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Abstract: As application of electric energy have expanded, the uninterruptible power supply (UPS) 

concept has attracted considerable attention, and new UPS technologies have been developed. 

Despite the extensive research on the batteries for UPS, conventional batteries are still being used in 

large-scale UPS systems. However, lead-acid batteries, which are currently widely adopted in UPS, 

require frequent maintenance and are relatively expensive as compared with some other kinds of 

batteries, like metal-air batteries. In previous work, we designed a novel metal-air battery, with low 

cost and easy maintenance for large-scale UPS applications. An extensive analysis was performed 

to apply our metal-air battery to the hybrid UPS model. In this study, we focus on including an 

optimal control system for high battery performance. We developed an algorithm based on receding 

horizon control (RHC) for each fan of the cooling system. The algorithm reflects the operation 

properties of the metal-air battery so that it can supply power for a long time. We solved RHC by 

applying dynamic programming (DP) for a corresponding time. Different variables, such as current 

density, oxygen concentration, and temperature, were considered for the application of DP. 

Additionally, a 1.5-dimensional DP, which is used for solving the RHC, was developed using the 

state variables with high sensitivity and considering the battery characteristics. Because there is no 

other control variable during operation, only one control variable, the fan flow, was used, and the 

state variables were divided by section rather than a point. Thus, we not only developed a sub-

optimal control strategy for the UPS but also found that fan control can improve the performance 

of metal-air batteries. The sub-optimal control strategy showed stable and 6–10% of improvement 

in UPS operating time based on the simulation. 

Keywords: cooling system; dynamic programming; metal-air battery; receding horizon control; 

state variables; uninterruptible power supply 

 

1. Introduction 

To date, many electrical storage systems (ESS), such as novel types of batteries and 

ultracapacitors, have been studied and applied to various systems. In particular, these batteries can 
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improve the size or weight aspects of the storage system making it small-size and easy to move. Large 

size is required for ESS that optimize economical gain by charging/discharging large amounts of 

electrical energy and for uninterruptible power supplies (UPS) supporting large electrical systems in 

emergencies. UPS systems have studied by many researchers because UPS are essential for 

supporting electrical energy stability. Before being applied to practical commercialization, a UPS is 

developed and studied through modeling and simulation because of the scale [1–3]. 

However, UPS are often based on conventional batteries because of their economic convenience 

and reliability. Among the UPS systems, the hybrid UPS (H-UPS) combines an electrical storage 

system (ESS) with UPS, using lead-acid batteries as the source of DC voltage [4]. Currently, replacing 

the batteries with an ultracapacitor is not affordable, because of the price of the latter [5]. Lithium-

ion batteries, which are mostly used as a secondary battery, are also costly. Additionally, the 

secondary batteries must be always activated when connected to the main power source. In this 

aspect, though reliable, lead-acid batteries require frequent maintenance, and therefore they are not 

affordable [6]. 

Therefore, UPS requires the introduction of new battery technologies, especially high-power 

UPSs (those of more than 10 kW), which are more challenging. Among the commercially available 

batteries, metal-air batteries have a high energy density and are inexpensive, when select metal 

electrodes are used. Thus, they are widely studied as primary or secondary batteries, and small-

capacity metal-air batteries have already been commercialized as primary batteries [7,8]. However, 

they cannot be used as rechargeable batteries, because they support only a few recharging cycles. For 

this reason, metal-air batteries are suitable for high-power UPSs, which require high capacity and no 

recharge. In these systems, the initial standby time after triggering can be supplemented by 

hybridization with a small-sized lithium-ion battery. Thus, modeling and simulation of UPSs using 

metal-air batteries are needed for their commercialization. In a previous study, we developed UPS 

model using experimental cell data and theoretical analysis [9]. Simulation includes the controls for 

UPS and lithium-ion battery which is a secondary battery on standby during normal situation. 

However, after initial operation, when the primary battery, metal air battery, which is the main 

battery operates in earnest, only basic control using constant fan flow was applied. 

