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Abstract: As the penetration of renewable energy sources (RESs) increases, the rate of conventional
generators and the power system inertia are reduced accordingly, resulting in frequency-stability
concerns. As one of the solutions, the battery-type energy storage system (ESS), which can
rapidly charge and discharge energy, is utilized for frequency regulation. Typically, it is based
on response-driven frequency control (RDFC), which adjusts its output according to the measured
frequency. In contrast, event-driven frequency control (EDFC) involves a determined frequency
support scheme corresponding to a particular event. EDFC has the advantage that control action is
promptly performed compared to RDFC. This study proposes an ESS EDFC strategy that involves
estimating the required operating point of the ESS according to a specific disturbance through
neural-network training. When a disturbance occurs, the neural networks can estimate the proper
magnitude and duration of the ESS output to comply with the frequency grid code. A simulation to
validate the proposed control method was performed for an IEEE 39 bus system. The simulation results
indicate that a neural-network estimation offers sufficient accuracy for practical use, and frequency
response can be adjusted as intended by the system operator.
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1. Introduction

Recently, the power systems of the world have been changing significantly, as the penetration of
renewable energy sources (RESs) has accelerated. Among the countries across the world, China has
made the largest investment in RESs, and it plans to generate at least 35% of its electricity with RESs
by 2030 [1]. Additionally, the European Union has increased its target for RESs from 27% to 32% by
2030 [2], and similar energy policies are being implemented in many countries. Because most RESs are
inverter-based resources (IBRs) and not having rotating masses, the system inertia has been decreased
consistently. Coupled with the variability of RESs, the low inertia has become a serious problem for
system-frequency stability [3,4].

The battery-type energy storage system (ESS) is considered as one of the solutions to cope with the
fluctuations caused by RESs.To complement the remaining synchronous generators (SGs) in the system,
research on frequency support through the ESSs has been actively conducted. Droop control, which is
the inherited control strategy of governors, has been applied to ESSs [5]. However, this technique
cannot make a meaningful contribution to the inertia of the system, and further adjustments are
required after the frequency reaches a steady state. To increase the system inertia, many researchers
have studied control strategies in which ESSs emulate the dynamics of conventional generating units;
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this is normally called a virtual synchronous machine (VSM) [6–14]. When ESS outputs the power that is
proportional to the rate of change of the frequency (ROCOF), it can operate as a VSM. Recently, the risk
of excessive ROCOF is recognized, and the related grid code is being reorganized [15]. VSM strategies
have the advantage of being able to improve the system ROCOF response. However, there are still
drawbacks: an additional filter is needed for accurate measurement of the ROCOF [16], and each ESS
operates individually without cooperation between facilities. Recently, there have been studies for ESSs
cooperation control strategies. To optimize the state of the charge (SoC), ESSs have been aggregated,
and communication between ESSs has been utilized [17,18]. However, all the frequency-support
strategies of previous researches are based on response-driven frequency control (RDFC) [5–14,17,18].
Since facilities with RDFC operate according to frequency changes without judging what kind of
accident has occurred, RDFC has a limitation compared with event-driven frequency control (EDFC),
in which facilities immediately perform a frequency-support operation which is customized for the
occurred event.

Event-driven control involves performing a predetermined operation on a target event. Statistical
process control, which is based on previous data, is the representative type of event-driven control.
Since ESSs with flexible power control are suitable for RDFC, EDFC is generally not used by ESSs.
However, EDFC has been studied in the field of under-frequency load shedding (UFLS) [19–21].
A method was proposed for predicting the magnitude of disturbance with the ROCOF according to the
generator outage data and performing load shedding depending on the disturbance [19]. In another
study, an extreme learning machine trained with operating conditions and contingencies has been
used to derive the necessary load shedding when an actual contingency occurred [20]. There has
been a load-shedding scheme that is based on an active and reactive power change [21]. In [20,21],
a machine-learning algorithm was used to predict proper load shedding.

The main difference between ESS frequency control and UFLS is the possibility of continuous
control. Load recovery after the load shedding has normally not been considered in studies on UFLS.
However, because the ESSs are relatively free of power output variations, returning the output to its
original operating point can be considered; i.e., not only the magnitude but also the duration of the
ESSs output can be considered as a variable. If the frequency can remain stable even when the ESS stops
the control action after a certain duration, there is no need for ESSs to maintain the output. In contrast,
if the frequency becomes unstable when ESSs stop the control action, the output of ESSs should be
maintained. The judgment of this requires information on disturbances and an understanding of the
system frequency characteristics.

