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Abstract: In Liquid Rocket Engines, higher combustion efficiencies come at the cost of the propellants
exceeding their critical point conditions and entering the supercritical domain. The term fluid
is used because, under these conditions, there is no longer a clear distinction between a liquid
and a gas phase. The non-conventional behavior of thermophysical properties makes the modeling
of supercritical fluid flows a most challenging task. In the present work, a Reynolds Averaged Navier
Stokes (RANS) computational method following an incompressible but variable density approach is
devised on which the performance of several turbulence models is compared in conjunction with a
high accuracy multi-parameter equation of state. In addition, a suitable methodology to describe
transport properties accounting for dense fluid corrections is applied. The results are validated against
experimental data, making it clear that there is no trend between turbulence model complexity and
the quality of the produced results. For several instances, one- and two-equation turbulence models
produce similar results. Finally, considerations about the applicability of the tested turbulence models
in supercritical simulations are given based on the results and the structural nature of each model.

Keywords: turbulence modeling; supercritical injection; Liquid Rocket Engines

1. Introduction

A small step towards the validation of numerical solvers able to accurately replicate the behavior
of supercritical fluid flows is to understand how current RANS (Reynolds Averaged Navier Stokes)
turbulence models, calibrated and tested for subcritical conditions, behave in the supercritical regime.
The use of accurate thermodynamic formulations capable of capturing the singular behavior of
supercritical fluids allows for the efficiency and accuracy of each turbulence model to be tested,
and their structure or the presence of specific terms linked to the characteristics of the final results.

A supercritical fluid is characterized by pressure and temperature above the fluid’s critical
values. In fuel injection phenomena, specifically in combustion chambers, both fuels and oxidizers’
operating conditions can exceed their critical point as a means to increase the engine’s efficiency [1–3].
At an arbitrary constant temperature, a gas can be converted to a liquid by increasing the pressure.
As temperature increases, so does the kinetic energy of the molecules, requiring a higher pressure
to bring the gas to a liquid. The critical temperature, Tc, marks the point after which a transition to
the liquid phase is no longer possible, no matter the applied pressure. The vapor pressure at the critical
temperature is then defined as the critical pressure, pc. The critical point then marks the end of
the vapor pressure line, where both temperature and pressure reach their critical values.

Since vaporization no longer occurs, a more suitable terminology is needed. Several authors,
including [4], propose the use of “emission rate“ and “emission constant“ to describe mixing under
supercritical conditions.
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As the temperature increases even further, the liquid-like supercritical oxidizer crosses
the pseudocritical line and transitions to a gas-like fluid. This transition from a liquid-like to
a gas-like state could be compared to a subcritical boiling, the main difference being that the isothermal
vaporization typical of subcritical fluids is replaced by a continuous non-equilibrium process that
takes place over a finite temperature range (Figure 1). As this happens, the specific heat capacity goes
through a maximum and tends to infinity when approaching the critical point, as shown in Figure 2.
Similarly to [5], we refer to this transition phenomenon as pseudo-boiling and the maxima of the
specific heat capacity as pseudo-boiling of pseudocritical line. It represents then a continuation of the
saturation line well into the supercritical regime.

Figure 1. Overall pressure temperature diagram.

The two parameters (∂ρ/∂T) and cpmax can therefore be used to identify pseudo-boiling
temperatures for different pressure values as shown in Figure 2. For nitrogen, it is visible that
as the pressure approximates the critical value of 3.39 MPa, the peak in specific heat becomes more
noticeable along with the slope of (∂ρ/∂T).

It is well known that in a subcritical injection, surface instabilities are responsible for jet
atomization, small discrete ligaments begin to break up, and droplets are ejected from the jet
core [6]. In a supercritical injection, however, the breakup mechanics are entirely different. [7]
describes one of the main characteristics of supercritical fluids as the impossibility of a two-phase flow.
Similar effects are reported by [5], where the surface tension is measured for oxygen from subcritical
temperatures, with higher values, up to the critical temperature, for which it completely vanishes.
Several other authors describe this different breakup mechanism where the drops and ligaments
are no longer detected, and no distinct surface interface can be determined. [7] notes that this
disintegration mechanism more closely resembles turbulent and diffusive mixing than the traditional
jet disintegration and [8] describes a thermal-breakup mechanism where the limit of the jet core is
defined by the transition of the fluid across the pseudocritical line.
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Figure 2. Density and isobaric specific heat values for nitrogen (data from the NIST database).