Metal-air batteries are not widely used as energy storage devices in the industry. Thus, previous 

researches on controlling metal-air batteries have focused on determining their parameters or 

supplying stable energy [10–12]. However, the performance and lifespan of a battery is directly 

related to its thermal management system that controls the temperature of the battery [13–15]. Unlike 

other batteries for which the cooling system has already been studied, metal-air batteries have a 

significant limitations on air cooling because of its their consumption. Furthermore, previous studies 

have barely covered air-cooling of metal-air batteries because of their unusual properties. Although 

studies for cooling system control of metal-air batteries are fewer than for other batteries, control 

strategies for cooling systems of other batteries have been studied [16,17]. Especially, Zhan developed 

a rule-based control strategy for cooling PEM fuel cells in UPS systems [18]. 

This study devised a control strategy of air-cooling system for fuel supply using battery cell 

experimental data. As the optimal control strategy for a cooling system affects not only cooling but 

also oxygen supply, an overall performance improvement of the metal air battery could be expected. 

To do this, the detailed thermodynamics of metal-air battery among the UPS module were examined, 

and state variables were calculated for each cell. Because the studies for the UPS system based on 

metal-air battery are rare, detailed modeling of UPS system can be the first contribution. Though 

difficult, we applied the existing discrete dynamic programming (DP) algorithm, optimization 

theory, considering the characteristics of the metal-air battery. This is the second contribution of this 

paper and main contents. 

The paper is structured in five sections. After this Introduction, Section 2 presents the UPS 

system modeling using prior research and thermodynamic models. Section 3 provides functions, 

parameters, and analytical theories to solve the main optimal problem for control modeling and 

simulation. Section 4 arrange the result of the simulation and compare that with other control 



Energies 2020, 13, 1611 3 of 16 

 

strategies. Section 5 presents concluding remarks and the performance of the suggested control 

strategy. 

2. UPS System Modeling 

2.1. Prior Research 

As previously mentioned, we developed a 64 kW UPS system using small-sized stacks of metal-

air batteries in a previous study [9]. The research represents an important experimental trial to 

develop a UPS system based on metal-air batteries. The major point of the prior research was to 

determine the entire composition of the system and a hybrid system using lithium-ion battery. 

Thermodynamic and electromechanical analyses were performed assuming that the properties of the 

cells in each module of the UPS system are uniform: 

�� = �� = ⋯ = �� (1) 

�������� = ������ + ������������� + � ������,�

�

���

 (2) 

where � is the temperature, �� is the heat capacity, and � is the number of cells in a module. The 

parameters of the previous UPS model were also used in this study. Table 1 shows the parameters of 

the iterative simulation and mechanical calculation used. A total of 20 fans that supply oxygen and 

cool the module were located at the 20 inlet, and 20 fans at outlet. The flow rate of these fans was 

constant value in the previous study, i.e.: 

��
� = ���,�

� + ���,�
� = ��

� = ⋯ = ��
� = ����� (3) 

where ��
�  is the flow rate at time � on ��� fan, ���,�

� , ���,�
�  is the flow rate of gas except oxygen, 

and the flow rate of oxygen gas. 

Table 1. Values of the parameters in the UPS module. 

Parameter Basis Value 

Stack area 
current density ~40 mA/cm�, load current 330 

A 
1.28 m� 

Max load power load current 330 A, boost converter efficiency 370 A 

Module quantity load current 330 A, max current density 0.16 m�, 8 modules 

Stack voltage range min voltage 0.8 V, max voltage 1.1 V 180–200 V 

Cell stack quantity voltage range, cell voltage 170 cells 

Metal weight simulation result, demanded current 576 A 200 g/cell 

Metal thickness cell surface area, metal weight 0.15 mm/cell 

Electrolyte thickness simulation result, other variables 2 mm 

Cathode thickness simulation result, other variables 0.7 mm 

Separator thickness simulation result, stack weight 0.3 mm 

Air tube thickness cell array structure, airflow, air consumption 16 mm 

Module volume cell, airflow Length: 2 m, Volume: 1.44 m� 

The parameters were designed to satisfy the required specification of up to 2 h runtime under 

maximum electrical load with a simple constant flow control. The 2 h runtime was the minimum 

required specification of the UPS until the main source is connected again. Though the simple 

constant flow control showed good performance under static load power, it was not optimized for 

different environments like changing electrical loads. Therefore, it did not show stable control 

performance in this case, because it did not meet the electrical load and boundary conditions of a 

metal-air battery. 

