presented in this Sub-section are presented in unit-less values of the relative
sensitivities that correspond to ∂2L/∂Ni,m∂Nk,m′ , i, k = 1, . . . , 6; m, m′ = 1, 2, which are denoted as S(2)

(
Ni,m, Nk,m′

)
and are defined as follows:

S(2)
(
Ni,m, Nk,m′

)
,

∂2L
∂Ni,m∂Nk,m′

(
Ni,mNk,m′

L

)
, i, k = 1, . . . , 6; m, m′ = 1, 2. (112)

The numerical results obtained for the matrix S(2)
(
Ni,m, Nk,m′

)
, i, k = 1, . . . , 6; m, m′ = 1, 2 are presented

in Table 2. This matrix is symmetrical with respect to its principal diagonal.

Table 2. Second-order relative sensitivities of the leakage response with respect to the isotope number
densities S(2)

(
Ni,m, Nk,m′

)
, i, k = 1, . . . , 6; m, m′ = 1, 2.

Isotopes k=1 (239Pu) k=2 (240Pu) k=3 (69Ga) k=4 (71Ga) k=5 (C) k=6 (1H)
i = 1

(239Pu)
S(2)

(
N1,1, N1,1

)
= 7.380× 101

S(2)
(
N1,1, N2,1

)
= 8.751× 100

S(2)
(
N1,1, N3,1

)
= 3.034× 10−2

S(2)
(
N1,1, N4,1

)
= 1.917× 10−2

S(2)
(
N1,1, N5,2

)
= 8.054× 100

S(2)
(
N1,1, N6,2

)
= 1.282× 101

i = 2
(240Pu)

S(2)
(
N2,1, N1,1

)
= 8.751× 100

S(2)
(
N2,1, N2,1

)
= 5.758× 10−1

S(2)
(
N2,1, N3,1

)
= 3.332× 10−3

S(2)
(
N2,1, N4,1

)
= 2.061× 10−3

S(2)
(
N2,1, N5,2

)
= 9.111× 10−1

S(2)
(
N2,1, N6,2

)
= 1.420× 100

i = 3
(69Ga)

S(2)
(
N3,1, N1,1

)
= 3.035× 10−2

S(2)
(
N3,1, N2,1

)
= 3.332× 10−3

S(2)
(
N3,1, N3,1

)
= 1.167× 10−5

S(2)
(
N3,1, N4,1

)
= 7.750× 10−6

S(2)
(
N3,1, N5,2

)
= 2.707× 10−3

S(2)
(
N3,1, N6,2

)
= 4.429× 10−3

i = 4
(71Ga)

S(2)
(
N4,1, N1,1

)
= 1.917× 10−2

S(2)
(
N4,1, N2,1

)
= 2.061× 10−3

S(2)
(
N4,1, N3,1

)
= 7.750× 10−6

S(2)
(
N4,1, N4,1

)
= 1.154× 10−5

S(2)
(
N4,1, N5,2

)
= 1.561× 10−3

S(2)
(
N4,1, N6,2

)
= 2.499× 10−3

i = 5
(C)

S(2)
(
N5,2, N1,1

)
= 8.055× 100

S(2)
(
N5,2, N2,1

)
= 9.112× 10−1

S(2)
(
N5,2, N3,1

)
= 2.707× 10−3

S(2)
(
N5,2, N4,1

)
= 1.561× 10−3

S(2)(N5,2, N5,2)
= 8.212× 10−1

S(2)(N5,2, N6,2)
= 1.345× 100

i = 6
(1H)

S(2)
(
N6,2, N1,1

)
= 1.283× 101

S(2)
(
N6,2, N2,1

)
= 1.420× 100

S(2)
(
N6,2, N3,1

)
= 4.429× 10−3

S(2)
(
N6,2, N4,1

)
= 2.499× 10−3

S(2)(N6,2, N5,2)
= 1.345× 100

S(2)(N6,2, N6,2)
= 1.912× 100
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As indicated in Table 2, all Jn × Jn = 36 elements of the matrix S(2)
(
Ni,m, Nk,m′

)
are positive, and 12

of these sensitivities are large, having values greater than 1.0. These large sensitivities involve the
isotopic number densities of either 239Pu or 1H, and the isotopic number densities of 240Pu or C. The
largest element is the unmixed 2nd-order sensitivity with respect to the isotopic number density of
239Pu, i.e., S(2)(N1,1, N1,1) = 7.380× 101. On the other hand, the results shown in Table 2 indicate that all of
the mixed 2nd-order relative sensitivities involving the isotopic number densities of 69Ga or 71Ga have
absolute values smaller than 1.0.

The 2nd-order unmixed sensitivities S(2)(Ni,m, Ni,m) ,
(
∂2L/∂Ni,m∂Ni,m

)
(Ni,mNi,m/L), i = 1, . . . , 6; m = 1, 2,

which are the elements on the diagonal of the matrix S(2)
(
Ni,m, Nk,m′

)
, i, k = 1, . . . , 6; m, m′ = 1, 2, can be directly

compared to the values of the 1st-order relative sensitivities S(1)(Ni,m) , (∂L/∂Ni,m)(Ni,m/L), i = 1, . . . , 6; m =

1, 2, of the leakage response with respect to the isotopic number density parameters. Table 3 compares
the 1st- and the unmixed 2nd-order relative sensitivities for all six isotopes. This comparison indicates
that the values of the 2nd-order unmixed sensitivities with respect to the isotopic number densities of
isotopes 239Pu, C and 1H, are 1100%, 30% and 90% larger than the corresponding values of the 1st-order
sensitivities for the same isotope, respectively. The largest 1st-order relative sensitivity is S(1)(N1,1) = 5.963

while the largest 2nd-order unmixed relative sensitivity is S(2)(N1,1, N1,1) = 73.80; both involve the isotopic
number density of 239Pu. It is noteworthy that all of the 1st-order relative sensitivities are positive,
signifying that an increase in the isotopic number density will cause an increase in the total neutron
leakage from the PERP sphere.

Table 3. Comparison of 1st-order relative sensitivities
(
∂L/∂Ni,m

)(
Ni,m/L

)
, i = 1, . . . , 6; m = 1, 2

and unmixed 2nd-order relative sensitivities
(
∂2L/∂Ni,m∂Ni,m

)(
Ni,mNi,m/L

)
, i = 1, . . . , 6; m = 1, 2 for

all isotopes.

Isotopes 1st-Order 2nd-Order

i = 1 (239Pu) 5.963 × 100 7.380 × 101

i = 2 (240Pu) 1.220 × 100 5.758 × 10−1

i = 3 (69Ga) 2.229 × 10−3 1.167 × 10−5

i = 4 (71Ga) 1.365 × 10−3 1.154 × 10−5

i = 5 (C) 6.312 × 10−1 8.212 × 10−1

i = 6 (1H) 1.001 × 100 1.912 × 100

4. Quantification of Uncertainties in the PERP Leakage Response due to Uncertainties in Isotopic
Number Densities

Correlations between the isotopic number densities or correlations between these isotopic number
densities and other cross section parameters are not available for the PERP benchmark. When
such correlations are unavailable, the maximum entropy principle [14] indicates that neglecting
them minimizes the inadvertent introduction of spurious information into the computations of the
various moments of the response’s distribution in parameter space. The formulas for computing the
expected value, variance and skewness of the response distribution by considering the 2nd-order
response sensitivities together with the standard deviations of the isotopic number densities parameter
correlations are as follows:

(1) The expected value, [E(L)]N, of the leakage response L(α) has the following expression:

[E(L)]N = L
(
α0

)
+ [E(L)](2,U)

N , (113)

where the subscript “N” indicates contributions solely from the isotopic number densities, and
where the 2nd-order contributions from uncorrelated isotopic number densities, denoted as
[E(L)](2,U)

N , has the following expression:

[E(L)](2,U)
N =

1
2

M∑
m=1

I∑
i=1

∂2L(α)
∂Ni,m∂Ni,m

(
sNi,m

)2
, I = 6, M = 2. (114)
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The quantity sNi,m which appears in Equation (114) denotes the standard deviation associated with
the imprecisely known model parameter Ni,m.

(2) Since correlations among parameters are unavailable, the following formulas pertain solely
to uncorrelated and normally-distributed isotopic number densities, a restriction that will be
indicated by using the superscript “(U, N).” Under these restrictions, the expression for computing
the variance, denoted as [var(L)](U,N)

N of the PERP leakage response has the following form:

[var(L)](U,N)
N = [var (L)](1,U,N)

N + [var (L)](2,U,N)
N , (115)

where the first-order contribution term, [var (L)](1,U,N)
N , to the variance [var(L)](U,N)

N is defined as
follows:

[var (L)](1,U,N)
N ,

M∑
m=1

I∑
i=1

[
∂L(α)
∂Ni,m

]2(
sNi,m

)2
, I = 6, M = 2. (116)

The second-order contribution term, [var (L)](2,U,N)
N , to the variance [var(L)](U,N)

N in Equation (115) is
defined as:

[var (L)](2,U,N)
N ,

1
2

M∑
m=1

I∑
i=1

[
∂2L(α)

∂Ni,m∂Ni,m

(
sNi,m

)2
]2

, I = 6, M = 2. (117)

(3) Considering uncorrelated normally-distributed isotopic number densities, the third-order moment,
[µ3(L)]

(U,N)
N , of the leakage response for the PERP benchmark has the expression:

[µ3(L)]
(U,N)
N = 3

M∑
m=1

I∑
i=1

[
∂L(α)
∂Ni,m

]2 ∂2L(α)
∂Ni,m∂Ni,m

(
sNi,m

)4
, I = 6, M = 2. (118)

As Equation (118) indicates, if the 2nd-order sensitivities were unavailable, the third moment
[µ3(L)]

(U,N)
N would vanish and the response distribution would by default be assumed to be Gaussian.