In the end, both the thermodynamic behavior and the breakup mechanisms have a direct effect
on the jet structure. As the liquid-like nitrogen is injected into the chamber, its temperature increases
as it begins to mix with a warmer gas, such as nitrogen. The structure of the flow changes and
it can be divided into three characteristic regions: potential core, transition, and fully developed
region. [9] defines the length of the potential core as the distance at which the centreline density
remains relatively constant and [8] compiles and compares four different equations attempting to
predict this length that is either based on the ratio between the densities of the liquid and gas-like fluids
or are given a constant value for any specific test geometry. In the self-similar region, the absolute value
of flow variables can still change, but their radial profiles are no longer a function of axial direction. In
between these two regions lies the transition zone, where the turbulent and diffuse mixing is most
relevant. As instabilities begin to appear, dense pockets of liquid-like nitrogen are separated from the
jet core, causing an increase in density fluctuations [10,11]. As a result, the density sharply decreases,
and the energy dissipation is significant. In experimental studies, this structure is visible through the
axial and radial density distributions and also through the jet spreading angle.

Turbulence is regarded as the last unsolved problem of classical physics. The presence
of advective terms in the governing equations leads to their admittance of a chaotic solution
after a critical Reynolds number. Modeling is then performed resorting to techniques
such as RANS (Reynolds Averaged Navier Stokes), LES (Large Eddy Simulation), or DNS
(Direct Numerical Simulation). However, when discussing supercritical fluid flows, the fact that
no turbulence models developed explicitly for flows at these conditions exist, is an added factor of
uncertainty. Throughout the years, these techniques have been used in the modeling of supercritical
fluid flows with various degrees of success.

In a series of studies by the same authors, [12–14], a Large Eddy Simulation solver is used for
the computation of nitrogen injection. In this sense, [15] also perform LES following a pressure-based
solution approach in which the PISO - Pressure-Implicit with Splitting of Operators algorithm for
pressure-velocity coupling is employed. The authors conclude that further improvements are needed
in the variables discretization so that the numerical diffusivity can be lowered.

The paths available in terms of discretization of the governing equations as well as in turbulence
modeling are so diverse it justifies a study on how different approaches and modeling techniques
affect the result. On this subject, [16] performs a comparison between different RANS derivations
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of the κ − ε model and an LES computation. Cubic equations of state performance are compared
and coupled with the compressible formulation for the conservation of mass and momentum. As for
the temperature and transport properties, they are retrieved as a function of the mixture fraction.

In [17], LES simulations are carried out, and a comparison is made between a density-based
and a pressure-based solution. In the density-based solution, implicit LES combines turbulence
modeling with the numerical discretization of the conservation equations, while in the pressure-based
solution, an eddy viscosity approach is favored. The results comparison from the two solution
approaches does not indicate a very substantial difference in the axial centerline distribution.
Another LES pressure-based solution approach is proposed by [18], using different sub-grid scale
models. Also, on the subject of supercritical injection, [19], conclude pressure-based solvers are
strongly affected by the deviation of compressibility coefficients from the ideal gas behavior, and [20]
propose an extension of a double-flux model to real fluid equations of state, as a means to improve
the capability of the numerical solver to cope with spurious pressure oscillations, especially close to
the pseudocritical line.

In terms of Direct Numerical Simulation (DNS), the work of [10] stands out, in which a lower
inlet velocity is used, reducing the Reynolds number. A merged PISO/ SIMPLE algorithm allows for
the study of entropy production rates, dominated by heat transfer [21].

In high Reynolds numbers simulations, the choice then lies between RANS- and LES-based
simulations. While RANS relies on the same turbulence model for the entire inertial scales, in LES,
the larger inertial scales are solved, and an SGS (Sub-Grid Scale) model is used for the smaller
scales. A filter is used to separate resolvable and Sub-Grid Scales. The importance of Sub-Grid Scale
modeling in high-pressure LES computations is outlined by [22]. Even though the potential of LES
simulations is recognized, it has failed to outperform RANS-based solvers systematically. As a result,
in the present work, a RANS-based numerical solver is used to compare the performance and accuracy
of several turbulence models in the modeling of supercritical fluid flows. Specifically, the validation
of a numerical setup replicating combustion chamber conditions can be seen as a first step towards
accurately and reliably simulating combustion phenomena inside a Liquid Rocket Engine combustion
chamber, and a small step in this direction is to understand how current turbulence models behave
under supercritical conditions and how their accuracy stands up against one another. The same issue
was dealt with in a previous work [23], through the reassessment of the concept of a variable turbulent
Prandtl number, applied to the standard κ − ε turbulence model.

Interestingly enough, the comparison described can be linked to the general state of the space
sector. The dawn of space exploration privatizing has lead to a boost and renewed interest in
the modeling of vehicles used for such missions. As a consequence, an ever-increasing demand
for economic sustainability has lead to the necessity of developing new solutions for space
technology. As stated by by [15], the new challenge is not the development of new technologies,
but the improvement of already available concepts, with restricted budgets and shortened development
cycles. In this sense, through the analysis of the RANS-based turbulence models here proposed
an attempt is made to improve the knowledge regarding their behavior in the supercritical regime.