Although the frequency-response characteristics of the power system are highly nonlinear, they can
be learned by a neural network. It can determine whether the ESSs should maintain the output or not
according to frequency measurements in a short time. Additionally, the magnitude and duration of the
ESSs output for the desired frequency response can be estimated. Typically, the most important factor
of the “desired frequency response” is the frequency nadir. That is, proposed EDFC enables ESSs to
output the power that is just necessary for the desired frequency nadir under a specific disturbance.
The main contribution of the proposed EDFC method is summarized as follows:

(1) Event-driven strategy is applied for ESS control.
(2) Whether ESSs should perform a control action to comply with the grid code under a specific

disturbance can be judged.
(3) With relatively low peak-power rated ESSs, the frequency grid code can be complied.
(4) With reduced ESS energy consumption, the frequency grid code can be complied.

The remainder of this paper is organized as follows. In Section 2, the concepts of RDFC and
EDFC are explained in detail and compared. In Section 3, the frequency dynamics are analyzed via
a model-based approach to elucidate the frequency response in a case where the ESS power output
suddenly stops. In Section 4, the organization of the neural networks and the overall control strategy
are described. Additionally, the data-selection technique for good performance of the neural networks
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and the consideration for generator outage situations are involved. In Section 5, the proposed control
method is validated with the neural-network estimation performance test and simulation results.

2. EDFC with ESS

2.1. ESS Frequency Support

In response to the penetration of the RESs, the installation of ESSs has been increasing. There are
various ESSs with different energy-storage methods, and most types are featured in flexible and fast
power control. They are utilized to support the power system in a variety of ways. The general
applications of ESSs are peak shaving, frequency regulation, microgrid, and renewable integration.

Among the applications, frequency-regulation ESSs are used to keep the system frequency within
the stable region. Maintaining the system frequency is important, because excessive frequency deviation
from the standard can adversely affect the power system equipment. For this reason, most countries
have their own grid code associated with a frequency [22]. Since the inertia of power systems is
presently decreasing as the conventional generators with inertia are replaced with IBRs, the importance
of frequency-regulation ESSs is increasing.

2.2. RDFC vs. EDFC

In this study, ESS frequency control methods are divided into two: response-driven and
event-driven. In the former, the ESS adjusts the output according to the measured frequency.
ESSs and other power-electronic equipment with frequency control normally use response-driven
method. The latter can be described as customized control. When a disturbance occurs, control is
performed with the operating point precalculated or estimated. The scheme of the RDFC and proposed
EDFC methods are shown in Figure 1. Fmeas represents the measured frequency and P represent the
output of the ESS. In RDFC, each ESS is individually controlled by a local frequency. In proposed EDFC,
ESSs send equipment status information, such as SoC, to the central control system, which determines
the operating point of each ESS according to the status and the event that occurred. This allows several
ESSs to operate as one large ESS.

Figure 1. (a) Response-driven control; (b) Proposed event-driven control.

RDFC can be divided into droop control and synthetic inertia (SI) control, as shown in Figure 2.
The parameters in Figure 2 are as follows: f represents the system frequency, fre f represents the
reference frequency of the control, Tm represents the time constant of the measurements, kdr represents
the droop-control gain, ksi represents the SI-control gain, P0 represents the reference power without
RDFC, and Pre f represents the practical reference power. The inputs of the droop control and SI control
are the frequency error and ROCOF, respectively. In both controls, the output of the ESSs changes in
proportion to the input. Here, the swing equation is reviewed for comprehension of the SI control
dynamics. The difference between the mechanical power and electrical power of the SG is given by the



Energies 2020, 13, 1657 4 of 17

change in the kinetic energy of the SG rotor. The power absorbed by the rotor can be expressed in per
unit magnitude as follows:

∆Protor = ∆Pm − ∆Pe = H
d f
dt

(1)

where ∆Pm represents the mechanical-power change, ∆Pe represents the electrical-power change,
and H represents the inertia constant. When the ESS can change the power output in proportion to the
ROCOF instantaneously, it can act as a synthetic rotor. Clearly, the SI-control gain ksi has the same
dimension as the inertia constant H.

Figure 2. Block diagram of response-driven frequency control (RDFC).

Since RDFC uses the local measured frequency, it has the advantage that communication is not
necessary; however, ESSs cannot cooperate with each other globally. Additionally, ESSs operate
unnecessarily even under disturbances that do not violate the grid-code criteria, and the selection of
the control parameters can be complex. EDFC based on credible data can alleviate these problems.

