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Abstract: Many papers related to this topic can be found in the bibliography; however, just a modest
percentage of the introduced techniques are developed to a Technology Readiness Level (TRL)
sufficiently high to be implementable in industrial applications. This paper is focused precisely on
the review of this specific topic. The investigation on the state of the art has been carried out as
a systematic review, a very rigorous and reliable standardised scientific methodology, and tries to
collect the articles which are closer to a possible implementation. This selection has been carefully
done with the definition of a series of rules, drawn to represent the adequate level of readiness of
fault detection techniques which the various articles propose.
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1. Introduction

The topic of the present review is subjected to a growing interest, both from the academic and the
industrial worlds, due to the parallel increase of the usage of electric machines for high reliability tasks
as motoring of electric vehicles and actuation of flight surface for the future More Electric Aircrafts.

Above all, when aerospace applications are involved, reliability becomes of vital importance;
indeed, the performance of flight actuators on a damaged aircraft is not as important as ensuring that
the remaining actuators continue operation until the aircraft can land safely. In most cases, an adequate
level of reliability can be reached only by using diagnostic tools [1].

The availability of an accurate and efficient mean of condition monitoring and machine fault
diagnosis can be of paramount importance, as it improves the reliability and stability of the plant
and at the same time it reduces costs, ideally leading to a system without programmed maintenance.
Statistical studies [2] show that expected reliability can be improved up to 5–6 percentage points with
the use of monitoring.

In this context arises the need to precisely know the evolution and the current state of the literature
about the fault detection and diagnosis techniques for Brushless DC (BLDC) and in particular which
techniques are closer to a possible implementation, i.e., which techniques have the highest Technology
Readiness Level (TRL).

In the area of engineering, and especially for aerospace engineering, the narrative revision
is usually preferred. In this kind of review, the authors decide which papers include in the survey,
based on their wide knowledge and experience and offering a personal point of view and interpretation
of the chosen theme.
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The SR is a rigorous standardised scientific methodology, used to produce reliable literature
reviews, mainly recognised by its objectivity. It is employed with exceptional results in many
areas, including bio-science [3,4], computer science [5] and in recent years particularly in software
engineering [6,7]. In particular, these last papers and the work proposed by [8] have been used as
guides to undertake the systematic review in this work.

In fact, the first objective of this work is precisely to adapt the guidelines mentioned above to
our field, while the second objective is to apply the systematic review to a specific topic: high TRL
techniques for BLDC motors failures detection.

To be more precise, the authors are interested in those detection techniques that are not restricted to
a particular machine or with special set-ups, configurations, loads or motor manoeuvres. Furthermore
the techniques shall have been tested at various operation point and the algorithm shall have tested
with success for at least one of some cases later described in the inclusion criteria. Concluding, in order
to be accepted in the systematic review, the paper shall demonstrate that the proposed algorithm is
capable to discern between healthy and faulty motor. These constitute, mainly, the inclusion criteria
for the studies appearing in the review.

The fundamental scope of this review is indeed to detect which techniques are presently being
profitably used for motor fault detection and diagnosis and to provide the industry with some high
readiness level and tested techniques. In this prospect, most of the inclusion and exclusion criteria
have been defined to focus the investigation on those techniques with demonstrated fault detection
performances at various operation points and easily automatable or already automated.

An additional question considered in this SR has been the possibility to embed in the motor
body, the hardware needed for fault detection. Although most articles are focused on the detection
by utilising commonly measured variables (mainly speed, current, voltage) some authors have
elaborated fault detection techniques based on the analysis of images from external cameras or
sensitive accelerometers. Those techniques are appropriate to be implemented only in particular
applications [1] and have been discarded from the scope of the present work.

After the screening of more than 3000 possible papers, only 44 primary studies have been found to
satisfy the aforementioned criteria. The authors have carefully revised those papers and have collected
the following data: the type of fault detected, the technique that was used for the detection and the
sensors used, the inclusion of experiments or simulations, if the technique has been tested at different
operation points (diverse speed or loads or in the best case a combination of both), the working
condition (stationary or not) and some other limitations/advantages.