The remainder of this study is structured as follows: first, the experimental conditions necessary
for validation purposes are shortly reviewed, and the initial and boundary conditions are established.
The description of the governing equations in their Favre averaged formulation precedes the discussion
about the adopted turbulence modeling; however, the models themselves are not detailed explained.
Such an undertaking would not contribute to quality improvement of this manuscript, while would
render it prohibitively extensive. A simple discussion of the models’ limitations and applicability
is favored. The processes of density and transport properties determination are then discussed,
as well as the discretization of the governing equations. The results are then critically analyzed,
and the conclusions reiterated for future studies.
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2. Initial and Boundary Conditions

The test cases from [9] are the basis of comparison for this numerical study. In particular,
case 3 and case 4 are investigated where cold nitrogen is injected into a chamber at ambient
temperature with four windows for optical access.

The geometry corresponding to the experimental setup of [9] is represented in Figure 3.
The diameter of the chamber and the injector are 122 mm and 2.2 mm, respectively, while measuring,
in length, 250 mm and 90 mm. Liquid nitrogen is injected into a chamber filled with gaseous nitrogen
according to the conditions indicated in Table 1.The subscript 0 respects to injection conditions, with ∞
representing conditions in the combustion chamber.

Figure 3. Boundary conditions for the physical model.

Table 1. Test conditions [9].

Case p∞ [MPa] u0 [m.s−1] T0 [K] T∞ [K] ρ0 [kg.m−3] ρ∞ [kg.m−3]

3 3.97 4.9 126.9 297 457.82 45.24
4 3.98 5.4 137 297 164.37 45.36

The domain contains five different boundary conditions, also depicted in Figure 3. A constant
axial velocity profile is set at the inlet to u0, and the radial velocity is set to zero. At the walls, a no-slip
condition is applied where both the normal and tangential velocity components are set to zero.

A pressure outlet is defined with a gauge pressure of 0 MPa and where the pressure values at
the outlet face are calculated by averaging the specified operating pressure of p∞, with the internal
pressure. Also, at the symmetry axis, the value of any specific property is equaled to that of
the adjacent cell.

Finally, for the adiabatic walls of the injector and the faceplate, the heat flux from Equation (1)
is set to zero, but for the isothermal wall heat transfer is calculated through a Dirichlet boundary
condition by setting a constant temperature at the wall of 297 K. In Equation (1), h f represents the fluid
heat transfer coefficient, Tw the temperature at the wall and T∞ is the local fluid temperature.

q = h f (Tw − T∞). (1)

3. Governing Equations

To deal with the weakly incompressible but variable density conditions [24], the standard
time-averaging method is replaced by the Favre averaging procedure, and the system of equations
is closed with different turbulence models, the main focus of this study. The performance of said
models, designed and calibrated to run in subcritical conditions, is then studied and their validity for
the supercritical regime is assessed.
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The Favre averaging method introduces a density-weighted quantity (φ̃i) and a density-weighted
fluctuation (φ′′i ), as given by equation (2) for an arbitrary scalar φi.

φi = φ̃i + φ′′i . (2)

˜phii is evaluated according to Equation (3), being ρ the mean density.

φ̃i =
ρφi
ρ

. (3)

The steady-state Favre averaged conservation equations for mass, momentum, and energy are
reproduced here, following the integral formulation in Equations (4) to (6), respectively, where ũ
represents density-weighted velocity components.

Mass can neither be created nor destroyed and as a result, there is no diffusive term in Equation (4),
only an advective one.

∫
Θ

[
∂

∂xi
(ρũi)

]
dΘ = 0. (4)

Momentum is a vectorial quantity meaning that its transport is defined by as many equations
as the number of dimensions that are assumed. The momentum advective flux is then defined in
Equation (5) as ρũiũj, while ρ fi represents the volume source term.

∫
Θ

[
∂

∂xj
(ρũiũj)

]
dΘ =

∫
Θ

[
− ∂p

∂xi
+

∂

∂xj

(
t̃ij + τij

)
+ ρ fi

]
dΘ. (5)

In Equation (6), the advective term is represented by ρũj H̃, while the diffusive term is evaluated
by Fourier’s law of conduction, through qj and τij is the Reynolds stress tensor.

∫
Θ

[
∂

∂xj
(ρũj H̃)

]
dΘ =

∫
Θ

[
∂

∂xj

[
− qj − qtj + ũi

(
t̃ij + τij

)
+ tjiu′′i −

1
2 ρu′′i u′′i u′′j

]]
dΘ. (6)

The viscous stress tensor from Equations (5) and (6) is averaged according to Equation (7),
as a function of the molecular viscosiry where the mean strain-rate tensor, S̃ij, is given by Equation (8)
and δij is the Kronecker delta function.

t̃ij = 2µ

(
S̃ij −

1
3

S̃kkδij

)
(7)

S̃ij =
1
2

(
∂ũi
∂xj

+
∂ũj

∂xi

)
. (8)

The Reynolds stress tensor of Equation (5) holds correlations originated from the averaging
process, given by Equation (9).