2.2. Thermodynamic Model 
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To optimize the previous control strategy for a metal-air battery-based UPS, the thermal effect 

of each cell was modeled for a system of 180 cells per module. The heat in each cell was modeled 

using the Gibbs potential energy and the voltage from the cell as: 

�����(��) = �����(��) ������ − �������(��)�� (4) 

where �����  is the heat, ����� is the current in the cell, ����� is the Gibbs potential of the zinc oxide 

reaction, �����  is the voltage of the cell, and �� is the time at step �. 

The cooling effect and performance of the fans in each cell were also divided to simulate along 

with the units. To calculate the heat coefficient on a plate for natural convection, we used the 

following equations: 

�� =

⎩
⎪
⎨

⎪
⎧

0.825 +
0.387��

�
�

�1 + �
0.492

�� �
�.��

�

�
��

⎭
⎪
⎬

⎪
⎫

�

 (5) 

where �� is the Nusselt number, �� is the Rayleigh number for natural convection, and �� is the 

Prandtl number, and: 

����� = ���� ∗
��

�∗
, �∗ = �� ×

��

2(�� + ��)
    (6) 

where ����� is the heat coefficient of the plate, ����  is the thermal conductivity of the air, and ��  

and �� are the height and width of the plate, respectively. 

A diagram of the stack structure and thermal effect is presented in Figure 1. 

 

Figure 1. Schematic of stack structure and thermo-dynamical mechanism. 
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The thermodynamics of each cell in the UPS module described in Figure 1 are modeled by the 

following equations: 

����� = �(�����,� ∙ �����,� ∙ ∆�����,� + ������,� ∙ ������,� ∙ ∆������,�)

���

���

+ �����,� ∙ �����,�

∙ ∆�����,� + �����,��� ∙ �����,��� ∙ ∆�����,���  

(7) 

where ��,� and ��,� are the thermal conductivity and surface area of area � in �th cell, respectively; 

and: 

��,� = ��,��� +
�

��
(�����,� − �����,� − ����,� − �������� ����,�) · ∆�   (8) 

�������� ����,� = ��������,��� + ��������,��� (9) 

where ��,� is the temperature of the �th cell at time �, �����,� is the heat of the chemical reaction, �����,� 

is the (negative) heat of the natural cooling from the aluminum case, ����,� is the negative heat forced 

by air-cooling, and �������� ����,� is the negative heat caused by conduction to the neighboring cell. 

2.3. UPS Simulation and Fan Control 

Many UPS control studies have been conducted on the control of the circuit-level inverter, input, 

and output current to stabilize the voltage, e.g., [19–21]. Here, we assumed a stable electrical load and 

supply from the UPS model to the battery model, because our metal-air battery model focused on the 

power supply at the stack-level and on the operation time for a given electrical load. The main target 

of this study is the fan flow, which can be controlled during operation to improve the performance 

which includes operating time and stability of the UPS model. The system used in this study consists 

of stacked modules, which were modeled using the experimental data of the cell units. Thus, the 

system is a nonlinear discrete state-space model that can be defined simply as: 

�(� + 1) = ���(�), �(�)�,   �(�) = ���(�)�.  � = 1, 2, 3, … , ���� (10) 

Here, �(�) is the state, �(�) is the output, �(�) is the control input, � is the modeled system 

function computing the states of next step by the state of prior step, and � is the modeled system 

function computing the output by the state of this step. 

The UPS model consists of a hybrid system that supplies stable electrical power. A lithium-ion 

battery that operates only initially is always connected to the main power system. A metal-air battery 

operates as the main source after it starts generating electric energy stably. Here, we developed a 

strategy to control the module containing the metal-air battery. The metal-air battery module is 

modeled by electrochemical formulas obtained from experimental data. The formula used to 

calculate the voltage in the cell is: 

�����(��) = ����(�����
) × ����

(��(��)) × ����
(��(��)) × ����

(��(��)) (11) 

where ����� is the voltage of the cell, ����  is the voltage output by the state-of-charge, �����
 is the ��� 

on the time step ��, and ����
 is the voltage fraction in ��. Because the variables of the experiment for 

acquiring the cell data were reduced to three, we set only three state variables to calculate the voltage 

of the cell. 