This information is then gathered in a feature table, which is an useful strategy to get a complete,
rigorous and objective view of the chosen topic. At the end of the process, the research questions
initially formulated are answered, providing a full perspective of the topic [8].

The SR consists of three sequential phases, each of which is subdivided in turn into sub-phases,
as detailed below [7]:

1. Planning the review

• identification of the need
• research questions
• review protocol
• evaluating protocol

2. Conducting the review

• selection of primary studies
• study quality assessment
• extraction and synthesis of data

3. Reporting the review

• specifying dissemination mechanisms
• formatting the main report
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• evaluating the report

The rest of the paper is organised as follows.. Section 2 presents the description and the adaptation
to our case of planning phase of the SR. Conducting and reporting of the systematic review are given
in Sections 3 and 4 respectively. Finally, the conclusions are drawn in Section 5. Additionally, in
Appendix A is given a definition of the main terminology used along the document.

2. Planning

The first step of the systematic review consists in planning, which is the foundation of the entire
revision. It is at this stage that the main tools are developed, such as the Boolean function, the inclusion
and exclusion criteria, the choice of the different databases in which to carry out the research and
above all the development and evaluation of a protocol that regulates all the phases.

The need to undertake a systematic review, arises first of all because the research topic is very
wide and a rigorous method was needed to correctly extract the needed information. As said, in the
engineering field this type of methodology is not usual because, even by being scientific and rigorous,
it is difficult and complicated to carry out. Currently there is no systematic review on the fault detection
techniques for brushless DC motors, and in reality there is not even a traditional revision so detailed on
the chosen theme (Should be clarified that this sentence is referred to the reviews taking into account
the readiness level of the technique.).

2.1. Research Questions

Once the concrete topic has been identified, there are some criteria that help to clearly formulate
research questions. Among the most used criteria in other sectors there are the criteria called PICOC
(Population, Intervention, Comparison, Outcome, Context). In this work we have considered those
presented in [8] and adapted to our case.

In this case, just some of these criteria have been used to formulate and process the questions that
this SR is trying to answer. In the final section of the review, defined as reporting, there is a sub-section
called Discussion (Section 4.1) where the relative answers are discussed and analysed.

The questions formulated for the present work are listed below:

RQ.1: Which are the most common faults of BLDC motors?
RQ.2: Which parameters are used for fault detection in BLDC motors?
RQ.3: Which type of failure can be detected by each technique?
RQ.4: Which technique requires less computational power?
RQ.5: Which technique requires less sensors?
RQ.6: Which technique gives the best results for each type of failure?

2.2. Review Protocol

The revision protocol is nothing more than a set of rules and criteria to be followed during all
the stages, in order to reduce the bias and make the SR as objective as possible. In the bioscience field,
the protocol is sometimes recorded in a prospective register, such as PROSPERO (https://www.crd.
york.ac.uk/prospero/). Unfortunately, these type of registers do not exist in the aerospace field.

A very important aspect to be considered for the SR is the clarity wherewith the protocol is
exposed and elaborated, as at least two persons are involved in the review drafting. A common,
but very time consuming, approach consists in the implementation of the SR by two independent
persons, who carry out the part of the conducting and reporting separately and then compare and
discuss the obtained results. Another method, that is the one used in this work, is that a person
performs all the phases individually and a second person randomly checks some data, as for example,
some of the rows of the features tables (Tables 1–5).

https://www.crd.york.ac.uk/prospero/
https://www.crd.york.ac.uk/prospero/
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Table 1. Features table (a).

Cite Year Fault Type Technique Used Sensors Used Experiments or
Simulations

Various
Speed/Loads

Working
Condition

Limitations/
Advantages

[9] 2019 Armature
faults

Parameters
Estimation

Voltage,
Current and

Position
sensors

Both Both Stationary
conditions

It propose indicators deduced from symmetrical component of
phase currents in the reference frame. The method has been
validate at various speed, loads and short circuit resistance
magnitude for ITSC and at constant speed, load, resistance
magnitude for PPSC. The algorithm computational load is
nos specified.