τij = −ρu′′i u′′j . (9)

Additional terms also appear in Equation (6) such as the Favre-averaged total specific energy (Ẽ),
enthalpy (H̃) and the turbulent heat flux (qtj ), defined in Equations (10), (11) and (12), respectively.

Ẽ = ẽ +
1
2

ũiũi + k (10)

H̃ = h̃ +
1
2

ũiũi + k (11)
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qtj = ρu′′j h′′. (12)

Lastly, the turbulence kinetic energy per unit volume, k, is defined according to Equation (13).

ρk =
1
2

ρu′′i u′′i . (13)

The double and triple correlations from Equations (5) and (6) are also a product of the averaging
process which is too extensive to describe here. While a physical meaning can be attributed to some,
it does not apply to others. The Reynolds stress tensor alone introduces three additional independent
variables, meaning that the system is not yet closed. A transport equation for τij can be provided,
but the number of unknowns only increases, and the system remains open. Nevertheless, this is
the essence of second-order turbulence models. For now, an approximation for τij is needed.

4. Turbulence Models

The Boussinesq approximation can be used to define the Reynolds stress tensor and is the basis
of turbulence modeling. This approximation relates τij with the viscous stress tensor by introducing
the concept of eddy or turbulent viscosity, µt. It relates to the influence of molecular viscosity on
the transport of momentum with the influence of turbulence viscosity on the transfer of momentum
caused by turbulent fluctuations. As a result, Equation (7) becomes:

τij ≈ 2µt

(
S̃ij −

1
3

S̃kkδij

)
− 2

3
ρkδij (14)

While the terms for i 6= j are modeled through µt, the trace of τij is still precisely defined through
the specific turbulent kinetic energy from Equation (13) as:

τii = −ρu′′i u′′i = −2ρk. (15)

With this relation, turbulence models can focus on calculating the eddy viscosity (µt)
and the turbulence kinetic energy (k).

The laminar and turbulent heat transport terms, qj and qtj , are defined according to Fourier’s law,
so that:

qj = −
cpµ

Pr
∂T̃
∂xj

= − µ

Pr
∂h̃
∂xj

, qtj = −
cpµt

Prt

∂T̃
∂xj

= − µt

Prt

∂h̃
∂xj

. (16)

In Equation (16), Prt represents the turbulent Prandtl number, i.e., Prt = νt/αt, where νt is
the eddy diffusivity of momentum and αt the turbulent thermal diffusivity.

Finally, the molecular diffusion and the turbulent transport, tjiu′′i − ρ 1
2 u′′i u′′i u′′j , are coupled

together and modeled as shown in Equation (17).

tjiu′′i −
1
2 ρu′′i u′′i u′′j =

(
µ +

µt

Prt

)
∂k
∂xj

. (17)

Turbulence models evaluate eddy viscosity in different ways but generally using the same
properties, such as the turbulent kinetic energy, the turbulent dissipation rate, ε, and the specific
dissipation rate, ω.

The mixing length hypothesis proposed by L. Prandtl provides an expression to define
the turbulent viscosity based on the assumption that the x-momentum of fluid remains constant
for a length of lmix in the y-direction. lmix is the mixing length that is characteristic of each flow
geometry along with a characteristic velocity, that must be defined in advance. Ergo, zero equation
models where the length and velocity scales are not defined through properties such as κ, ε or ω,
are not independent of the case of study. One and two-equation models overcome this obstacle
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by introducing transport equations for history-dependent variables that can represent velocity
and a length scale. Explicitly, the two-equation models studied in this work define the velocity scale
through the turbulent kinetic energy to incorporate non-local and flow history effects in the turbulent
viscosity. The underlying problem in RANS simulations results from the unavailability of velocity
fluctuations, leading to the necessity of resorting to closure models. The chosen model involves, as do
most of the choices made when attempting to numerically reproduce the behavior of supercritical fluid
flows, a compromise between computational cost and accuracy. The current development of improved
turbulence models faces the dilemma of conserving the low computational cost and high robustness of
RANS approaches while incorporating as much physics as possible.

The Spalart–Allmaras model [25] is a one-equation model in which a direct derivation of
an equation for the transport of the modified eddy viscosity is performed. This does not happen on
the k− ε-based models [26–28], where transport equations for both the turbulent kinetic energy (κ)
and its dissipation (ε) are introduced. In the k−ω-based models, the dissipation of turbulent kinetic
energy is replaced by the specific dissipation rate, and as such, a variation of the model of [29] is
considered. The turbulent dissipation rate is replaced by the dissipation per unit time or specific
dissipation rate defined as ω = ε/k.