3. Control Modeling and Simulation 

3.1. The Conceptual Framework 

As mentioned above, the target of this research is the optimal control strategy of an UPS system 

based on metal-air battery. For simulating the system, the model is developed using iteration for time 

step using discrete calculation. The schematic diagram for controlling the UPS module is shown in 

Figure 2. The modeling of whole system is coded in Matlab, which is a commercial program from 

Mathworks (Natick, Massachusetts, USA). 
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Figure 2. Overall view of the UPS model with the proposed receding horizon control (RHC). 

3.2. Receding Horizon Control 

The receding horizon control (RHC), also known as moving horizon control, is a feedback 

control strategy for nonlinear or linear plants with input and state constraints [22]. RHC is suitable 

for slow nonlinear systems, such as chemical processes, that can be solved sequentially [23]. Many 

studies have investigated UPS using a model predictive control (MPC), which is another name for 

RHC [24,25]. 

The typical electrical load for an UPS can be predicted with a few minutes of advance notice. 

However, predicting the electrical load continuously is unrealistic, because the conditions of 

environment of the system and the UPS model can change. Thus, it is common to adjust the system 

loads supplied by the UPS model according to the pre-scenario or situation of the UPS model, so that 

the electrical load can be predicted for few minutes from the time of operation. Because of this, RHC 

is applied to the optimal control proposed in this study. Usually, RHC analyzes the model in the 

prediction window using linear problem (LP) or a quadratic problem (QP). However, the UPS model 

of this study is composed of tables of the cell data. Therefore, the key to optimal control is to solve 

the target function within the prediction window. The target applied to the RHC prediction is the 

electrical load of the UPS in the system, and the state prediction can be expressed as: 

�(���� + �|��) = ���(����|��), �(�� + �|��)� (12) 

�(�� + �|��) = ���(�� + �|��)� (13) 

where �(�� + �|��) is the state value of � predicted at time �� + � using the information available at 

time ��, �(��) is the state at time ��, �(��) is the cost value at time ��, and �, � are the functions for 

state and cost value, respectively. 

The range of � (prediction window) at step � is ���������,�. As seen in Figure 3, the range of 

optimal control in ���������,� is set to ��������,� (i.e., the solver window at step s) as: 

��,��������
= � �(�(�|��), �(�|��), �|��)��

�����������

��

, ������� =
��������

∆������

 � (14) 

where ��,��������
 is the cost function of ���  iteration. The solver means one iteration to solve the 

optimal control values under state variables. 
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Figure 3. Schematics of the prediction and solver window (��������,�, ���������,�) in RHC. These 

parameters are calculated as recursive structure of RHC. The optimal control values are calculated on 

��������,�, ��������,�, …, ��������,� within the iteration of ������������,�. 

Here, the cost function to be minimized for the metal-air battery-based UPS, ��,��������
, is the 

metal (zinc) consumption. In state variable of � in Equation (12), the temperature that has a major 

influence on the performance was included first. The equation to calculate the optimal control in the 

���������,� is: 

��
∗ = ��� ���

�
�� �(�(�|��), �(�|��), �|��)��

������������,�

��

� , (���� ≤ � ≤ ����) (15) 

Here, ��
∗  is the optimal control at step � , ����  is the minimum fan flow, and ����  its 

maximum. 

Although the optimal control should be calculated in the ���������,�, only the optimal control in 

��������,�  was applied to the cost function, because in RHC the optimal control should be updated 

for each ��������. The cost result and optimal cost are calculated as: 

���� = � ��
∗

������

���

= � � �(�(�), ��
∗ (�), �)��

�����������

��

,

������

���

 ������ =
����� ����

��������

 (16) 

where ����  is the RHC cost result of the whole simulation, and ��
∗ is the optimal cost at step �. The 

prediction window covers the electrical system load needed to operate the RHC for a few minutes. After 

the UPS starts its operation, it is necessary to estimate the load and control the input in the ���������,� . 