(4) The skewness, [γ1(L)]
(U,N)
N , in the leakage response which stems from the variances of isotopic

number densities is defined as follows:

[γ1(L)]
(U,N)
N = [µ3(L)]

(U,N)
N /

{
[var(L)](U,N)

N

}3/2
. (119)

The effects of the first- and second-order sensitivities on the response’s expected value, variance
and skewness are quantified by using Equations (114) through (119) in conjunction the sensitivities
computed in Sections 2 and 3 and using illustrative values of 1%, 5%, and 10%, respectively, for the
standard deviations for the uncorrelated isotopic number densities. The results thus obtained are
presented in Table 4.
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Table 4. Comparison of Response Moments Induced by Various Relative Standard Deviations Assumed
for the Parameters Ni,m.

Relative Standard Deviation 10% 5% 1%

L
(
α0

)
1.7648 × 106 1.7648 × 106 1.7648 × 106

[E(L)](2,U)
N

6.8042 × 105 1.7011 × 105 6.8042 × 103

[E(L)]N = L
(
α0

)
+ [E(L)](2,U)

N 2.4452 × 106 1.9349 × 106 1.7716 × 106

[var (L)](1,U,N)
N

1.1993 × 1012 2.9983 × 1011 1.1993 × 1010

[var (L)](2,U,N)
N

8.4892 × 1011 5.3075 × 1010 8.4892 × 107

[var(L)](U,N)
N = [var (L)](1,U,N)

N + [var (L)](2,U,N)
N

2.0482 × 1012 3.5289 × 1011 1.2078 × 1010

[µ3(L)]
(U,N)
N

4.3399 × 1018 2.7125 × 1017 4.3399 × 1014

[γ1(L)]
(U,N)
N = [µ3(L)]

(U,N)
N /

{
[var(L)](U,N)

N

}3/2
1.481 1.294 0.327

The relative effects of uncertainties in the isotopic number densities can be compared to the
corresponding effects stemming from the total and, respectively, fission cross sections, by considering
standard deviations of 10% for all of these cross sections and by comparing the corresponding results
shown in Table 4 with the corresponding results presented in Table 25 of Part I [1] and Table 27 of Part
III [3]. This comparison reveals that the following relations hold:

[E(L)](2,U)

f = 3.7191× 104
� [E(L)](2,U)

N = 6.8042× 105
� [E(L)](2,U)

t = 4.5980× 106,
[var (L)](1,U,N)

f = 9.5932× 1010
� [var (L)](1,U,N)

N = 1.1993× 1012 < [var (L)](1,U,N)
t = 3.4196× 1012,

[var (L)](2)f = 5.4830× 108
� [var (L)](2)N = 8.4892× 1011

� [var (L)](2)t = 2.8789× 1013,
[γ1(L)]

(U,N)

f = 0.1172 < [γ1(L)]
(U,N)
t = 0.3407� [γ1(L)]

(U,N)
N = 1.481.

The above relations indicate that the contributions to the expected value and variance stemming
from the uncorrelated isotopic number densities are much smaller than the corresponding contributions
stemming from the group-averaged uncorrelated microscopic total cross sections, but are much greater
than the corresponding contributions stemming from the group-averaged uncorrelated microscopic
fission cross sections. However, the contributions to the skewness stemming from the uncorrelated
isotopic number densities are much larger than the corresponding contributions stemming from the
group-averaged uncorrelated microscopic total and fission cross sections.

It is important to note that the results presented in Table 4 consider only the standard deviations
of the isotopic number densities, since correlations between these parameters are unavailable. In the
absence of parameter correlations, the possible contributions stemming from the mixed 2nd-order
sensitivities involving the isotopic number densities cannot be accounted for. Recall that the results
presented in Section 3 of this work and Ref. [5] indicated that a significant number of mixed 2nd-order
sensitivities involving the isotopic number densities have absolute values larger than 1.0, including:

(a) 12 elements of the matrix S(2)
(
Ni,m, Nk,m′

)
, i, k = 1, . . . , 6; m, m′ = 1, 2;

(b) 125 elements of the matrix S(2)
(
Ni,m, σg

t,k

)
, i, k = 1, . . . , 6; m = 1, 2; g = 1, . . . , 30;

(c) 15 elements of the matrix S(2)
(
Ni,m, σg′→g

s,l=0,k

)
, i, k = 1, . . . , 6; m = 1, 2; g′, g = 1, . . . , 30;

(d) 7 elements of the matrix S(2)
(
Ni,m, σg′→g

s,l=1,k

)
, i, k = 1, . . . , 6; m = 1, 2; g′, g = 1, . . . , 30;

(e) 21 elements of the matrix S(2)
(
Ni,m, σg

f ,k

)
, i = 1, . . . , 6; k, m = 1, 2; g = 1, . . . , 30;

(f) 34 elements of the matrix S(2)
(
Ni,m, νg

k

)
, i = 1, . . . , 6; k, m = 1, 2; g = 1, . . . , 30.

The effects of the large sensitivities mentioned above on the uncertainties in the response
distribution cannot be considered until the corresponding correlations among the various model
parameters become available.
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5. Computation of 1st-Order Sensitivities of the PERP Leakage Response with Respect to Fission
Spectrum Parameters

The fission spectrum is considered to depend on the vector of parameters p, which were defined
in Part I [1] and are reproduced below:

p ,
[
p1, . . . , pJp

]†
,

[
χ

g=1
i=1 ,χg=2

i=1 , . . . ,χG
i=1, . . . ,χg

i , . . . ,χG
N f

]†
, i = 1, . . . , N f ; g = 1, . . . , G; Jp = G×N f . (120)

In Equation (120), the quantity χ
g
i denotes the fission spectrum of isotope i in group g. The

first-order sensitivities ∂L(α)/∂p j, j = 1, . . . , Jp, of the PERP leakage response to the fission spectrum
parameters are computed using the following particular form of Equation (153) in [7]:

∂L(α)
∂p j

=
G∑

g=1

∫
V

dV
∫

4π
dΩψ(1),g(r, Ω)

G∑
g′=1

∫
4π

dΩ
′ ∂χg

∂p j

(
νΣ f

)g′
ϕg′

(
r, Ω

′
)

, j = 1, . . . , Jp, (121)

where the quantity f g
i denotes the corresponding spectrum weighting function and where χg denotes

the material fission spectrum in energy group g, as has been defined in Part I [1], i.e.,

χg ,

N f∑
i=1
χ

g
i Ni,m

G∑
g′=1

(
νσ f

)g′

i
f g′

i

N f∑
i=1

Ni,m
G∑

g′=1

(
νσ f

)g′

i
f g′

i

, with
G∑

g=1

χ
g
i = 1. (122)

The numerical values of the 1st-order relative sensitivities,S(1)
(
χ

g
i

)
,

(
∂L/∂χg

i

)(
χ

g
i /L

)
, i = 1, 2; g = 1, . . . , 30,

of the leakage response with respect to the fission spectrum parameters for the two fissionable isotopes
(namely, 239Pu and 240Pu) contained in the PERP benchmark are presented in Tables 5 and 6, respectively.