In the standard κ −ω model, additional terms related to low Reynolds numbers corrections and
compressible effects are available for this model but are neglected for the current study. An attempt is
made in reducing the round-jet anomaly by linking the dissipation of ω to the mean deformation of
the flow. The predictions for k and ω outside of the shear layer remain on the most significant setbacks
of this model, despite the introduction of a cross-diffusion term.

After the proposal of the Wilcox k− ω model, [30] developed the shear-stress transport (SST),
k−ω model, to retain the robust and accurate formulation of the Wilcox model inside the shear layer
while taking advantage of the free-stream qualities of the k− ε model in the far-field. The transport
equation for ε is converted into a similar formulation as that of ω. This blending function is designed to
be one in the viscous sublayer of the boundary layer and tend to zero in the log-law region (y+ > 70).

All the models reasoned insofar are based on Boussinesq’s eddy viscosity concept.
However, another one is considered, which does not have this concept as its underlying relationship.
The Stress Baseline (BSL) model [30] closes the system of governing equations with transport equations
for ω and τij.

All these models are, however, subject to different levels of uncertainty, whose source identification
remains a most challenging task due to the coupling between various phenomena and levels of
uncertainty [31]. Nevertheless, several studies were conducted on uncertainty quantification in several
turbulence models, and even though the test subjects are not supercritical fluid flows, their conclusions
are broad and extensive.

The application of sensitivity analysis (defined as the derivatives of the flow variables concerning
the design parameters) by [32] on a backward-facing step showed the calibration parameters C1,
and C2, in the κ − ε turbulence model, have the most pronounced effect on the turbulence model
predictions. On the Spalart–Allmaras model, [33] concludes the incomplete physical knowledge
led to the use of dimensional analysis and a large amount of judgment to close or tune in model
constants. Relations between coefficients need to be enforced to maintain the appropriate behavior of
the Spalart–Allmaras model for canonical flows.

On the other hand, [34] presents a novel methodology for improving eddy viscosity models
in predicting wall-bounded turbulent flows with strong gradients in the thermophysical properties.
Conventional turbulence models for solving the RANS equations do not correctly account for variations
in transport properties, such as density and viscosity.

A methodology in which representative samples of motions and processes of all scales are solved
and combined, while remaining computationally affordable, especially at large Reynolds numbers,
effectively meaning the statistical resolution of all scales remains a somewhat distant goal.
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Additionally, the turbulent kinetic energy, turbulent dissipation rate, and specific dissipation rate
are based on the turbulent intensity, I, and turbulent viscosity ratio, µt/µ:

k =
3
2
(Iu0)

2, ε = ρCµ
k2

µ

(
µt

µ

)−1

, ω = ρ
k
µ

(
µt

µ

)−1

. (18)

In Equation (18), Cµ is specific to each of the turbulence models. In the Spalart–Allmaras model,
ν̃ is taken directly from the turbulent viscosity ratio, and in the Stress-BSL model, the turbulent stresses
are assumed to be zero, except for the trace of the tensor which is calculated as in Equation (15). In all
cases, the turbulence intensity is set to 5% at the inlet.

5. Equation of State and Transport Properties

In the supercritical regime, the ideal gas Equation of State (EoS) must be replaced by more
accurate formulations. While multi-parameter EoS have high accuracy, they fall behind in terms of
computational efficiency. To overcome this obstacle, in the present work, density values are loaded
from a preexisting real gas library [35], based on a reference equation of state for nitrogen [36],
allowing for increased accuracy at a reduced computational cost, since look-up tables are generated
before the computations, effectively removing the need for thermophysical properties to be calculated
in each iteration. The non-linearity of transport variables must also be accurately defined, and the
equations proposed by [37] are used.

Multiparameter equations of state can be created through polynomial and exponential expansions
where the coefficients multiplied by each term are specific to each fluid. These coefficients must be fitted
through the available experimental data for the conditions in which the EoS is to be valid. The 32-term
modified Benedict-Webb-Rubin (MBWR) [38] EoS achieves a relative density error smaller than 0.5%
above and below the critical point, while [39] proposes a 12-term EoS with available coefficients for
a series of substances, nitrogen included, while [40] provides a highly accurate 18-term EoS optimized
directly for nitrogen.

The EoS presented by [36] is based on the Helmholtz energy, F, which is then normalized and set
as a function of reduced temperature (τ) and density (δ = ρ/ρc):

F(ρ, T)
RT

= f (δ, τ) = f 0(δ, τ) + f r(δ, τ). (19)

The first right-hand-side term of equation (19) refers to the ideal gas contribution to the Helmholtz
energy while the second represents the residual Helmholtz energy corresponding to the intermolecular
forces considered in a real gas formulation.