3.3. Dynamic Programming 

The RHC developed in this study cannot be solved mathematically by merely using a discrete 

variable matrix. In the window of each step of the RHC, ��
∗ can be calculated by finding ��

∗ (�) using 

DP, which is a global optimization theory. This control method based on the RHC prediction is 

similar to the ‘Look-ahead DP’ [26,27]. 

Applying the time step of the UPS chemical simulation, Δ������, to Equation (14), this becomes 

the discrete equation: 

��,��������
= � �(�(��|��), �(��|��), ��|��)

������

���

∙ Δ������  (17) 

Although the simulation of the battery differs for each model, it cannot be solved in the grid at 

each time step. Then, in DP, the state of the battery has to be calculated for each temperature 

difference  (Δ�) , which is less than 0.001 °C/s. Though the range of Δ�  varies according to the 
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temperature of the cell, if the total difference is divided in the entire range, computing cost increases 

exponentially (Δ������/Δ� ≈ 55,000). Therefore, the range of each state is calculated for each time step 

in the prediction window, and state ��  is assigned according to this. Thus, the DP step is set 

separately from the time step of the UPS chemical simulation, Δ������, according to ∆��� as: 

��� =
������������

∆���

,      ���� =
��������

∆���

 (18) 

Then, Equation (17) can be represented as a recursive relation using ∆���: 

��,��������
∗ ��(��)� = �����(�(��|��), �(��|��), ��|��) ∙ ���� + ����,��������

∗ ��(����)�� (19) 

where ��,�
∗  is the optimal cost calculated from �� to ��, and � = 1,2, … , ���. This recursive relation can 

conclude minimum cost value using final time ����  and backward calculation from 

�����������,��������
∗ ��(����)�.Finally, using Equations (18) and (19), Equation (16) becomes Equation 

(20), which represents the discrete-type cost result: 

���� = � ��
∗

������

���

= � � �������, ��
∗ ����, �� ∙ Δ���

����

���

������

���

 (20) 

3.4. Solver Based on 1.5-Dimensional DP 

In general, an n-dimensional DP has n states and n control variables. However, in the model 

developed in this study, there is only one control variable, the fan flow. As shown in the following 

Equations (21) and (22), there are at least three states for which the data maps are shown in Figure 4: 

�(�) = ℎ ���(�), �(�), �(�), ���(�)� (21) 

���������,��
= � � ��(�), ��(�), �(�), �(�), ���(�)� ��

��

��

 (22) 

 

   

(a) (b) (c) 

Figure 4. Cell output voltage dependence on cell parameters: (a) current density and state of charge 

(SOC); (b) oxygen density and SOC; (c) temperature and SOC. 

Here, �(�) is the output voltage, ��(�) is the current density, �(�) is the oxygen density, �(�) 

is the temperature, ���(�) is the state of charge, ���������,��
 is the Zn consumption until time ��, 

ℎ is the modeled system functions to calculate output voltage using cell experimental data, and � is 

the modeled functions to calculate metal consumption using cell experimental data. 

Because UPS is a chemical model that uses batteries, the variables ��(�), �(�), and �(�) are 

interrelated states at each moment. Their values depend on each previous state and the control 
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variable. The sensitivity of the states, i.e., their change in a single step, determines which of the states 

is the reference for DP. 

When the state variables that directly affect the output voltage are simulated for 3600 s, at 

constant load power and with the minimum and maximum fan flow, the current density ��(�) 

changes only slightly, as seen in Figure 5. Therefore, the cell temperature �(�)  and oxygen 

concentration �(�) were chosen as the state variables for DP. As discussed, the cell temperature was 

calculated by distinguishing the time variables ∆������ and ∆���, and considering that the state of 

the previous step has a major influence on the next one. However, the oxygen concentration is very 

sensitive to the states of each step, which depend on the fan flow. Thus, as DP proceeds, the target 

grid of the oxygen concentration is sparsely split, because this is determined when the cell 

temperature is applied to the grid by a control input. Therefore, the optimal �� was selected among 

a target region instead of the target point to solve the 1.5-dimensional DP structure: 

��,����
= ������

, ���
�, �� = �′����,����

, ���
�, ��,����

= ������
, ���

� (23) 

  ��,����
= �� ����

, �′����,����
, ���

�� , ���
= (��,��

, ��,��
).  （24） 

 

   

(a) (b) (c) 

Figure 5. State variables on cell parameter by 1% and 100% of max fan flow control during operation: (a) 

current density; (b) oxygen concentration; (c) cell temperature. 