Table 5. First-Order Relative Sensitivities S(1)
(
χ

g
i=1

)
, g = 1, . . . , 30.

g Relative Sensitivities g Relative Sensitivities

1 2.539 × 10−4 16 7.557 × 10−3

2 4.642 × 10−4 17 3.309 × 10−3

3 1.220 × 10−3 18 8.557 × 10−4

4 4.836 × 10−3 19 2.332 × 10−4

5 1.920 × 10−2 20 1.219 × 10−4

6 2.601 × 10−2 21 5.140 × 10−5

7 −5.541 × 10−3 22 1.180 × 10−5

8 2.059 × 10−2 23 4.199 × 10−6

9 1.743 × 10−2 24 3.010 × 10−7

10 2.005 × 10−2 25 2.974 × 10−7

11 5.346 × 10−3 26 6.408 × 10−8

12 −5.005 × 10−2 27 −2.804 × 10−10

13 −4.730 × 10−2 28 −3.975 × 10−9

14 −2.116 × 10−2 29 2.057 × 10−9

15 −3.506 × 10−3 30 1.672 × 10−9
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Table 6. First-Order Relative Sensitivities S(1)
(
χ

g
i=2

)
, g = 1, . . . , 30.

g Relative Sensitivities g Relative Sensitivities

1 1.671 × 10−8 16 4.627 × 10−7

2 3.022 × 10−8 17 2.023 × 10−7

3 7.797 × 10−8 18 5.245 × 10−8

4 3.037 × 10−7 19 1.425 × 10−8

5 1.187 × 10−6 20 7.480 × 10−9

6 1.595 × 10−6 21 3.174 × 10−9

7 −3.390 × 10−7 22 7.361 × 10−10

8 1.253 × 10−6 23 2.657 × 10−10

9 1.061 × 10−6 24 1.941 × 10−11

10 1.222 × 10−6 25 1.966 × 10−11

11 3.254 × 10−7 26 4.419 × 10−12

12 −3.062 × 10−6 27 −2.031 × 10−14

13 −2.900 × 10−6 28 −2.953 × 10−13

14 −1.299 × 10−6 29 1.545 × 10−13

15 −2.154 × 10−7 30 1.260 × 10−13

The values presented in Table 5 for the 1st-order relative sensitivities of the leakage response with
respect to the fission spectrum parameters of 239Pu are all very small, the largest being of the order of
10−2. Similarly, as shown in Table 6, the 1st-order relative sensitivities of the leakage response with
respect to the fission spectrum of 240Pu are even smaller, largest being of the order of 10−6. Based on
the results that have been presented in Part I−Part III [1–3] for the 1st-order and 1st-order relative
sensitivities of the leakage response with respect to the parameters underlying the total, scattering,
fission microscopic cross sections and average number of neutrons per fission, and in view of the
small values of the 1st-order relative sensitivities presented in Tables 5 and 6, it can be inferred
that the 2nd-order relative sensitivities of the leakage response with respect to the fission spectrum
parameters of isotopes 239Pu and 240Pu would be very small. This inference has been confirmed by
sample computations of 2nd-order sensitivities of the PERP leakage response with respect to fission
spectrum parameters. For the sake of brevity, these computations will not be presented herein.

6. Overall Conclusions: Ranking and Impact of the First- and Second-Order Sensitivities of the
PERP Benchmark’s Leakage Response with Respect to the Benchmark’s 21976 Imprecisely
Known Parameters

This Section presents the overall summary and conclusions based on the comprehensive results
that have been detailed in Parts I−V [1–5] and in the present work for the 1st- and 2nd-order sensitivities
of the PERP benchmark’s leakage response with respect to (all 21976 of) the PERP model’s imprecisely
known parameters. To begin with, Table 7 presents a summary of the magnitudes attained by the
1st-order relative sensitivities of the PERP benchmark’s leakage response, which indicates that the
largest 13 of these sensitivities attain values between 1.0 and 10.0; all others are smaller than 1.0. Of
these 13 large sensitivities, 8 involve the total microscopic group cross sections, 3 involve the isotopic
number densities (of 239Pu, 240Pu, and 1H; see Table 3 in this work), 1 involves the average number of
neutrons produced per fission of 239Pu, and 1 involves a source parameter. Additional details regarding
these large 1st-order relative sensitivities (which involve nuclear data pertaining to 239Pu, 240Pu, and
1H) of the PERP benchmark’s leakage response are further discussed below in comparison to the
corresponding 2nd-order unmixed sensitivities.

Table 8 presents the summary of the 2nd-order mixed relative sensitivities of the PERP benchmark’s
leakage response having absolute values greater than 1.0. Since Table 8 is symmetrical, the upper
triangular submatrices are not shown in the table; of course, each of the upper triangular submatrices
has the same number of large sensitivities as its symmetrical counterpart. Table 8 indicates that 126
2nd-order relative sensitivities have values greater than 10.0, and 1853 2nd-order relative sensitivities
have values between 1.0 and 10.0. Evidently, the number of 2nd-order relative sensitivities having
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values greater than 1.0 is far larger than the number of 1st-order relative sensitivities that have values
greater than 1.0.

Table 7. Summary of the large 1st-order relative sensitivities for the PERP benchmark.

S(1)(σt) S(1)(σs) S(1)(σ f ) S(1)(ν) S(1)(q) S(1)(p) S(1)(N)

n1−10= 8,
n>10.0= 0

n1−10= 0,
n>10.0= 0

n1−10= 0,
n>10.0= 0

n1−10= 1,
n>10.0= 0

n1−10= 1,
n>10.0= 0

n1−10= 0,
n>10.0= 0

n1−10= 3,
n>10.0= 0

Note: (1) n1−10 denotes the total number of elements with absolute values between [1.0,10.0]; (2) n>10.0 denotes the
total number of elements with absolute values greater than 10.0.

Table 8. Summary of the large 2nd-order relative sensitivities for the PERP benchmark.

Parameters σt σs σ f ν q N

σt

S(2)(σt,σt)
n1−10= 665
n>10.0= 55

σs

S(2)(σs,σt)
n1−10= 52
n>10.0= 1

S(2)(σs,σs)
n1−10= 0
n>10.0= 0

σ f

S(2)
(
σ f ,σt

)
n1−10= 83
n>10.0= 1

S(2)
(
σ f ,σs

)
n1−10= 0
n>10.0= 0

S(2)
(
σ f ,σ f

)
n1−10= 11
n>10.0= 0

ν
S(2)(ν,σt)
n1−10= 171
n>10.0= 8

S(2)(ν,σs)
n1−10= 0
n>10.0= 0

S(2)
(
ν,σ f

)
n1−10= 28
n>10.0= 0

S(2)(ν,ν)
n1−10= 52
n>10.0= 0

q
S(2)(q,σt)
n1−10= 32
n>10.0= 0

S(2)(q,σs)
n1−10= 0
n>10.0= 0

S(2)
(
q,σ f

)
n1−10= 0
n>10.0= 0

S(2)(q,ν)
n1−10= 4
n>10.0= 0

S(2)(q, q)
n1−10= 0
n>10.0= 0

N
S(2)(N,σt)
n1−10= 108
n>10.0= 17

S(2)(N,σs)
n1−10= 23
n>10.0= 0

S(2)
(
N,σ f

)
n1−10= 20
n>10.0= 1

S(2)(N,ν)
n1−10= 28
n>10.0= 6

S(2)(N, q)
n1−10= 9
n>10.0= 0

S(2)(N, N)
n1−10= 9
n>10.0= 3

Note: (1) n1−10 denotes the total number of elements with absolute values between [1.0,10.0]; (2) n>10.0 denotes the
total number of elements with absolute values greater than 10.0.

The results detailed in Parts I−V [1–5] and in the present work have indicated that the largest 1st-
and unmixed 2nd-order sensitivities of the PERP benchmark’s leakage response are with respect to
the nuclear parameters related to 239Pu. Figure 2 presents the comparison of the absolute values of
the 1st-order relative sensitivities, for each of the 30 energy groups, of the PERP benchmark’s leakage
response with respect to the following groups of imprecisely known parameters related to 239Pu: (i)
the total microscopic cross sections [1]; (ii) the scattering microscopic cross sections [2]; (iii) fission
microscopic cross sections [3]; (iv) the average number of neutrons per fission [3]; (v) the source
parameters [4]; and (vi) the fission spectrum, as presented in Table 5 in this work. As Figure 2 indicates,
the 1st-order relative sensitivities of the PERP’s leakage response with respect to the imprecisely known
parameters related to 239Pu can be ranked in the following order of importance:

(i) The 1st-order relative sensitivities S(1)(σ
g
t,1) of the leakage response with respect to the total cross

sections of 239Pu have the largest magnitudes for all energy groups;
(ii) The next largest magnitudes are displayed by the 1st-order relative sensitivities S(1)(ν

g
1) with

respect to the average number of neutrons per fission of 239Pu. The values of these 1st-order
sensitivities are about 30% to 50% larger than those corresponding to the fission cross sections,
which follow next in the importance ranking.
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(iii) The third largest are the 1st-order relative sensitivities S(1)(σ
g
f ,1) of the PERP benchmark’s leakage

response with respect to the fission cross sections of 239Pu.
(iv) The fourth largest are the 1st-order relative sensitivities S(1)(σ

g→g
s,l=0,1) of the leakage response with

respect to the 0th-order self-scattering cross sections for 239Pu. These 1st-order relative sensitivities
are approximately one order of magnitude smaller than the corresponding 1st-order relative
sensitivities with respect to the fission cross sections of 239Pu.

(v) The next-to-last in the importance ranking are the 1st-order relative sensitivities S(1)(χ
g
1) of the

leakage response with respect to the fission spectrum parameters;
(vi) Finally, the 1st-order relative sensitivities S(1)(qg

1) of the leakage response with respect to the source
parameters of 239Pu are the smallest of the sensitivities pertaining to 239Pu.
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The largest 2nd-order unmixed sensitivities of the PERP benchmark’s leakage response also
involve the imprecisely known parameters pertaining to 239Pu. Based on the results presented in Parts
I−III [1–3], Figure 3 illustrates the importance ranking for the absolute values of the unmixed 2nd-order
relative sensitivities with respect to the parameters underlying the total, scattering and fission cross
sections, and the average number of neutrons per fission of 239Pu.

The results presented in Figure 3 highlight the following features:

(i) For every energy group, the 2nd-order unmixed sensitivities with respect to the total cross sections
are the largest and significantly larger than any others.