For EDFC to show the desired performance for a particular event, the following information is
needed: the extent of the event and corresponding operating point of the ESSs to comply with the
grid code. However, it is difficult to obtain the information accurately owing to the nonlinearity of
the system frequency characteristics. In this case, a data-based neural network can be an appropriate
solution. Only with short-time frequency data, the neural networks can estimate the information
needed for EDFC. If the estimation is appropriate, the ESSs of the system can respond to the event
immediately and optimally. The estimation method using neural networks is discussed in detail in
Section 4.

3. System Frequency Response (SFR) with EDFC

In this section, the frequency response is analyzed via a model-based approach. Although the
prediction of disturbances is impractical with a model-based approach, this analysis provides insight
into the frequency change resulting from a disturbance as the ESS performs the proposed EDFC.
The frequency response is approximated by a linear SFR model [23], as shown in Figure 3a. In Figure 3,
∆PESS represents the ESS output, ∆PD represents the disturbance power, tdu represents the duration of
the ESS control action, R represents the droop constant of the governor, FH represents the high-pressure
turbine ratio, and TR represents the generator output time constant. All the variables are in per unit
values. The MVA base is equal to the total rating of all the generating units in the system. In this study,
the damping factor is ignored, and the disturbance power ∆PD is always positive. It is assumed that
the disturbance and the ESS control action occur simultaneously, because the EDFC process takes a
relatively short time compared to the frequency dynamics. Additionally, it is assumed ESS stops the
control action after a certain period of time (tdu).
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Figure 3. (a) Linear system frequency response (SFR) model. (b) Different form of the SFR model.

To make the state variable of the SFR model clearer, Figure 3a is modified as Figure 3b. When the
state variables are frequency change (∆ f ) and x in Figure 3b, the differential equation of the SFR is
as follows:

.
∆ f =

1
2H

(
−

FH

R
∆ f −

1− FH

R
x + ∆Pinput

)
(2)

.
x =

1
TR

(∆ f − x) (3)

Since the input (∆Pinput) before and after the ESS stops the control action is different, the time
needs to be divided into two intervals for time-domain analysis. The inputs in the first and second
intervals are ∆PESS−∆PD and −∆PD, respectively. Since the initial values of the state variables are
zero in the first interval but not in the second interval, they must be considered when solving the
differential equation in the second interval. The development of differential equations is described in
Appendix A, and the result is as follows:

∆ f (t) =

 R(−∆PD + ∆PESS)
(
1 + ae−ξωntsin(ωrt + θ1)

)
t < tdu

∆ ftdu +
(
−R∆PD − ∆ ftdu

)(
1 + βe−ξωn(t−tdu)sin(ωr(t− tdu) + θ2)

)
t ≥ tdu

(4)

where ωn represents the natural frequency; ξ represents the damping ratio; ωr represents the damped
frequency of oscillation; θ1 and θ2 represent the initial phase in the first and second intervals,
respectively; ∆ ftdu represents the frequency change when the ESS stops the control action; and α and β
are constants multiplied by the transient component in the first and second intervals. Detailed formulas
for each parameter are presented in Appendix A.

The frequency change in each interval consists of a dc component and a transient component.
The frequency nadirs exist in the respective intervals, and they are the sum of the dc component and
the first minimum of the transient component in its interval. The components of the first nadir (FN)
are presented in Figure 4a, where f0 represents the initial value of the frequency and mt represents the
first minimum of the transient component described in Appendix A.

Figure 4. Components of the frequency nadir in the (a) first interval and (b) second interval.
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The two variables that the system operator can handle are the magnitude and duration of the ESS
output. According to Equation (4), the FN is dependent on the magnitude of ESS output. In the case of
limitless ESS output, the FN can be easily adjusted as intended by the system operator. In contrast,
the second nadir (SN), which is affected by both the magnitude and duration, is not easy to adjust.
Because the parameters of the second interval change with respect to the initial value of the state
variable, the SN is difficult to analyze. However, the fact that state variable x is equal to the frequency
change in the steady-state significantly simplifies the second-interval parameter. In a steady state,
the parameters of the second interval become equal to those of the first interval, and ftdu becomes
R(−∆PD + ∆PESS). When x is equal to ∆ f at tdu, the components of the SN are presented in Figure 4b.
Furthermore equation (4) can be simplified as follows:

∆ f (t) =

 R(−∆PD + ∆PESS)
(
1 + ae−ξωntsin(ωrt + θ1)

)
t < tdu

−R∆PD −R∆PESSae−ξωn(t−tdu)sin(ωr(t− tdu) + θ2) t ≥ tdu
(5)

Additionally, the FN and SN can be simplified as follows:

FN = f0 + R(−∆PD + ∆PESS)(1 + mt) (6)

SN = f0 −R(∆PD + mt∆PESS) (7)

The nadir without control (∆PESS = 0) is expressed as follows:

fncnd = f0 −R∆PD(1 + mt) (8)

Unless the ESS output exceeds the disturbance, both the FN and the SN are larger than the nadir
without any frequency support control. However, as the ESS output increases, although the FN
increases, the SN decreases. Since the actual nadir is the smaller of the two values, the optimal nadir
is obtained when the FN and the SN are equal. Here, the optimal nadir means the best nadir on the
condition that the ESS stops the control action in the middle. When Equations (6) and (7) are identical,
the magnitude of the ESS output at the optimal nadir can be obtained as follows:

∆PESS =
∆PD

1 + 2mt
(9)

Substituting Equation (9) into Equation (7) yields the optimal nadir:

fopnd = f0 −
1 + 3mt

1 + 2mt
R∆PD (10)

When the ESS output decreases with a sufficient time constant (not a step response), the frequency
response can improve. However, the rate of change of the output should be excessively slow, similar
to the case of maintaining the output. When the optimal nadir for a particular disturbance is lower
than the grid-code criteria, the ESS should maintain the output until the automatic generation control
(AGC) intervenes.

4. ESS EDFC Using Neural-Network Estimation

In this section, an EDFC strategy using neural networks is introduced. The objectives of the neural
networks are not only to predict the extent of the disturbance but to determine the corresponding
magnitude and duration of the ESS output. The first subsection introduces the neural-network structure
and overall control scheme. The second subsection introduces the data-selection method. The third
subsection deals with the generator-tripped case.
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4.1. Neural Network Structure and Control Scheme

As illustrated in Figure 5, two neural networks are used: NN1 and NN2. NN1 has one input and
three outputs, and NN2 has three inputs and two outputs. The description of the new parameters
related to NNs are as follows: t f represents the time at which the frequency reaches two threshold
frequencies, fnd represents the frequency nadir without control, fss represents the steady-state frequency
without control, and FNR and SNR represent the references of the FN and SN.

Figure 5. Neural-network structure for the proposed control (a) NN1, (b) NN2.

I/O values are visualized in Figure 6. NN1 estimates the ∆PD, fnd, and fss from t f . According
to Equation (1), the system power difference is proportional to the ROCOF; thus, the ROCOF can be
an ideal variable for predicting the extent of the disturbance. However, because the instantaneous
ROCOF can be considerably affected by noise during the measurement process, the average ROCOF
can substitute it. There are two threshold frequencies in Figure 6: f th1 and fth2. The average ROCOF
can be determined as follows:

ROCOFavg =
fth2 − fth1

t f
(11)

Figure 6. Frequency response with the I/O values.

When the t f is sufficiently small, the difference between the average ROCOF and the instantaneous
ROCOF can be ignored. That is, t f involves sufficient information to predict the three outputs.

Each estimated value of NN1 is used as a control signal. ∆PD is used as the input for the NN2.
When predicted fnd does not violate the grid-code criteria, the ESS does not need to perform any control.
In this method, unnecessary operation of the ESS can be prevented. The fss can determine whether to
maintain the output of the ESS until the AGC operates. According to Equation (4), the steady- state
frequency due to a disturbance can be expressed as:

fss = f0 −R∆PD (12)
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The optimal nadir can be obtained by substituting Equation (12) into Equation (10). When the
optimal nadir is lower than the grid-code criteria, the ESS should continue the control action until
there is an adjustment by the AGC. Nonetheless, the system frequency would violate the grid code.

NN2 estimates the magnitude (∆PESS) and duration (tdu) of the ESS output corresponding to the
occurred disturbance (∆PD) to form the intended nadir (FNR, SNR). The inputs are the predicted ∆PD,
FNR, and SNR. Both nadir references must be higher than the grid-code criteria. Since ∆PESS and
the FN are highly correlated, corresponding ∆PESS can be relatively accurately estimated. However,
estimation of tdu is more complex due to the relatively low correlation with SN. Therefore, proper data
selection is more important for estimation of the duration than for estimation of the magnitude.