Here, �′� is a reverse function for acquiring the control variable �� using the 1st state variable 

at time ����, ��,����
 and the state variables at time ��, ���

. The next step, the 2nd state variable at 

time ����, ��,����
, can be obtained from ��,����

 (that of the next step) and ���
 (the state variables 

of the this step). This recursive process make us calculate the optimal control by selecting the 

minimum points as path in ��,��������

∗  among each region grid for the next DP step, as shown in 

Equation (19). This can be expressed as in Figure 6. 
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Figure 6. Schematic of structure solving by approximate DP. 

The experimental UPS data show that, below 60 °C and within the operational boundary 

conditions, the zinc consumption is higher for lower temperatures. This means that, when the 

difference between the lowest and highest temperature in the cells is higher than 10 °C, or the highest 

temperature is lower than 60 °C, the largest zinc consumption is that of the cell located at the end of 

the module. 

When inverting the control input for the target state �, as in Equation (24), the metal-air battery 

model cannot calculate backward accurately, because all variables change. Therefore, the target � 

was calculated after obtaining the minimum and maximum cell temperature in the last step of the 

solve window, (� + ������������). 

Because of these approximations, the algorithm is not perfectly and globally optimal, though 

reasonably optimal values are used. 

3.5. Electrical Load Cycle 

A basic electrical load cycle having the performance required by existing UPSs is shown as the 

first graph in Table 2. The power required was revised by increasing the simulation time from 7200 

to 9000 s to evaluate the performance of the UPS control (cycle #1). Additionally, because the load 

power of the cycle is constant and simple, four more scenarios (cycle #2–#5) of operation time from 2 

to 4 h were included in the simulation. These cycles are shown in Table 2. 
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Table 2. Required electrical load cycles representing different scenarios. 

Max Power 

64 kW 

(total stack) 

Run 

Time 
Graph 

Run 

Time 
Graph 

7200 s 

 

21,600 s 

14,400 s 

 

11,800 s 

4. Results 

We experimented the proposed RHC algorithm using two-parameter settings. RHC #1 used 

ΔW������ = 10 and ΔW���������� = 200, and RHC #2 used ΔW������ = 20 and ΔW���������� = 100. We also 

simulated the UPS model with full DP control which assumes that we know the entire electrical load 

cycle. This control means globally optimal potential of the UPS model for comparison. In total the 

simulations were run controlling the fan by RHC, DP control, and constant fan flow. Electrical load 

cycle #2, which used the DP control, showed a distinct difference, and the resulting cell temperature 

of the entire module is shown in Figure 7. 

 

Figure 7. Cell temperature on electrical load cycle #2 by DP control. 

As mentioned in Section 3.5, the temperature of the cell at the end of the module is significantly 

lower than that of the other cells during the entire simulation time. This is caused by the natural air-

cooling of the module. Additionally, the temperature difference increases with time. By comparing 

with electrical load cycle #2 of Figure 6, it can also be seen that the temperature increases rapidly 

because of the large heat generated when the electrical load increases rapidly. 
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To compare the different controls, i.e., RHC #1, RHC #2, DP, and constant fan flow (1%, 2%, …, 

100% of the maximum fan flow), the state variables based on electrical load cycle #2 were used, 

leading to the result shown in Figure 8. 

 

Figure 8. State variables as simulation result in electrical load cycle #2 by different fan control:  

(a) cell temperature; (b) oxygen concentration. 

The cell temperature reported in Figure 8a indicates that the influence of the fan flow is not 

significant at first. However, it increases accumulating over time, resulting in a large difference 

between the controls. In the case of the oxygen concentration of Figure 8(b), the effect of electrical 

load cycle #2 of Figure 6 is critical, because the oxygen concentration by all controls except DP vibrates 

under electrical load. Particularly in the case of the DP control, the optimal oxygen concentration of 

the whole cycle drops below 10%. Additionally, the constant fan flow control shows that the oxygen 

concentration increases gradually as the oxygen consumption decreases with increasing temperature. 