(ii) The 2nd-order unmixed sensitivities with respect to the parameters underlying the average
number of neutrons per fission are the second largest, being approximately 100–200% larger than
the 2nd-order unmixed sensitivities with respect to the fission cross sections.

(iii) The 2nd-order unmixed sensitivities with respect to scattering cross sections are negligibly small
comparing to others.

(iv) Comparing the results shown in Figures 2 and 3 reveals the important conclusion that the
2nd-order unmixed sensitivities of the leakage response with respect to the microscopic total
group cross sections of 239Pu are significantly (over 300–400%) larger than the corresponding
1st-order sensitivities.
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The next largest group of 1st- and 2nd-order relative sensitivities of the PERP’s leakage response
pertain to parameters related to 240Pu, which are displayed in Figures 4 and 5. Comparing the results
displayed in Figures 4 and 5 to the results presented in Figures 2 and 3 indicates that, albeit important,
the sensitivities of the PERP’s leakage response to parameters pertaining to 240Pu are at least an order
of magnitude smaller than the sensitivities pertaining to 239Pu.

The PERP benchmark’s leakage response displays remarkably large 1st- and 2nd-order sensitivities
with respect to the total microscopic cross section of 1H in the lowest-energy group. These large
sensitivities are illustrated in Figures 6 and 7.
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Figures 8–11 present comprehensive comparisons of the contributions of the 1st- and, respectively,
2nd-order sensitivities of the PERP’s leakage response to the expected values, variances and skewness
of this response, considering that all of the PERP’s model parameters (fission, scattering and fission
microscopic cross sections, the average number of neutrons per fission, isotopic number densities, and
source parameters) are uncorrelated and have uniform standard deviations of 5% or 10%, respectively.
The vertical-axes in Figures 8–11 use logarithmic scales.
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Figure 10 presents a comparison of contributions to the 2nd-order variance, ( ) (2, , )
var

U N

i
L   , 

computed using expressions similar to Equation (117), of the 2nd-order sensitivities of the PERP 
leakage response to the PERP parameters (considered to be uncorrelated and normally distributed) 
underlying the total, scattering and fission cross sections, the average number of neutrons per fission, 
isotopic number densities, and the source parameters, as presented in [1−4], respectively. The 
comparison presented in Figure 10 indicates that, assuming a uniform standard deviation of either 
5% or 10% for all parameters, the magnitudes of the 2nd-order contributions stemming from the 
various imprecisely known nuclear data fall into the following ranking order (from small to large): 

Figure 8. Contributions, [E(L)](2,U)
i , i = t, N, ν, f , s, q, to the leakage response expected value, E(L),

stemming from 2nd-order sensitivities of the parameters (considered to be uncorrelated) underlying the
total, scattering and fission cross sections, the average number of neutrons per fission, isotopic number
densities, and the source parameters, for uniform 5% and 10% standard deviations (SD) respectively.
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computed using expressions similar to Equation (117), of the 2nd-order sensitivities of the PERP 
leakage response to the PERP parameters (considered to be uncorrelated and normally distributed) 
underlying the total, scattering and fission cross sections, the average number of neutrons per fission, 
isotopic number densities, and the source parameters, as presented in [1−4], respectively. The 
comparison presented in Figure 10 indicates that, assuming a uniform standard deviation of either 
5% or 10% for all parameters, the magnitudes of the 2nd-order contributions stemming from the 
various imprecisely known nuclear data fall into the following ranking order (from small to large): 

Figure 9. Comparison of [var(L)](1,U,N)
i , i = t, N, ν, f , s, q, due to 5% and 10% standard deviations

(SD) of the parameters (considered to be uncorrelated and normally distributed) underlying the total,
scattering and fission cross sections, the average number of neutrons per fission, isotopic number
densities, and the source parameters, respectively.
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the parameters (considered to be uncorrelated and normally distributed) underlying the total, scattering
and fission cross sections, the average number of neutrons per fission, isotopic number densities, and
the source parameters, respectively.

Thus, Figure 8 illustrates the magnitudes of the 2nd-order contributions, [E(L)](2,U)
i , i = t, N, ν, f , s, q,

to the expected value, E(L), of the PERP’s leakage response. The 2nd-order contributions, [E(L)](2,U)
i , are

computed in [1–4] using expressions similar to Equation (114) and stem from 2nd-order sensitivities
of the parameters underlying the total, scattering and fission cross sections, the average number
of neutrons per fission, isotopic number densities, and the source parameters, respectively. Since
correlations among parameters are unavailable, these parameters are considered to be uncorrelated
and having all uniform standard deviations (SD) of either 5% or 10% respectively. A standard deviation
of 5% is typical for the available nuclear data while the standard deviation of 10% is used to illustrate
how an increase in the parameter uncertainties would affect the expected value of the leakage response.
The nominal value, L

(
α0

)
, of the leakage response is also displayed in Figure 8, in order to provide an

evident standard for assessing the importance of the 2nd-order contributions [E(L)](2,U)
i to the expected

value, E(L), of the PERP’s leakage response. Recall from Equation (113) that if the 2nd-order sensitivities
are ignored or are unavailable, the expected value, E(L), will coincide with the nominal value, L

(
α0

)
. The

comparison presented in Figure 8 indicates that, assuming a uniform standard deviation of either 5%
or 10% for all parameters, the magnitudes of the 2nd-order contributions stemming from the various
imprecisely known nuclear data fall into the following ranking order (from small to large):

[E(L)](2,U)
q � [E(L)](2,U)

s < [E(L)](2,U)

f < [E(L)](2,U)
ν � [E(L)](2,U)

N � [E(L)](2,U)
t .

Figure 9 presents a comparison of contributions to the 1st-order variance, [var(L)](1,U,N)
i , computed

using expressions similar to Equation (116), of the 1st-order sensitivities of the PERP leakage response
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to the PERP parameters (considered to be uncorrelated and normally distributed) underlying the total,
scattering and fission cross sections, the average number of neutrons per fission, isotopic number
densities, and the source parameters, as presented in [1–4], respectively. The comparison presented in
Figure 9 indicates that, assuming a uniform standard deviation of either 5% or 10% for all parameters,
the magnitudes of the 2nd-order contributions stemming from the various imprecisely known nuclear
data fall into the following ranking order (from small to large):

[var(L)](1,U,N)
s � [var(L)](1,U,N)

f < [var(L)](1,U,N)
q < [var(L)](1,U,N)

v � [var(L)](1,U,N)
N < [var(L)](1,U,N)

t .

Figure 10 presents a comparison of contributions to the 2nd-order variance, [var(L)](2,U,N)
i , computed

using expressions similar to Equation (117), of the 2nd-order sensitivities of the PERP leakage response
to the PERP parameters (considered to be uncorrelated and normally distributed) underlying the total,
scattering and fission cross sections, the average number of neutrons per fission, isotopic number
densities, and the source parameters, as presented in [1–4], respectively. The comparison presented in
Figure 10 indicates that, assuming a uniform standard deviation of either 5% or 10% for all parameters,
the magnitudes of the 2nd-order contributions stemming from the various imprecisely known nuclear
data fall into the following ranking order (from small to large):

[var(L)](2,U,N)
q � [var(L)](2,U,N)

s � [var(L)](2,U,N)

f < [var(L)](2,U,N)
v � [var(L)](2,U,N)

N � [var(L)](2,U,N)
t .

Figure 11 presents a comparison of contributions to the skewness, [γ1(L)]
(U,N)
i , computed using

expressions similar to Equation (119), of the PERP leakage response to the PERP parameters (considered
to be uncorrelated and normally distributed) underlying the total, scattering and fission cross sections,
the average number of neutrons per fission, isotopic number densities, and the source parameters, as
presented in [1–4], respectively. The comparison presented in Figure 11 indicates that, assuming a
uniform standard deviation of either 5% or 10% for all parameters, the magnitudes of the 2nd-order
contributions stemming from the various imprecisely known nuclear data fall into the following
ranking order (from small to large):

[γ1(L)]
(U,N)
s < 0 < [γ1(L)]

(U,N)
q � [γ1(L)]

(U,N)

f < [γ1(L)]
(U,N)
v < [γ1(L)]

(U,N)
t � [γ1(L)]

(U,N)
N .

The results presented in Figures 8–10 indicate that the contributions to the expected values and
the (1st- and 2nd-order) variances of the PERP leakage stemming from the imprecisely known PERP
parameters follow the following order of importance:

(i) The contributions stemming from the 1st- and 2nd-order sensitivities of the leakage response to
the group-averaged uncorrelated total cross sections are the largest, by a significant margin, by
comparison to the contributions from any of the other parameters. The contributions from the
2nd-order sensitivities are paramount, causing the following significant effects: (i) the expected value

of the leakage response is significantly larger than the corresponding computed value, and (ii) SD(2)
� SD(1),

i.e., the 2nd-order standard deviation SD(2) is significantly larger than the 1st-order standard deviation
SD(1).

(ii) The contributions stemming from the 1st- and 2nd-order sensitivities of the leakage response to
the uncorrelated isotopic number densities are second in importance.