[10] 2019
Permanent
Magnetic

faults

Model, AI and
neural-network-based
techniques

Voltage and
Current
sensors

Both Various Speed Stationary
conditions

Experimentally tested with 5 motor conditions (1 healthy, 4
faulty) with good detection performances. Proposes two failure
extraction methods and compares them. Training time and
computational load not specified.

[11] 2019 Mechanical
faults MCSA

Voltage and
Current
sensors

Both Both Stationary
conditions

Uses wavelet decomposition of the current signal and an adaptive
filter to estimate and remove the fundamental component. Tested
using two case studies, i.e., broken magnet and eccentricity fault,
automatic fault classification with SVM and average accuracy of
96%. Training time and computational load not specified.

[12] 2019
Permanent
Magnetic

faults

Other (Hall Effect
Sensors flux
analysis)

Hall Effect
Sensors Experiments Various Speed Non-Stationary

conditions

Method capable of detecting bearing and permanent magnets
faults by analysing respectively the cascade DWT-CWT transform
of the speed signal and the kurtosis index of the duty cycle signal
of the hall sensor output. Electrically independent from the motor.
Influence of load not specified. Computational load not specified.

[1] 2019
Permanent
Magnetic

faults

Other (Signals
Similarity
Analysis)

Voltage and
Current
sensors

Both Various Speed Stationary
Conditions

The method has been tested with FEM simulations and
experimentally with good results. The test effect of torque on
the method has not benn evaluated. The method can be used only
for multipole motors.

[13] 2019 Armature
faults

Electromagnetic
field monitoring

Tunneling
Magnetoresistive

sensors
Both Both Stationary

Conditions

The method is capable of detecting both location and severity of
inter-turn short-circuit by sensing the stray magnetic field outside
the stator yoke. It needs the installation of TM sensors around the
motor body. Computational load not specified.

[14] 2018 Mechanical
faults

Other (Angular
Resample)

Voltage and
Current
sensors

Experiments Both Non-Stationary
conditions

Method based on the angular resample of speed obtained with
a sensorless observer. Computational load not specified. Torque
variation not specified.

[15] 2018
Permanent
Magnetic

faults

Other (Voltage
Angle)

Voltage and
Current
sensors

Both Various Speed Stationary
Conditions

The method takes advantage from the variations of the
voltage angle observed during demagnetisation and inter-turns
short faults to identify their presence. The method is
temperature-dependant. A clear detection threshold is not
defined. Computational load not specified.
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Table 2. Features table (b).

Cite Year Fault Type Technique Used Sensors used Experiments or
Simulations

Various
Speed/Loads

Working
Condition

Limitations/
Advantages

[16] 2018 Armature faults Parameters
Estimation

Current and
Voltage
sensors

Both Both Stationary
condition

The method is affected by the magnitude of the stator current,
should be used in constant torque conditions.

[17] 2017 Mechanical faults

Electromagnetic
field monitoring,
search coils, coils
wound around
motor shafts

Search coil Simulations Various
Speeds

Stationary
Conditions

The method is independent from motor variables, but needs the
search coil to be installed on the stator.

[18] 2017 Armature faults

Model, AI,
and neural-network
-based techniques,
Parameters
Estimation

Current,
Voltage and

Speed sensors
Experiments Both Stationary

Conditions

This method has been tested experimentally on an aeronautical
motor, but the experiment set-up has not been presented.
The algorithm is very fast (≈ 15 msec), but the computation time
for the features is not taken into account. Also it needs a large
database for training the algorithm.

[19] 2017
Permanent

Magnetic and
Mechanical faults

Model, AI,
and neural
-network-based
techniques

Current
sensor Experiments Various Loads Stationary

Conditions

Two failures introduced on an experimental platform and a 10-fold
validation of the algorithm is executed. The algorithm is fast (30
msec), but the training time is not specified.

[20] 2017 Armature faults Parameters
Estimation

Current and
Voltage
sensors

Both Both Non-Stationary
Conditions

The proposed method is just slightly dependent from the load
and speed. The authors also demonstrated robustness against
parameters variation and inaccuracies by introducing a threshold,
but the allowed tolerance is not specified and this quantity can
also depend on the motor.