However, in the case of RHC, the initial oxygen concentration can be maintained through the cycle 

despite the temperature difference. Because the oxygen concentration hardly drops within a single 

prediction window, the locally optimal path of the control input is near the high oxygen 

concentration. The controls which maintained oxygen concentration as high unnecessarily using 

much electric energy. These trends of the variables by RHC will be similar in different situation 

because RHC has characteristic to find local optimal regardless of condition of the system and 

circumstances. 

Looking at the fan flow for each control of Figure 9, it is seen that, in RHC, it is different from 

the DP control, though it gradually follows DP one with a time because of the optimal algorithm. 

Additionally, the fan flow of the RHC #1 control tends to be lower than that of RHC #2. When 

���������  and ��������  were respectively increased and decreased (RHC #2 → RHC #1), we found 

that this control input is better than the DP one. This is usually attributed to low flow in the boundary 

condition. 
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Figure 9. Fan flow control for the different algorithms. 

The zinc consumption in all electrical load cycles is shown in Figure 10, using consumption of 

DP as reference (100%). Here, a grey bar indicates that the simulation stopped because a boundary 

condition, such as the state-of-charge of the battery, temperature, and oxygen concentration, was met 

before the total simulation time had passed. The RHC proposed in this study is represented in purple. 

The results confirm that the RHC control is effective in reducing the zinc consumption of metal-air 

battery-based UPSs increasing its operation time. In particular, RHC #1 showed stable and excellent 

performance, in contrast to other constant fan flow controls that fail or consume excessive zinc. 

Compared to the low-speed flow (that of less than 1–10% of the maximum fan flow), the zinc 

consumption of RHC #1 is not lower. However, in the case of the low-speed flows, the battery failed 

because of a poor cooling forced by the fans. Instead, compared with the other controls, RHC #1 

displayed a maximum 6–10% difference in zinc consumption. 

 

Figure 10. A comparison of increased zinc consumption by fan controls according to: (a) the electrical 

load cycles #1; (b) the electrical load cycles #2; (c) the electrical load cycles #3; (d) the electrical load 

cycles #4; (e) the electrical load cycles #5. 
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In most cycles, the zinc consumption is lower for weaker fan flow, though it is seldom very high 

in these cases either. However, because the simulation time was determined from the available 

operation time, all of the zinc metal was consumed, as indicated by the gray bars. 

RHC #2 showed a slightly lower performance than RHC #1. However, it displayed a relatively 

low computing cost, approximately 1/5 of the original cost of RHC #1. As a matter of fact, RHC #1 

cannot be used for real-time control because its simulation time is 4–5 times higher in a generic PC 

(i7-4790 CPU, 16GB RAM). In contrast, RHC #2, which needs a longer prediction range, needs a 

simulation time similar to the actual UPS running time. Thus, in principle, applying RHC #2 as real-

time control in UPS is possible. If the current UPS model is simplified through data mapping, or the 

RHC control algorithm is optimized further, real-time control can be applied in industry. 

Additionally, the scenario of the facilities connected to the UPS in the event of a main power outage 

can be determined. In this case, the DP algorithm can be applied to increase the performance of the 

UPS as the potential with the predicted overall electrical load cycle. 

5. Conclusions 

In this work, a study to replace the existing lead-acid battery UPS by applying a metal-air battery 

was extended. The thermodynamic model is refined by simulating each cell in the stack module. 

Based on this, we proposed an optimizing algorithm that controls the flow of the fan that blows air 

to each cell in the module, decreasing its temperature. Because metal-air batteries use oxygen from 

the air as a fuel, it is difficult to study the correlation between the flow and the battery performance. 

Additionally, because the battery model is based on a chemical model, it is challenging to apply DP, 

which is a theory calculated with discrete points. To solve this problem, we developed a 1.5-

dimensional DP suitable for zinc-air batteries. 

An RHC model using DP is proposed to find the optimal cost function in the ������������ 

window, which was estimated in the range of several tens of seconds of electrical load. The load 

power of the proposed model is more stable than that of the existing control strategies constantly 

controlling the fans, and it shows excellent performance in terms of overall zinc consumption. 

Although not globally optimal, appropriate control inputs can be calculated and applied to the 

oxygen concentration and temperature of each step. 
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