The overall control scheme is shown in Figure 7. The time count (tcount) starts after the frequency
reaches the first threshold frequency ( fth1). When the frequency does not reach the second threshold
( fth2 ) for a long time, it can be judged that the disturbance is not large enough. In this case, the reference
frequency ( fre f ) is updated to the currently measured frequency ( fm), and the time count is reinitialized
to zero. In the case where the frequency reaches the second threshold, t f is obtained, and the
neural-network estimation is performed with it. In neural network operation, the control signal
determination process is shown in Figure 8a. When the frequency reaches a steady state after the
disturbance occurs, it is necessary to update the frequency reference, and the time count is reinitialized.

Figure 7. Control scheme of the central control system.

Figure 8. (a) Control signal determination process and (b) data selection algorithm for training NN2.
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4.2. Data Selection for Accurate Estimation

The most important factor for the good performance of neural networks is the training data quality.
For data to be high-quality, the output variation caused by the input variation must be noticeable.
The correlation between the ROCOF and the disturbance power is obvious. Similarly, there are clear
relationships between other inputs and outputs except the SN and tdu. When the frequency reaches a
steady state during the ESS control, there is no change in the SN, irrespective of the extent to which the
tdu increases. If the dataset contains many examples where the frequency reaches a steady state before
the ESS stops the control action, the neural network encounters difficulty in estimating the duration of
the ESS power for the reference SN. To prevent it, the data must be filtered. The data filtering algorithm
is presented in Figure 8b.

The process of obtaining the data is as follows. First, the disturbance and ESS output of a random
magnitude are determined. There is a constraint that the magnitude of the ESS output is lower than
the magnitude of the disturbance. Then, the simulation is performed for the target system iteratively
as the duration of the ESS output is incremented. When the SN does not change anymore, it can be
judged that the steady state has been reached, and subsequent simulation examples are invalid data.
Then, the simulation environment is changed to a new disturbance and ESS output. By this algorithm,
a high-quality dataset for accurately predicting the duration can be built.

4.3. SG Tripped Condtion

In the case of disturbance accompanied by a generator outage, additional information is needed
for a desired performance of the proposed EDFC. Since the estimation of the neural networks is highly
dependent on the SG status in the system, the central control system needs to instantly acquire the
information about the operating status of the generating units.

The neural-network estimation is based on the frequency characteristics of a particular system.
Disturbances such as a momentary fluctuation of the RES power does not affect the estimation of
the neural networks, even though the magnitude is significantly large. However, when the inertia
and droop dynamics change, the intended frequency response may not be obtained with the original
neural networks trained with normal-state data. Therefore, the neural network should be trained
for all possible generator outages, and a neural network tailored for a current system status should
be utilized.

5. Simulation Result

The dataset-building process and the case studies was performed for the IEEE 39 bus system by
using the Power System Simulator for Engineers. The ESS was modeled as a lumped element with
no capacity limitations, and the bandwidth of the active power control was set as 1.d6 Hz. fth1 and
fth2 were set to 59.95 Hz and 59.9 Hz. The generator and governor models were the same for all ten
generators in the system: GENTPJU1 and IEESGO, respectively. Additionally, for all the generators,
the inertia constant and droop constant were 3.0 and 0.05, respectively. Information about the generator
rating and operating point is presented in Table 1.

Table 1. Generator ratings and power outputs.

G#30 G#31 G#32 G#33 G#34 G#35 G#36 G#37 G#38 G#39

Srated (MVA) 275 836 843 1175 1080 1085 1025 970 1684 1200
Pouput (MW) 224 572.9 650 632 508 650 560 540 830 750.5

It is necessary to analyze the time taken for the proposed control action to be applied in real-time.
Measurement of the time for the frequency to reach fth2 is required to estimate the desired operation
action of ESSs. When a disturbance that slightly violated the grid code occurred in the system, the time
it took for the frequency to reach fth2 was about 150 ms. In addition, the time for the central control
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system to receive the generator trip information and to send the control signals to the ESSs needed to
be considered. In [24], the signal propagation time on a 200-km-long fibre optic cable was assumed to
be 1 ms. Eventually, the time from the occurrence of the disturbance to the ESS control actions was
assumed to be 300 ms with enough margin in the study.