(iii) Ranked third in importance are the contributions stemming from the 1st- and 2nd-order
sensitivities of the leakage response to the average number of neutrons per fission.

(iv) The contributions to the expected values and variances stemming from the group-averaged
uncorrelated fission cross section parameters rank overall fourth in importance, even if the
relation [var(L)](1,U,N)

f < [var(L)](1,U,N)
q indicates that the contributions stemming from the 1st-order

sensitivities of the response to the fission parameters are slightly smaller than the contributions
stemming from the 1st-order response sensitivities to the source parameters.

(v) The contributions stemming from the group-averaged uncorrelated microscopic scattering cross
sections and source parameters are smaller by factors of 103–107 by comparison to the contributions
stemming from the 1st- and 2nd-order response sensitivities with respect to the other parameters.

Notably, the results summarized in Figure 11 indicate that the contribution to the skewness
stemming from the uncorrelated isotopic number densities is much larger than that stemming from
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other parameters. It is also remarkable that the skewness stemming solely from the scattering
microscopic group cross sections is negative, meaning that if the only imprecisely known PERP
parameters were the scattering microscopic group cross sections, then the distribution of the PERP’s
leakage response would be skewed towards values lower than the expectation of the response. In
contradistinction, the skewness arising from uncertainties in the other parameters are all positive,
signifying that uncertainties in all of the other PERP model parameters would cause the distribution of
the PERP’s leakage response to be skewed towards values higher than the expectation of the response.

Assuming that all PERP model parameters are uncorrelated and assuming that all of these
parameters have uniform relative standard deviations of 5%, Figures 12–16 present results for the
following quantities: (i) the expected value [E(L)] of the PERP leakage response, which takes into account
the contributions stemming from the corresponding 2nd-order sensitivities; (ii) the standard deviations,
SD(1), for the PERP leakage response arising solely from the 1st-order sensitivities (in green); (iii) the
standard deviations, SD(2), for the PERP leakage response arising solely from the 2nd-order sensitivities;
and (iv) the sum, SD(1) + SD(2), for the PERP leakage response stemming from both the 1st- and 2nd-order
sensitivities. In Figures 12–16, the green-colored plots involve solely 1st-order sensitivities, while the
red-colored plots depict the contributions from 2nd-order sensitivities. Consistent with the importance
rankings illustrated in Figures 8–10, the results presented in Figures 12–16 indicate that the largest
effects of the 2nd-order sensitivities are displayed by the results illustrated in Figure 12 for the total
microscopic cross sections, followed, in order of importance, by the contributions involving the
isotopic number densities (displayed in Figure 13), and followed the contributions involving the
average number of neutrons per fission (displayed in Figure 14). As indicated by the results displayed
in Figures 15 and 16, the contributions stemming from the uncorrelated fission microscopic cross
sections and, respectively, the scattering microscopic cross sections are negligibly small, as are the
contributions stemming from the sensitivities of the leakage response with respect to the source
parameters (not shown).

Figures 17–21 also present results for: (i) the expected value [E(L)] of the PERP leakage response;
(ii) the standard deviations, SD(1), for the PERP leakage response arising solely from the 1st-order
sensitivities; (iii) the standard deviations, SD(2), for the PERP leakage response arising solely from the
2nd-order sensitivities; and (iv) the sum, SD(1) +SD(2), for the PERP leakage response stemming from both
the 1st- and 2nd-order sensitivities. As in Figures 12–16, the green-colored plots in Figures 17–21 involve
solely 1st-order sensitivities, while the red-colored plots in Figures 17–21 depict the contributions from
2nd-order sensitivities. In contradistinction with the results displayed in Figures 12–16, however, the
results displayed in Figures 17–21 assume that all PERP model parameters are uncorrelated and have
uniform relative standard deviations of 10% (rather than 5%). Although standard deviations of 10%
are rather large for nuclear data, these larger standard deviations highlight dramatically the effects of
the 2nd-order sensitivities in uncertainty analysis.Energies 2020, 13, x FOR PEER REVIEW  31 of 39 

 

 
Figure 12. Comparison of ( ) ( )± 10L SDα  (in green), ( ) ( ) ( ) ( ) ( )  ± + 

1 2 1 2, ,
t

E L SD SD SD SD  (in red), 

due to 5% standard deviations of the uncorrelated total microscopic cross sections. 

 
Figure 13. Comparison of ( ) ( )± 10L SDα  (in green), ( ) ( ) ( ) ( ) ( )  ± + 

1 2 1 2, ,
N

E L SD SD SD SD  (in 

red), due to 5% standard deviations of the uncorrelated isotopic number densities. 

 
Figure 14. Comparison of ( ) ( )± 10L SDα  (in green), ( ) ( ) ( ) ( ) ( )

ν
  ± + 

1 2 1 2, ,E L SD SD SD SD  (in red), 

due to 5% standard deviations of the parameters underlying the uncorrelated average number of 
neutrons per fission. 

Figure 12. Comparison of L
(
α0

)
± SD(1) (in green), [E(L)]t ± SD(1), SD(2), SD(1) + SD(2) (in red), due

to 5% standard deviations of the uncorrelated total microscopic cross sections.



Energies 2020, 13, 1674 30 of 37

Energies 2020, 13, x FOR PEER REVIEW  31 of 39 

 

 
Figure 12. Comparison of ( ) ( )± 10L SDα  (in green), ( ) ( ) ( ) ( ) ( )  ± + 

1 2 1 2, ,
t

E L SD SD SD SD  (in red), 

due to 5% standard deviations of the uncorrelated total microscopic cross sections. 

 
Figure 13. Comparison of ( ) ( )± 10L SDα  (in green), ( ) ( ) ( ) ( ) ( )  ± + 

1 2 1 2, ,
N

E L SD SD SD SD  (in 

red), due to 5% standard deviations of the uncorrelated isotopic number densities. 

 
Figure 14. Comparison of ( ) ( )± 10L SDα  (in green), ( ) ( ) ( ) ( ) ( )

ν
  ± + 

1 2 1 2, ,E L SD SD SD SD  (in red), 

due to 5% standard deviations of the parameters underlying the uncorrelated average number of 
neutrons per fission. 

Figure 13. Comparison of L
(
α0

)
± SD(1) (in green), [E(L)]N ± SD(1), SD(2), SD(1) + SD(2) (in red), due

to 5% standard deviations of the uncorrelated isotopic number densities.

Energies 2020, 13, x FOR PEER REVIEW  31 of 39 

 

 
Figure 12. Comparison of ( ) ( )± 10L SDα  (in green), ( ) ( ) ( ) ( ) ( )  ± + 

1 2 1 2, ,
t

E L SD SD SD SD  (in red), 

due to 5% standard deviations of the uncorrelated total microscopic cross sections. 

 
Figure 13. Comparison of ( ) ( )± 10L SDα  (in green), ( ) ( ) ( ) ( ) ( )  ± + 

1 2 1 2, ,
N

E L SD SD SD SD  (in 

red), due to 5% standard deviations of the uncorrelated isotopic number densities. 

 
Figure 14. Comparison of ( ) ( )± 10L SDα  (in green), ( ) ( ) ( ) ( ) ( )

ν
  ± + 

1 2 1 2, ,E L SD SD SD SD  (in red), 

due to 5% standard deviations of the parameters underlying the uncorrelated average number of 
neutrons per fission. 

Figure 14. Comparison of L
(
α0

)
± SD(1) (in green), [E(L)]ν ± SD(1), SD(2), SD(1) + SD(2) (in red), due

to 5% standard deviations of the parameters underlying the uncorrelated average number of neutrons
per fission.Energies 2020, 13, x FOR PEER REVIEW  32 of 39 

 

 
Figure 15. Comparison of ( ) ( )± 10L SDα  (in green), ( ) ( ) ( ) ( ) ( )  ± + 

1 2 1 2, ,
f

E L SD SD SD SD  (in 

red), due to 5% standard deviations of the parameters underlying the uncorrelated fission microscopic 
cross sections. 

 
Figure 16. Comparison of ( ) ( )± 10L SDα  (in green), ( ) ( ) ( ) ( ) ( )  ± + 

1 2 1 2, ,
s

E L SD SD SD SD  (in red), 

due to 5% standard deviations of the parameters underlying the uncorrelated scattering microscopic 
cross sections. 

Figures 17–21 also present results for: (i) the expected value ( )  E L  of the PERP leakage 

response; (ii) the standard deviations, ( )1SD , for the PERP leakage response arising solely from the 
1st-order sensitivities; (iii) the standard deviations, ( )2SD , for the PERP leakage response arising 
solely from the 2nd-order sensitivities; and (iv) the sum, ( ) ( )+1 2SD SD , for the PERP leakage response 
stemming from both the 1st- and 2nd-order sensitivities. As in Figures 12–16, the green-colored plots 
in Figures 17–21 involve solely 1st-order sensitivities, while the red-colored plots in Figures 17–21 
depict the contributions from 2nd-order sensitivities. In contradistinction with the results displayed 
in Figures 12–16, however, the results displayed in Figures 17–21 assume that all PERP model 
parameters are uncorrelated and have uniform relative standard deviations of 10% (rather than 5%). 
Although standard deviations of 10% are rather large for nuclear data, these larger standard 
deviations highlight dramatically the effects of the 2nd-order sensitivities in uncertainty analysis.  