The ideal gas contribution is defined in Equation (20), the residual addition is shown in
Equation (21) and the corresponding constants are listed in [36]. Thermodynamic properties can
then be calculated based on the derivatives of these two terms.

f 0(δ, τ) = ln(δ) + a1 ln(τ) + a2 + a3τ + a4τ−1 + a5τ−2 + a6τ−3 + a7 ln
(
1− exp[−a8τ]

)
(20)

f r(δ, τ) =
6

∑
k=1

Nkδik τ jk +
32

∑
k=7

Nkδik τ jk exp[−δlk ] +
36

∑
k=33

Nkδik τ jk exp[−φk(δ− 1)2 − βk(τ − γk)
2]. (21)

The coefficients specific to this EoS are obtained through data fitting methods based on
experimental measurements from a series of authors and for a wide range of temperatures
and pressures.
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Transport properties have a direct impact on the governing equations. The substantial variation
of transport properties as dynamic viscosity and thermal conductivity approaching and entering
supercritical conditions is depicted for nitrogen in Figure 4.
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Figure 4. Viscosity and thermal conductivity values for nitrogen (data from the NIST database).

Following [37], viscosity is expressed according to Equation (22). Viscosity is evaluated from
a dilute gas contribution, µ0(T) (Equation (23)) and a residual component, µr(τ, δ), (Equation (24)).
The σ represents the Lennard-Jones parameter and Ω the collision integral, while the remaining
coefficients are tabulated in [37].

µ = µ0(T) + µr(τ, δ) (22)

µ0(T) =
0.0266958

√
MT

σ2Ω(T∗)
(23)

µr(τ, δ) =
n

∑
i=1

Niτ
ti δdi exp(−γδli ). (24)

In the same fashion, thermal conductivity is defined according to Equation (25). The dilute
and residual gas contributions are defined according to Equations (26) and (27), respectively.

λ = λ0(T) + λr(τ, δ) + λc(τ, δ) (25)

λ0 = N1

[
η0(T)
1¯Pa.s

]
+ N2τt2 + N3τt3 (26)

λr =
n

∑
i=4

Niτ
ti δdi exp(−γiδ

li ). (27)
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A third component is needed for the evaluation of thermal conductivity in the critical region.
Such contribution is defined in Equation (28). The calculation of the Ωi coefficients comes from
the definition of specific heat at constant pressure and volume.

λc = ρCp
KR0T

6πξη(T, ρ)
(Ω̃− Ω̃0). (28)

The use of real gas relationships for transport and thermodynamic properties allows the physical
model to capture the weak compressibility effects when using an incompressible variable-density
approach. Thermodynamic properties such as enthalpy are evaluated by their ideal gas value with
a departure function to account for real gas effects.

6. Numerics

The values of the scalar φ are stored at the center of the cells. However, face values φr and φl
are also necessary and must be interpolated from the cell-centered values. The diffusion of a certain
quantity, as an example, is affected by the gradient of concentration of that same quantity over the entire
domain, and a central difference is considered more appropriate. It is, therefore, used for the diffusive
terms of the conservation equations.

On the other hand, as [16] suggests, at least a second-order upwind scheme is necessary for
the modeling of the advective fluxes. The QUICK scheme [41] is employed instead as a tool for reducing
the oscillatory and unstable behavior of second-order numerical schemes, while also dealing with
the numerical diffusion affecting the first-order upwind schemes. Equation (29) serves as an example
to demonstrate the concept. At point C, it can be discretized using the values of φ at the cell faces,
as shown in equation (30), where Γ represents the diffusivity coefficient. These, however, need to be
interpolated through the stored cell-centered values.

∂φ

∂t
= −∂(uφ)

∂x
+

∂

∂x

(
Γ

∂φ

∂x

)
(29)

∂φC
∂t

=

[
ulφl − urφr + Γr

(
∂φr

∂x

)
− Γl

(
∂φl
∂x

)]
/∆xC. (30)

The application of a central differencing scheme to the diffusive term of Equation (30) has
a stabilizing effect and is therefore straightforward. However, when applied to the advective term,
it can lead to instabilities and an oscillatory behavior for a grid Péclet number (Pe) higher than two,
i.e., local advection two times larger than diffusion. In short, the second-order accuracy can come at
the expense of stability. By contrast, in an upwind differencing scheme, the cell-centered value of φ is
assumed to represent a cell average value and hold throughout the entire cell, meaning that the face
quantities are identical to the upstream cell quantities. This technique provides increased stability of
the advective term to the variations of φC, but only because of the numerical diffusion introduced by
assuming φl = φL. To diminish this numerical diffusion the grid spacing must considerably decrease,
leading to a higher computational cost which is also not desirable.

The QUICK scheme combines a higher-order accuracy with the directional behavior of the upwind
scheme to provide additional stability for the advective term in a coarser mesh. The face values
are defined according to Equations (31) and (32). In this way the QUICK scheme achieves
a third-order accuracy.