For building the dataset for NN training, a simulation was performed. While ESS control was
involved in the simulation for the NN2 dataset, it was not involved in the simulation for the NN1
dataset. When a random-magnitude disturbance occurs in the system without frequency support
control, the frequency change is as the dashed line in Figure 6. PD, t f , fpnd, and fpss constitute one
example of the dataset for NN1. In the simulation for the NN2 dataset, the disturbance, the magnitude,
and the duration of the ESS output were decided randomly. There were constraints that the ESS power
was smaller than the disturbance (∆PESS ≤ ∆PD) and the ESS power maintained at least until the
FN appears. The frequency change is as the solid line in the Figure 6. ∆PD, ∆PESS, tdu, FN, and SN
constitute one example of the dataset for NN2. The disturbances are divided into two types: only a
load change and a load change with a generator trip. The neural network was trained for both types.

5.1. Neural Network Training Results

The neural network model used in the study was an open-source model provided by MATLAB.
The Levenberg-Marquardt training algorithm was employed, and the training parameters are presented
in Table 2. All other parameters were default values in MATLAB.

Table 2. Neural networks training parameters.

Parameter NN1 NN2

Algorithm Levenberg-Marquardt Levenberg-Marquardt
Hidden layer (#) 5 20

Neurons per layer (#) 10 10
Epoch 100 500

Each neural network has two datasets: normal-state and generator-tripped. The tripped generator
was G #34 in the study. Each dataset for NN1 is composed of 300 examples: 200 examples constitute the
training group, and 100 examples constituted the test group. Each dataset for NN2 is composed of 1000
examples: 700 examples constitute the training group, and 300 examples constituted the test group.
The error rate between the test results and the actual values was calculated using the following formula:

err% =

∣∣∣∣∣vreal − vtest

vreal

∣∣∣∣∣× 100(%) (13)

Since the error rates differ by the training attempt, the average value after 10 training attempts
was determined as the final neural-network error rate for a particular dataset. The error rates for NN1
and NN2 are presented in Table 3; Table 4.

Table 3. Results of the training test for NN1.

- Normal State G#34-Tripped

Output variable ∆PD fnd fss ∆PD fnd fss
Error rate (%) 0.24 0.123 0.088 0.143 0.048 0.067

Table 4. Results of the training test for NN2.

- Normal State G#34-Tripped

Output variable ∆PESS tdu ∆PESS tdu
Error rate (%) 0.068 2.66 0.07 3.738
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The error rate for the three outputs of NN1 and the magnitude of the ESS out of NN2 is less than
1%. The prediction is highly accurate, and it can be inferred that is a strong correlation between the
inputs and the outputs. In contrast, the error rate for the duration of the ESS output is relatively high
(2%~3%). However, this is also a sufficiently meaningful prediction result and can be used for control
in consideration of the error rate.

Table 4 presents the results of the training where data were selected using the dataset filter
algorithm described in Section 4.2. Table 5 is the result of the training dataset, generated with a long
duration limit of the ESS output in a normal state. The duration limit was set to 12 s. As the duration
limit increases, the ESS maintains the output for a sufficient time, and the system is likely to reach
a steady state. Since the SN does not change with the longer duration after the frequency reaches a
steady state, an invalid dataset is generated, and it leads to a significant error rate for the duration
of the ESS power. It can be seen that the error rate for the neural network trained by poor-quality
dataset is approximately 10 times the error rate for neural network trained by the filtered dataset.
Nevertheless, the error rate of the magnitude of the ESS output does not change. The reason is that
the magnitude of ESS output is only correlated to the FN, which is determined independently of the
duration of ESS output.

Table 5. Results of the training test for the normal-state with the invalid dataset.

- Bad Data Case

Output variable PESS tdu
Error rate (%) 0.071 29.183

5.2. Energy Consumption of the ESS by FN and SN Reference

A key feature of the proposed control method is that the central control system can determine the
desired frequency-nadir. A simulation was performed to find the appropriate FNR and SNR values in
this subsection. The disturbance was fixed, and the FN and SN values were collected as the magnitude
and duration of the ESS output changed. Then, the examples that share the same frequency nadir
among the data were chosen and the ESS energy consumption examined with respect to the formation
of the FN and SN. The magnitude of the disturbance was set as 400-MW and 600-MW load change.
The results are shown in Figure 9.

Figure 9. ESS energy consumption according to the FN and SN: (a) 400-MW load change and (b)
600-MW load change.