Consistent with the importance rankings illustrated in Figures 12–16, the results presented in 
Figures 17–21 indicate that importance ranking of the parameter sensitivities displayed for standard 
deviations of 5% remains unchanged when the standard deviations are uniformly increased to 10%. 
Very important, however, are the results displayed in the green-colored plots in Figure 17, which 
indicate that, if the 2nd-order sensitivities of the leakage response to the total microscopic group cross sections 
are neglected, the use of only the 1st-order sensitivities yields unphysical results, since the quantity 

( ) ( )− 10L SDα  takes on unphysical negative values.  

Figure 15. Comparison of L
(
α0

)
± SD(1) (in green), [E(L)] f ± SD(1), SD(2), SD(1) + SD(2) (in red),

due to 5% standard deviations of the parameters underlying the uncorrelated fission microscopic
cross sections.



Energies 2020, 13, 1674 31 of 37

Energies 2020, 13, x FOR PEER REVIEW  32 of 39 

 

 
Figure 15. Comparison of ( ) ( )± 10L SDα  (in green), ( ) ( ) ( ) ( ) ( )  ± + 

1 2 1 2, ,
f

E L SD SD SD SD  (in 

red), due to 5% standard deviations of the parameters underlying the uncorrelated fission microscopic 
cross sections. 

 
Figure 16. Comparison of ( ) ( )± 10L SDα  (in green), ( ) ( ) ( ) ( ) ( )  ± + 

1 2 1 2, ,
s

E L SD SD SD SD  (in red), 

due to 5% standard deviations of the parameters underlying the uncorrelated scattering microscopic 
cross sections. 

Figures 17–21 also present results for: (i) the expected value ( )  E L  of the PERP leakage 

response; (ii) the standard deviations, ( )1SD , for the PERP leakage response arising solely from the 
1st-order sensitivities; (iii) the standard deviations, ( )2SD , for the PERP leakage response arising 
solely from the 2nd-order sensitivities; and (iv) the sum, ( ) ( )+1 2SD SD , for the PERP leakage response 
stemming from both the 1st- and 2nd-order sensitivities. As in Figures 12–16, the green-colored plots 
in Figures 17–21 involve solely 1st-order sensitivities, while the red-colored plots in Figures 17–21 
depict the contributions from 2nd-order sensitivities. In contradistinction with the results displayed 
in Figures 12–16, however, the results displayed in Figures 17–21 assume that all PERP model 
parameters are uncorrelated and have uniform relative standard deviations of 10% (rather than 5%). 
Although standard deviations of 10% are rather large for nuclear data, these larger standard 
deviations highlight dramatically the effects of the 2nd-order sensitivities in uncertainty analysis.  

Consistent with the importance rankings illustrated in Figures 12–16, the results presented in 
Figures 17–21 indicate that importance ranking of the parameter sensitivities displayed for standard 
deviations of 5% remains unchanged when the standard deviations are uniformly increased to 10%. 
Very important, however, are the results displayed in the green-colored plots in Figure 17, which 
indicate that, if the 2nd-order sensitivities of the leakage response to the total microscopic group cross sections 
are neglected, the use of only the 1st-order sensitivities yields unphysical results, since the quantity 

( ) ( )− 10L SDα  takes on unphysical negative values.  

Figure 16. Comparison of L
(
α0

)
± SD(1) (in green), [E(L)]s ± SD(1), SD(2), SD(1) + SD(2) (in red), due

to 5% standard deviations of the parameters underlying the uncorrelated scattering microscopic
cross sections.

Energies 2020, 13, x FOR PEER REVIEW  33 of 39 

 

 
Figure 17. Comparison of ( ) ( )± 10L SDα  (in green), ( ) ( ) ( ) ( ) ( )  ± + 

1 2 1 2, ,
t

E L SD SD SD SD  (in red), 

due to 10% standard deviations of the uncorrelated total microscopic cross sections. 

 

Figure 18. Comparison of ( ) ( )± 10L SDα  (in green), ( ) ( ) ( ) ( ) ( )  ± + 
1 2 1 2, ,

N
E L SD SD SD SD  (in 

red), due to 10% standard deviations of the uncorrelated isotopic number densities. 

 

 
Figure 19. Comparison of ( ) ( )± 10L SDα  (in green), ( ) ( ) ( ) ( ) ( )

ν
  ± + 

1 2 1 2, ,E L SD SD SD SD  (in red), 

due to 10% standard deviations of the parameters underlying the uncorrelated average number of 
neutrons per fission. 

Figure 17. Comparison of L
(
α0

)
± SD(1) (in green), [E(L)]t ± SD(1), SD(2), SD(1) + SD(2) (in red), due

to 10% standard deviations of the uncorrelated total microscopic cross sections.

Energies 2020, 13, x FOR PEER REVIEW  33 of 39 

 

 
Figure 17. Comparison of ( ) ( )± 10L SDα  (in green), ( ) ( ) ( ) ( ) ( )  ± + 

1 2 1 2, ,
t

E L SD SD SD SD  (in red), 

due to 10% standard deviations of the uncorrelated total microscopic cross sections. 

 

Figure 18. Comparison of ( ) ( )± 10L SDα  (in green), ( ) ( ) ( ) ( ) ( )  ± + 
1 2 1 2, ,

N
E L SD SD SD SD  (in 

red), due to 10% standard deviations of the uncorrelated isotopic number densities. 

 

 
Figure 19. Comparison of ( ) ( )± 10L SDα  (in green), ( ) ( ) ( ) ( ) ( )

ν
  ± + 

1 2 1 2, ,E L SD SD SD SD  (in red), 

due to 10% standard deviations of the parameters underlying the uncorrelated average number of 
neutrons per fission. 

Figure 18. Comparison of L
(
α0

)
± SD(1) (in green), [E(L)]N ± SD(1), SD(2), SD(1) + SD(2) (in red), due

to 10% standard deviations of the uncorrelated isotopic number densities.



Energies 2020, 13, 1674 32 of 37

Energies 2020, 13, x FOR PEER REVIEW  33 of 39 

 

 
Figure 17. Comparison of ( ) ( )± 10L SDα  (in green), ( ) ( ) ( ) ( ) ( )  ± + 

1 2 1 2, ,
t

E L SD SD SD SD  (in red), 

due to 10% standard deviations of the uncorrelated total microscopic cross sections. 

 

Figure 18. Comparison of ( ) ( )± 10L SDα  (in green), ( ) ( ) ( ) ( ) ( )  ± + 
1 2 1 2, ,

N
E L SD SD SD SD  (in 

red), due to 10% standard deviations of the uncorrelated isotopic number densities. 

 

 
Figure 19. Comparison of ( ) ( )± 10L SDα  (in green), ( ) ( ) ( ) ( ) ( )

ν
  ± + 

1 2 1 2, ,E L SD SD SD SD  (in red), 

due to 10% standard deviations of the parameters underlying the uncorrelated average number of 
neutrons per fission. 

Figure 19. Comparison of L
(
α0

)
± SD(1) (in green), [E(L)]ν ± SD(1), SD(2), SD(1) + SD(2) (in red), due

to 10% standard deviations of the parameters underlying the uncorrelated average number of neutrons
per fission.Energies 2020, 13, x FOR PEER REVIEW  34 of 39 

 

 
Figure 20. Comparison of ( ) ( )± 10L SDα  (in green), ( ) ( ) ( ) ( ) ( )  ± + 

1 2 1 2, ,
f

E L SD SD SD SD  (in 

red), due to 10% standard deviations of the parameters underlying the uncorrelated fission 
microscopic cross sections. 

 
Figure 21. Comparison of ( ) ( )± 10L SDα  (in green), ( ) ( ) ( ) ( ) ( )  ± + 

1 2 1 2, ,
s

E L SD SD SD SD  (in red), 

due to 10% standard deviations of the parameters underlying the uncorrelated scattering microscopic 
cross sections. 

The sequence of works [1–5] and the present work, labeled as Parts I-VI, have applied the 
Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) conceived by Cacuci [6,7] to 
compute exactly the 21,976 first-order sensitivities and 482,944,576 second-order sensitivities of a 
polyethylene-reflected plutonium (PERP) benchmark’s leakage response with respect to the 
benchmark’s imprecisely known parameters. The 2nd-ASAM is the only known methodology, at this 
time, which enables such large-scale exhaustive computations of the exact expressions of 2nd-order 
response sensitivities. The results of these pioneering computations have indicated that there are 
many 2nd-order sensitivities that have values significantly larger than the 1st-order ones. Specifically, 
13 first-order sensitivities attain values between 1.0 and 10.0, while 126 second-order relative 
sensitivities have values greater than 10.0, and 1853 second-order relative sensitivities have values 
between 1.0 and 10.0. Hence, the number of 2nd-order relative sensitivities having values greater 
than 1.0 is obviously far larger than the number of 1st-order relative sensitivities that have values 
greater than 1.0. 