φr =
1
2
(φC + φR)−

1
8
(φL + φR − 2φC) (31)

φl =
1
2
(φL + φC)−

1
8
(φFL + φC − 2φL). (32)
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A pressure-based algorithm is implemented where conservation of mass is implicitly achieved
through a pressure-based continuity equation, obtained by taking the divergent of the momentum
Equation (5) and introducing the condition (∂ρũi)(∂xi) = 0. A system of equations comprising this
and the momentum equations is solved to obtain the velocity and pressure fields simultaneously.
Energy and transport equations for turbulent variables are solved until convergence is reached.

In a collocated grid scheme, both the velocity and the pressure values needed for interpolation
are retrieved from the same cell. However, when calculating the pressure field on a collocated grid,
oscillations in the pressure field may appear as a result of an odd-even decoupling of the pressure
and velocity, i.e., that on a specific point the pressure and velocity do not affect one another [42].
As a result, a staggered grid method [43] is used, where the velocity and pressure values are stored in
different positions and for which the control volumes are no longer equal. Ultimately, the pressure
values are calculated directly for the cell face, and no interpolation is needed. The decoupling of
the pressure and velocity fields is eliminated along with any possible oscillations and is therefore used
in the current work.

A hybrid initialization method is employed where the inlet velocity is set to u0 from Table 1
and the absolute pressure at the outlet is set to p∞. The velocity and pressure fields calculated with
this method are then introduced in the first cycle of the pressure-based algorithm. A flowchart of
the numerical procedure is given in Figure 5.

STOP

Update properties

Simultaneously solve the system
of momentum and pressure based

continuity equations

Solve energy, turbulence
and other scalar equations

Converged?
No

Yes

Figure 5. Pressure-based solution algorithm.

7. Grid Independence

An independence mesh study based on the centreline decay of the density is performed using
three levels of refinement with 180 000, 280 000, and 495 000 points in a structured orthogonal mesh of
rectangular elements. The comparison is made for case 4 from Table 1, and the results, with the standard
k− ε model, are shown in Figure 6. Despite a very slight variation of density values in the transition
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region, the three meshes provide close results to one another with similar slopes, indicating that
the flow is sufficiently well resolved with the coarser grid. The more refined grid is not applied because
the gained accuracy does not justify the additional computational cost, and the mesh of 280 000 points
is used over the coarser one to maintain grid independence for the remaining turbulence models.
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Figure 6. Centreline density decay at three different grid resolutions for case 4 with the standard k− ε

model and the REFPROPv9.1.

8. Results

Figure 7 shows a comparison of the results obtained for the centerline density decay when using
the turbulence models described for case 3. It is visible that almost all models predict a potential core
with values ranging between x/d = 6.4 and x/d = 7.6. The only exception is the standard k − ω

model that largely overestimates the length of the potential core to x/d ≈ 12.5, which can be attributed
to the poor performance of this model in free-stream conditions. Even if the version here tested is
an improvement over the 1998 Wilcox k−ω model, with an added cross-diffusion term introduced
specifically to deal with the free-stream sensitivity, it does not provide acceptable results throughout
the whole of the domain.

The density values predicted in this region are higher than those of the experimental data,
but this can be a result of the measuring procedure used by [9]. Raman spectroscopy works
by directing a monochromatic laser at the test substance and measuring the scattered radiation
using a sensor. However, for higher densities, the jet tends to deflect the radiation along the axial
direction, thus decreasing signal intensity at the sensor. As density reduces, this phenomenon is no
longer predominant.

Turbulence seems not to influence the potential core. However, when entering the transition
region, instabilities start to appear, and turbulent dissipation begins to increase. [10] reports a maximum
of density fluctuations in this region as pockets of dense fluid start to smear the potential core.
The same authors also discuss how the heat absorbed to overcome the intermolecular attraction leads
to an increase in the heat entropy production with a maximum already closer to the self-similar region.
An analogy can be found between this and the trend of κ and ε.
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Figure 7. Centerline density decay in case 3 with different turbulence models.

When this happens, the fluid crosses the pseudocritical line leading to thermal expansion
and reduced shearing, resulting in turbulence dissipation, as depicted in Figure 8, starting to decrease
around x/d = 15. This thermal expansion also appears to spawn sharp velocity fluctuations visible
in the increase of turbulent kinetic energy, indicative of a robust turbulent mixing mechanism.
The comparison of the maxima of cp along the axial density evolution is seen in Figure 9 for the RNG
κ − ε model.
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Figure 8. Centreline distribution of the turbulent dissipation rate and kinetic energy in case 3 with
the standard k− ε model.
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Figure 9. Location of the maxima of cp in the axial density decay for case 3 with the RNG κ − ε

turbulence model.