Here, one dot represents one example, and groups of same-color dots represents the examples that
share the same nadir. The horizontal axis indicates the arrangement of the FN and SN. Zero indicates
that the FN and SN have the same value. A positive value on the horizontal axis indicates that the SN
is greater than the real nadir, and a negative value implies the opposite.



Energies 2020, 13, 1657 12 of 17

A high FN indicates that the magnitude of the ESS output is large and a high SN indicates that
the magnitude is small and the duration is long. Because frequency nadir does not change when the
duration is sufficiently long, there is a point at which only the energy consumption changes, not the
FN and SN. In the graph, when the values of the FN and SN are close, the ESS energy consumption is
modest. As indicated by the graph, the FNR and SNR should be set to the same value for achieving
energy efficiency. Additionally, because the estimation of duration correlated to the SN has a relatively
large error rate, it is necessary to set the SNR with a certain margin.

5.3. EDFC Performance with Different Nadir References

Here, the frequency-nadir criterion that the system must comply with is set to 59.5 Hz.
The performance of the proposed control under a disturbance that violates the criterion is examined.
However, the severe disturbance which forms the lower nadir than the optimal nadir of the proposed
control is not considered. ESS EDFC was performed for three different nadir references: (59.5 Hz,
59.5 Hz); (59.6 Hz, 59.5 Hz); and (59.5 Hz, 59.6 Hz). A 700-MW load change occurred at 1 s, and the
control action of the ESSs started at 1.3 s. The results are shown in Figure 10.

Figure 10. Frequency response for a 700-MW load change (a) without control, the EDFC with (59.5 Hz,
59.5 Hz); (b) EDFC with (59.6 Hz, 59.5 Hz); and EDFC with (59.5 Hz, 59.6 Hz).

The nadir decreases to approximately 59.4 Hz when the ESS do not support the frequency.
When the EDFC is applied, the nadir is improved and formed near the reference value. In particular,
the FN is nearly identical to the reference in all three cases where the EDFC is applied. However,
for the SN, there is a small error, indicating a trend similar to that described in Section 5.1. The output
of the ESS is presented in Figure 11. In consideration of the error rate of the duration of the ESS output,
it is desirable to set the SNR to a higher value than the FNR with a margin.

Figure 11. The power output of the ESS when performing the EDFC.



Energies 2020, 13, 1657 13 of 17

5.4. Comparison with Conventional Methods

Since the ESS EDFC is a noble strategy that has not existed before, the proposed method is
compared with the conventional ESS RDFC methods: droop control and SI control. Each method is
described in Section 2.1. For comparison of the three methods, the RDFC parameters were adjusted to
form the same nadir for the same disturbance. The control gain and deadband range of the RDFC
methods are presented in Table 6. As the previous case study, a load change of 700 MW occurred.
Frequency and ESS output for three different methods are shown in Figure 12.

Table 6. Control parameters of conventional control methods. SI: synthetic inertia.

Parameters Droop Control SI Control

Control gain k 19 40
Deadband (±) 0.05 Hz 0.03 Hz/s

Figure 12. Comparison of three methods for a 700-MW load change (a) frequency and (b) ESS output.

All methods form the same frequency nadir for the same disturbance, but the corresponding ESS
outputs are different. In droop control, it can be seen that the ESS maintains the output even in a steady
state. In the SI control, the maximum output of the ESS is relatively high. In the proposed method,
the energy consumption is reduced by stopping the control action in the middle, and the maximum
output is also small.

When a modest disturbance which does not violate the grid code occurs, the results are shown in
Figure 13. The disturbance was a 200-MW load change. The frequency nadir is formed near 59.9 Hz,
which is not a severe value even when the ESS do not perform any control action in the proposed
method. However, it can be seen that the ESS discharged power in the conventional methods. It can be
concluded that the ESS is more efficiently controlled by the proposed method in the case study.

Figure 13. Comparison of three methods for a 200-MW load change (a) frequency and (b) ESS power.
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5.5. Generator-Tripped Case

A simulation was performed for the case where the generator is tripped. The disturbance
magnitude is 700 MW, the same with the simulation described in Section 5.3. However, the power
of G#34 is included. The results for the normal-state neural networks and the customized neural
networks for the contingency (G#34 trip) are compared. The nadir references of the normal NN and
the customized NN are the same: (59.5 Hz, 59.5 Hz). The result is presented in Figure 14.

Figure 14. The frequencies for generator trip and load change (700 MW).