Since correlations among the PERP’s model parameters are unavailable, the effects of the 1st- 
and 2nd-order sensitivities in contributing to the expected value and standard deviation of the 
PERP’s leakage response have mostly been illustrated by assuming that all model’s parameters are 
uncorrelated. This assumption eliminates the effects of the mixed 2nd-order sensitivities. On the other 
hand, the illustrative results presented in Part I [1] for the extreme case of fully correlated total cross 
sections have shown that neglecting the 2nd-order sensitivities would cause an error as large as 
2000% in the expected value of the leakage response, and up to 6000% in the variance of the leakage 

Figure 20. Comparison of L
(
α0

)
± SD(1) (in green), [E(L)] f ± SD(1), SD(2), SD(1) + SD(2) (in red),

due to 10% standard deviations of the parameters underlying the uncorrelated fission microscopic
cross sections.

Energies 2020, 13, x FOR PEER REVIEW  34 of 39 

 

 
Figure 20. Comparison of ( ) ( )± 10L SDα  (in green), ( ) ( ) ( ) ( ) ( )  ± + 

1 2 1 2, ,
f

E L SD SD SD SD  (in 

red), due to 10% standard deviations of the parameters underlying the uncorrelated fission 
microscopic cross sections. 

 
Figure 21. Comparison of ( ) ( )± 10L SDα  (in green), ( ) ( ) ( ) ( ) ( )  ± + 

1 2 1 2, ,
s

E L SD SD SD SD  (in red), 

due to 10% standard deviations of the parameters underlying the uncorrelated scattering microscopic 
cross sections. 

The sequence of works [1–5] and the present work, labeled as Parts I-VI, have applied the 
Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) conceived by Cacuci [6,7] to 
compute exactly the 21,976 first-order sensitivities and 482,944,576 second-order sensitivities of a 
polyethylene-reflected plutonium (PERP) benchmark’s leakage response with respect to the 
benchmark’s imprecisely known parameters. The 2nd-ASAM is the only known methodology, at this 
time, which enables such large-scale exhaustive computations of the exact expressions of 2nd-order 
response sensitivities. The results of these pioneering computations have indicated that there are 
many 2nd-order sensitivities that have values significantly larger than the 1st-order ones. Specifically, 
13 first-order sensitivities attain values between 1.0 and 10.0, while 126 second-order relative 
sensitivities have values greater than 10.0, and 1853 second-order relative sensitivities have values 
between 1.0 and 10.0. Hence, the number of 2nd-order relative sensitivities having values greater 
than 1.0 is obviously far larger than the number of 1st-order relative sensitivities that have values 
greater than 1.0. 

Since correlations among the PERP’s model parameters are unavailable, the effects of the 1st- 
and 2nd-order sensitivities in contributing to the expected value and standard deviation of the 
PERP’s leakage response have mostly been illustrated by assuming that all model’s parameters are 
uncorrelated. This assumption eliminates the effects of the mixed 2nd-order sensitivities. On the other 
hand, the illustrative results presented in Part I [1] for the extreme case of fully correlated total cross 
sections have shown that neglecting the 2nd-order sensitivities would cause an error as large as 
2000% in the expected value of the leakage response, and up to 6000% in the variance of the leakage 

Figure 21. Comparison of L
(
α0

)
± SD(1) (in green), [E(L)]s ± SD(1), SD(2), SD(1) + SD(2) (in red), due

to 10% standard deviations of the parameters underlying the uncorrelated scattering microscopic
cross sections.

Consistent with the importance rankings illustrated in Figures 12–16, the results presented in
Figures 17–21 indicate that importance ranking of the parameter sensitivities displayed for standard
deviations of 5% remains unchanged when the standard deviations are uniformly increased to 10%.
Very important, however, are the results displayed in the green-colored plots in Figure 17, which
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indicate that, if the 2nd-order sensitivities of the leakage response to the total microscopic group cross sections are neglected, the use of

only the 1st-order sensitivities yields unphysical results, since the quantity L
(
α0

)
− SD(1) takes on unphysical negative values.

The sequence of works [1–5] and the present work, labeled as Parts I-VI, have applied the
Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) conceived by Cacuci [6,7]
to compute exactly the 21,976 first-order sensitivities and 482,944,576 second-order sensitivities
of a polyethylene-reflected plutonium (PERP) benchmark’s leakage response with respect to the
benchmark’s imprecisely known parameters. The 2nd-ASAM is the only known methodology, at this
time, which enables such large-scale exhaustive computations of the exact expressions of 2nd-order
response sensitivities. The results of these pioneering computations have indicated that there are many
2nd-order sensitivities that have values significantly larger than the 1st-order ones. Specifically, 13
first-order sensitivities attain values between 1.0 and 10.0, while 126 second-order relative sensitivities
have values greater than 10.0, and 1853 second-order relative sensitivities have values between 1.0 and
10.0. Hence, the number of 2nd-order relative sensitivities having values greater than 1.0 is obviously
far larger than the number of 1st-order relative sensitivities that have values greater than 1.0.

Since correlations among the PERP’s model parameters are unavailable, the effects of the 1st- and
2nd-order sensitivities in contributing to the expected value and standard deviation of the PERP’s
leakage response have mostly been illustrated by assuming that all model’s parameters are uncorrelated.
This assumption eliminates the effects of the mixed 2nd-order sensitivities. On the other hand, the
illustrative results presented in Part I [1] for the extreme case of fully correlated total cross sections
have shown that neglecting the 2nd-order sensitivities would cause an error as large as 2000% in
the expected value of the leakage response, and up to 6000% in the variance of the leakage response
for the microscopic group total cross sections. These illustrative examples have highlighted the fact
that the importance of the mixed 2nd-order sensitivities increases as the respective cross sections
correlations and standard deviations increase. Of course, neither the fully uncorrelated nor the fully
correlated illustrative examples presented in this sequence of works [1–5] realistically describe the
actual physical situations regarding the parameters describing the total and other microscopic cross
section. The fully uncorrelated case underestimates reality while the fully correlated case overestimates
it. In reality, cross sections are partially correlated, so reality falls in between the fully uncorrelated
and fully correlated cases. Nevertheless, the illustrative examples in [1–5] underscore the need for
future experimental research aimed at obtaining values for the correlations that might exist among the
various cross sections, which are unavailable at this time. Correlations among the model parameters
(e.g., total and fission cross sections, isotopic number densities, and the average number of neutrons
per fission) provide contributions to the response distribution moments (i.e., expected values, variance,
skewness, etc.) in addition to those stemming from the parameters’ standard deviations.

All in all, this sequence of works [1–5] aimed at drawing attention to the fact that 2nd-order
sensitivities are important, and their effects must be assessed for each physical system under
consideration. For the PERP benchmark, in particular, it has been shown that the 2nd-order sensitivities
are even more important than the 1st-order ones. While the effects of the 2nd-order sensitivities may
be less marked for other reactor physics systems, the point is that they are not always negligible, as they have
been a priori assumed in hitherto in the published literature. Finally, since this sequence of works [1–5]
has revealed that the 2nd-order mixed relative sensitivities of the PERP benchmark’s leakage response
to this benchmark’s total cross sections exhibit a very large number of values that are greater than 1.0
(including many having values significantly larger than 10.0), it is of clear interest to compute the
magnitude of the corresponding 3rd-order sensitivities of the leakage response with respect to the
parameters underlying the PERP’s total cross sections. The computation of these 3rd-order sensitivities
is currently under way and will be reported soon.
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Appendix A. Definitions of PERP Model Parameters

As presented in Part I [1], the components of the vector of 1st-order sensitivities of the leakage
response with respect to the model parameters, denoted as S(1)(α), is defined as follows:

S(1)(α) ,

[
∂L(α)
∂σt

;
∂L(α)
∂σs

;
∂L(α)
∂σ f

;
∂L(α)
∂ν

;
∂L(α)
∂p

;
∂L(α)
∂q

;
∂L(α)
∂N

]†
. (A1)

The symmetric matrix of 2nd-order sensitivities of the leakage response with respect to the model
parameters, denoted as S(2)(α), is defined as follows:

S(2)(α) ,



∂2L(α)
∂σt∂σt

∗ ∗ ∗ ∗ ∗ ∗

∂2L(α)
∂σs∂σt

∂2L(α)
∂σs∂σs

∗ ∗ ∗ ∗ ∗

∂2L(α)
∂σ f ∂σt

∂2L(α)
∂σ f ∂σs

∂2L(α)
∂σ f ∂σ f

∗ ∗ ∗ ∗

∂2L(α)
∂ν∂σt

∂2L(α)
∂ν∂σs

∂2L(α)
∂ν∂σ f

∂2L(α)
∂ν∂ν ∗ ∗ ∗

∂2L(α)
∂p∂σt

∂2L(α)
∂p∂σs

∂2L(α)
∂p∂σ f

∂2L(α)
∂p∂ν

∂2L(α)
∂p∂p ∗ ∗

∂2L(α)
∂q∂σt

∂2L(α)
∂q∂σs

∂2L(α)
∂q∂σ f

∂2L(α)
∂q∂ν

∂2L(α)
∂q∂p

∂2L(α)
∂q∂q ∗

∂2L(α)
∂N∂σt

∂2L(α)
∂N∂σs

∂2L(α)
∂N∂σ f

∂2L(α)
∂N∂ν

∂2L(α)
∂N∂p

∂2L(α)
∂N∂q

∂2L(α)
∂N∂N



. (A2)

As defined in Equation (1), the vector α ,
[
σt;σs;σ f ;ν; p; q; N

]† denotes the “vector of imprecisely
known model parameters”, with vector-components σt, σs, σ f , ν, p, q and N, comprising the various
model parameters for the microscopic total cross sections, scattering cross sections, fission cross sections,
average number of neutrons per fission, fission spectra, sources, and isotopic number densities, which
have been described in Part I [1]. For easy referencing, however, the definitions of these model
parameters will be provided in the remainder of this Appendix.