In this region, the more elaborate structure of the SST k−ω does not provide outstanding results
despite having a shear-stress-based formulation for eddy viscosity. When moving away from the wall,
µt returns to ρk/ω, and the model only uses the k− ε-based coefficients. Consequently, we can see
that its results more closely match those of the k− ε variants than those of the standard k−ω model.

The five equation Stress-BSL model also overestimates the density values between 7.5 < x/d < 20,
which could be related, in part, to the dependency of this model on ω and the inherent deficiencies of
its transport equation. The one equation Spalart–Allmaras leads to a similar overestimation of density
values between 7.5 < x/d < 22.5, but it is striking to see how well this simple formulation stacks
against a five equation model.

In the three ε based models, the realizable variant provides the worst results since the beginning
of the transition zone up to x/d ≈ 20. It seems that the realisability constraint and the alternative ε

transport equation do not give any visible contribution. Between the standard and the RNG k− ε,
there are two main differences: the formulation for the destruction of the turbulent dissipation
rate and the definition for the turbulent Prandtl number inserted into the energy equation and in
the turbulent variables transport equations. Especially when considering the work from [23], we are
led to believe that the variable turbulent Prandtl number is the leading cause for an improved behavior
of the RNG k− ε model over the standard version. The model accurately predicts the density values
across the domain.

In case 4, the differences in potential core length, depicted in Figure 10, are similar to those
of case 3, ranging from x/d = 6.6 to x/d = 7.7 with the standard k − ω being once again
the exception. Injection density is considerably reduced in this case when compared to that of case 3,
and, as a consequence, there is no longer an apparent density overestimation in the potential core.
However, an unrealistic potential core is still predicted independently of the turbulence model. In this
case, the Stress-BSL model is the only one to correctly predict density values between 17.5 < x/d < 30
while the remaining provide a slight under prediction. Nevertheless, its behavior outside this region is
not exceptional, and the overall results do not justify the additional computational cost. Results from
the RNG k − ε continue to be acceptable, but there is also an improvement from the standard
k − ε and the Spalart–Allmaras models for which the outcome is nearly identical. The decrease
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in the turbulence energy dissipation happens soon, at an x/d = 12.5 (Figure 11) As it can be seen
in Figure 12, since the pseudo-boiling line is not crossed, there is not a peak in the cp, which has
an evolution in accordance to the axial density decay. The injection temperature of 137 K is already
above the pseudo-boiling temperature, and there is no peak in the specific heat. remaining fairly
constant until x/d ≈ 5 along with the temperature inside the potential core, and begins then to decrease.
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Figure 10. Centreline density decay in case 4 with different turbulence models.
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Figure 11. Centreline distribution of the turbulent dissipation rate and kinetic energy in case 4 with
the RNG k− ε mode.
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Figure 12. Location of the maxima of cp in the axial density decay for case 4 with the RNG κ − ε

turbulence model.

9. Conclusions

The steady-state Favre averaged governing equations are used to deal with the incompressible
but variable-density flow that is characteristic of the current test cases. The system of equations is
closed with six different models that are based either on the turbulent viscosity or the transport of
the Reynolds stresses, to study the behavior of turbulence modeling in supercritical conditions.

An accurate formulation, capable of replicating the singular behavior of transport properties of
supercritical fluids, is reviewed with detail. A pressure-based algorithm is used where the velocity
and pressure fields are solved simultaneously. A staggered grid method is then implemented to prevent
pressure fluctuations together with the QUICK scheme for the advective terms and second-order central
differencing scheme for the diffusive terms.

The results obtained are compared to the experimental data for validation. There is a generally
good agreement with the experimental data for both case 3 with the RNG k− ε model and for case 4
also with the RNG k− ε and with the Spalart–Allmaras model. Nevertheless, there is a clear distinction
is that the results obtained from different turbulence models.

The results obtained with a second-order turbulence model show that there is no clear advantage
in calculating higher-order turbulent correlation terms, indicating that their relevance under these
conditions is minimal. Also, the blending functions and shear tress transport formulation for µt

of the SST k − ω model do not contribute to improving predictions since the flow is mainly in
a free-stream region. The RNG k− ε model, offers the best results for case 3, possibly due to the variable
turbulent Prandtl number but the similarly good results obtained for case 4 with the Spalart–Allmaras
and the Standard k− ε models indicate that there may be other relevant factors.

As a consequence, the results here obtained are indicative that there is no direct correlation
between the turbulence model complexity and quality of the results, in what supercritical fluid flows
are concerned. These results indicate that computational time can be gained with the use of simpler
turbulence models. For this fact also contributes the pre-compiled real gas equation of state.

Having determined how the velocity field affects the flow structure, one of the next step is,
therefore, to determine the impact of a heating mechanism inside the injector and the correct boundary
conditions to be used.
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