Although the magnitude of disturbance was the same with the previous case study (700 MW),
the nadir is much lower when frequency support is not applied, owing to the SG trip, resulting in
an inertia decrease. Additionally, the estimation of neural networks trained with the normal-state
dataset is not accurate, and the frequencies violated the frequency grid code (59.5 Hz). In contrast,
the estimation of the tailored neural networks trained with the dataset for the contingency is accurate.
It indicates that the neural networks need to be trained for each possible contingency, and generator
trip information is needed for a desired performance.

6. Conclusions

In this paper, a noble ESS EDFC strategy using neural networks was proposed and verified using
the IEEE 39 bus system. The neural networks were trained with a dataset consisting of numerous
examples according to the disturbance in the system. After the training, the neural networks predicted
the severity of the occurred disturbance and estimated the customized operating action of the ESSs.
The test results indicated the estimation accuracy of the neural networks was sufficient to be used
for practical use. The validate simulation was performed in PSS/e using the control action of the ESS
provided by the neural-network estimation. The results showed the frequency nadir with the EDFC
was nearly identical to the reference nadir set by the operator—in other words, estimating the required
action of the ESS for grid code compliance.

The proposed control prevents the ESSs from operating unnecessarily under a small disturbance
which does not violate the grid code. Furthermore, if there is a more severe disturbance that violates
the grid code, ESSs can use minimal energy to comply with the grid code by stopping the control action
by the signal of the central control system in the proposed EDFC. This feature is a huge advantage
compared to the RDFC. The proposed strategy is expected to be utilized in the optimal design and
operation of frequency-regulation ESSs in a highly variable future system with large-scale RESs.
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Appendix A

In the absence of an initial value, the Laplace transform of differential Equations (2) and (3) can be
expressed as follows:

∆F(s) =
R∆PInput(1 + TRs)

s(2HRTRs2 + (2HR + FHTR)s + 1)
(A1)

X(s) =
1

1 + TRs
∆F(s) (A2)

Equation (A2) indicates that the state variable x is a delay component for the frequency change.
Equation (A1) can be expressed as follows using the standard form of the second-order delay element:

∆F(s) =
R∆Pinput(1 + TRs)

s
(
s2 + 2ξωns +ω2

n

) (A3)

If the power input (∆Pinput) is the sum of the ESS output and disturbance power (∆PESS − ∆PD),
the inverse Laplace form of Equation (A3) becomes Equation (4) when t ≤ tdu. The parameter of
Equation (4) when t ≤ tdu can be expressed as follows by using the governor and generator parameters:

ωn = 1
2HRTR

ξ = HRTRFHωn ωr = ωn
√

1− ξ2

α =

√
1−2TRξωn+T2

Rω
2
n

1−ξ2 θ1 = tan−1(
−

√
1−ξ2

ωnTR−ξ
)

To determine the time at which the nadir occurs, the first minimum of the transient component
must be obtained. The transient component of Equation (4) when t ≤ tdu is as follows:

∆ ftransient(t) = αe−ξωnt sin(ωrt + θ1) (A4)

Differentiating Equation (A5) yields

∆
.
f transient(t) = −αωne−ξωnt sin(ωrt + θx)

where θX = θ1 + tan−1 (
−

√
1−ξ2

ξ )
(A5)

The first time Equation (A6) becomes zero is the time at which nadir occurs. It is given as

tmin = −
θX

ωr
(A6)

Substituting Equation (A7) into Equation (A4) yields the first minimum point of the transient:

mt = −αe−ξωntmin
√

1− ξ2 (A7)

If the initial values exist in Equations (3) and (4), the inverse Laplace transform for the frequency
change is obtained as follows:

∆F(s) =
∆ ftdu

s +
(R∆Pinput−∆ ftdu)(1+TRSs)

s(2HRTRs2+(2HR+FHTR)s+1)

where TRS =
R∆PinputTR−FhTR∆ ftdu−(1−FH)TRxtdu

R∆Pinput−∆ ftdu

(A8)

where xtdu represents the initial value of state variable x. If the power input (∆Pinput) is the disturbance
power (−∆PD), the inverse Laplace form of Equation (A3) becomes Equation (4) when t ≥ tdu. Here,
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β =

√
1−2TRξωn+T2

Rω
2
n

1−ξ2 and θ2 = tan−1(
−

√
1−ξ2

ωnTRS−ξ
). When the ESS power output lasts for a sufficient time

and xtdu is equal to ∆ ftdu , TRS becomes equal to TR and, accordingly, α and β become the same.
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