The total cross section Σg
t for energy group g, g = 1, . . . , G, is computed for the PERP benchmark

using the following expression:

Σg
t =

M=2∑
m=1

Σg
t,m; Σg

t,m =
I∑
i

Ni,mσ
g
t,i =

I∑
i

Ni,m

σg
f ,i + σ

g
c,i +

G∑
g′=1

σ
g→g′

s,l=0,i

, m = 1, 2, (A3)

where m denotes the materials in the PERP benchmark; σg
f ,i and σ

g
c,i denote, respectively, the tabulated

group microscopic fission and neutron capture cross sections for group g,g = 1, . . . , G. Other nuclear
reactions are negligible in the PERP benchmark. As discussed in Part I [1], the total cross section
Σg

t → Σg
t (t) will depend on the vector of parameters t, which is defined as follows:

t ,
[
t1, . . . , tJt

]†
,

[
t1, . . . , tJσt ; n1, . . . , nJn

]†
, [σt; N]†, Jt = Jσt + Jn, (A4)

where:
N ,

[
n1, . . . , nJn

]†
, [N1,1, N2,1, N3,1, N4,1, N5,2, N6,2]

†, Jn = 6, (A5)

σt ,
[
t1, . . . , tJσt

]†
,

[
σ1

t,i=1, σ2
t,i=1, . . . , σG

t,i=1, . . . , σg
t,i, . . . , σ

1
t,i=I , . . . , σ

G
t,i=I

]†
,

i = 1, . . . , I = 6; g = 1, . . . , G = 30; Jσt = I ×G.
(A6)
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In Equations (A4) through (A6), the dagger denotes “transposition”, σg
t,i denotes the microscopic

total cross section for isotope i and energy group g, Ni,m denotes the respective isotopic number density,
and Jn denotes the total number of isotopic number densities in the model. Thus, the vector t comprises
a total of Jt = Jσt + Jn = 30× 6 + 6 = 186 imprecisely known “model parameters” as its components.

The scattering transfer cross section Σg′→g
s

(
Ω
′

→ Ω
)

from energy group g′, g′ = 1, . . . , G into energy
group g, g = 1, . . . , G, is computed using the finite Legendre polynomial expansion of order ISCT = 3:

Σg′→g
s

(
Ω
′

→ Ω
)
=

M=2∑
m=1

Σg′→g
s,m

(
Ω
′

→ Ω
)
,

Σg′→g
s,m

(
Ω
′

→ Ω
)
�

I=6∑
i=1

Ni,m
ISCT=3∑

l=0
(2l + 1) σg′→g

s,l,i Pl

(
Ω
′

·Ω
)
, m = 1, 2,

(A7)

where σg′→g
s,l,i denotes the l-th order Legendre-expanded microscopic scattering cross section from energy

group g′ into energy group g for isotope i. In view of Equation (A7), the scattering cross section
Σg′→g

s

(
Ω
′

→ Ω
)
→ Σg′→g

s

(
s; Ω

′

→ Ω
)

depends on the vector of parameters s, which is defined as follows:

s ,
[
s1, . . . , sJs

]†
,

[
s1, . . . , sJσs ; n1, . . . , nJn

]†
, [σs; N]†, Js = Jσs + Jn, (A8)

σs ,
[
s1, . . . , sJσs

]†
,

[
σ

g′=1→g=1
s,l=0,i=1 , σg′=2→g=1

s,l=0,i=1 , . . . , σg′=G→g=1
s,l=0,i=1 , σg′=1→g=2

s,l=0,i=1 , σg′=2→g=2
s,l=0,i=1 , . . . , σg′→g

s,l,i , . . . , σG→G
s,ISCT,i=I

]†
,

l = 0, . . . , ISCT; i = 1, . . . , I; g, g′ = 1, . . . , G; Jσs = (G×G) × I × (ISCT + 1).
(A9)

The expressions in Equations (A7) and (A3) indicate that the zeroth order (i.e., l = 0) scattering
cross sections must be considered separately from the higher order (i.e., l ≥ 1) scattering cross sections,
since the former contribute to the total cross sections, while the latter do not. Therefore, the total
number of zeroth-order scattering cross section comprise in σs is denoted as Jσs,l=0, where Jσs,l=0 = G×G× I;
and the total number of higher order (i.e., l ≥ 1) scattering cross sections comprised in σs is denoted
as Jσs,l≥1, where Jσs,l≥1 = G ×G × I × ISCT, with Jσs,l=0 + Jσs,l≥1 = Jσs. Thus, the vector s comprises a total of
Jσs + Jn = 30× 30× 6× (3 + 1) + 6 = 21606 imprecisely known components (“model parameters”).

The transport code PARTISN [11] computes the quantity
(
νΣ f

)g using directly the quantities (νσ)
g
f ,i,

which are provided in data files for each isotope i, and energy group g, as follows

(
νΣ f

)g
=

M=2∑
m=1

(
νΣ f

)g

m
;

(
νΣ f

)g

m
=

I=6∑
i=1

Ni,m
(
νσ f

)g

i
, m = 1, 2. (A10)

In view of Equation (A10), the quantity
(
νΣ f

)g
→

(
νΣ f

)g
(f; r) depends on the vector of parameters f,

which is defined as follows:

f ,
[

f1, . . . , fJσ f ; fJσ f +1, . . . , fJσ f +Jν ; fJσ f +Jν+1, . . . , fJ f

]†
,

[
σ f ;ν; N

]†
, J f = Jσ f + Jν + Jn, (A11)

where:
σ f ,

[
σ1

f ,i=1, σ2
f ,i=1, . . . , σG

f ,i=1, . . . , σg
f ,i, . . . , σ

1
f ,i=N f

, . . . , σG
f ,i=N f

]†
,

[
f1, . . . , fJσ f

]†
,

i = 1, . . . , N f ; g = 1, . . . , G; Jσ f = G×N f ,
(A12)

ν ,
[
ν1

i=1, ν2
i=1, . . . , νG

i=1, . . . , νg
i , . . . , ν1

i=N f
, . . . , νG

i=N f

]†
,

[
fJσ f +1, . . . , fJσ f +Jν

]†
,

i = 1, . . . , N f ; g = 1, . . . , G; Jν = G×N f ,
(A13)

and where σg
f ,i denotes the microscopic fission cross section for isotope i and energy group g, νg

i denotes
the average number of neutrons per fission for isotope i and energy group g, and N f denotes the total
number of fissionable isotopes. For the purposes of sensitivity analysis, the quantity ν

g
i , can be obtained

by using the relation ν
g
f ,i = (νσ)

g
f ,i/σ

g
f ,i, where the isotopic fission cross sections σg

f ,i are available in data
files for computing reaction rates.
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The quantity χg in Equation (3) quantifies the material fission spectrum in energy group g, and is
defined in PARTISN [11] as follows:

χg ,

N f∑
i=1
χ

g
i Ni,m

G∑
g′=1

(
νσ f

)g′

i
f g′

i

N f∑
i=1

Ni,m
G∑

g′=1

(
νσ f

)g′

i
f g′

i

, with
G∑

g=1

χ
g
i = 1, (A14)

where the quantity χ
g
i denotes the isotopic fission spectrum in energy group g, while the quantity f g

i

denotes the corresponding spectrum weighting function.
The fission spectrum is considered to depend on the vector of parameters p, defined as follows:

p ,
[
p1, . . . , pJp

]†
,

[
χ

g=1
i=1 ,χg=2

i=1 , . . . ,χG
i=1, . . . ,χg

i , . . . ,χG
N f

]†
, i = 1, . . . , N f ; g = 1, . . . , G; Jp = G×N f . (A15)

The source Qg(r)→ Qg(q; N) depends on the vector of model parameters q, which is defined as
follows:

q ,
[
q1, . . . , qJq

]†
,

[
λ1,λ2; FSF

1 , FSF
2 ; a1, a2; b1, b2; νSF

1 , νSF
2

]†
, Jq = 10. (A16)

In view of Equations (A4)–(A16), the model parameters characterizing the PERP benchmark can
all be considered to be the components of the following “vector of model parameters”:

α ,
[
α1, . . . ,αJα

]†
,

[
σt;σs;σ f ;ν; p; q; N

]†
, Jα = Jσt + Jσs + Jσ f + Jν + Jp + Jq + Jn. (A17)
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