[21] 2017 Armature faults MCSA
Current and

Voltage
sensors

Both Both Stationary
Conditions

The proposed method is particularised for intermittent faults.
The test set-up is not presented. Tests at various loads and speeds
have been executed, but their influence on the method is not
specified.

[22] 2017 Mechanical faults
Other (Hall Effect
Sensors flux
analysis)

Analogue or
Digital Hall

sensors
Both Various Loads Stationary

Conditions

The method is independent from speed and demonstrates only a
slight dependence from loads. The best accuracy is obtained with
analogue Hall effect sensor which are not common, even if the
authors provide an alternative based on digital Hall effect sensors.
This method can be used only if the Hall sensors are placed in the
radial direction.

[23] 2017 Permanent
Magnetic faults

Other (Torque
Ripple Analysis) Torque sensor Both Various Loads Stationary

Conditions

No information is given about how the motor speed affects the
proposed method. A torque transducer is needed to apply the
algorithm.
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Table 3. Features table (c).

Cite Year Fault Type Technique Used Sensors Used Experiment or
Simulations

Various
Speed/Loads

Working
Condition

Limitations/
Advantages

[24] 2016 Armature
faults

Parameters
estimation

Current,
Voltage and

Speed sensor
Both Various

Speeds Non-Stationary
Conditions

The method is based on a modified motor model. It is based on
computations in the rotating frame (dq). No information about how
the load affects the detection method is given.

[25] 2016 Armature
faults

Parameters
Estimation

Current and
Speed sensors Experiments Various

speeds
Stationary
Conditions

The proposed fault index has a very reduced dependence from motor
speed.

[26] 2016 Mechanical
faults

MCSA, Model, AI
and NN-based
techniques

Current
Sensor Experiments Various

Speeds
Stationary
Conditions

The implementation is very close to a real scenario, but in some
studied conditions the fail rate of the classifier is relatively high.

[27] 2016
Permanent
Magnetic

Faults

Parameters
Estimation

Current,
Speed and

Angle Sensors
Both Both Non-Stationary

Conditions

The method needs the knowledge of various motor parameters
and their variation (or incorrectness) can result in poor diagnosis
performances. The authors demonstrated good performances with
various demagnetisation levels and working conditions.

[28] 2016 Armature
faults

Other (PWM
Ripple Current
Measurements)

Current and
Voltage
sensors

Both Both Stationary
Conditions

The method needs an electric model of the motor valid for high
frequencies. The author demonstrated good sensitivity also at low
speed.

[29] 2015 Mechanical
faults

Noise and
Vibration
Monitoring,
Model, AI, NN
based techniques,
MCSA

Current
sensor and

Accelerometer
Both Both Non-Stationary

Conditions

The method is capable to detect and distinguish different bearing
failures. Need an accelerometer to be placed close to the bearing.

[30] 2015 Mechanical
faults

Model, AI,
NN-based
techniques

Current
sensor Experiments Both Stationary

Conditions

The authors performed an extensive experiment campaign with good
results. From the images in the article, the damages reproduced on
the bearing appear to be considerable.

[31] 2015 Armature
faults

Model, AI and
NN-based
techniques,
MCSA

Current
sensor Experiments Both Stationary

Conditions

High detection ratio. The frequency analysis is did with the FFT, this
means that during the 12 s of signal acquisition the motor speed and
load shall be constant.

[32] 2015 Armature
faults

Electromagnetic
field monitoring,
Search Coils,
Coils wound
around motor
shaft

Search coil Both Various
Speeds

Stationary
Conditions

The presented method is invasive for an already built motor.
The detection time is very short (3–5) ms but it seems be dependent
on motor speed; furthermore the hardware used for computations is
not presented.

[33] 2015 Armature
faults

Model, AI and
NN-based
techniques,
MCSA

Current
sensors Both Both Stationary

Conditions

The motor used for experiments has an inherent anomaly, but the
algorithm is capable to discern it from the short-circuit. The presented
method does not imply any previous knowledge on the motor.
They uses FFT, it implies that during the signal acquisition the
conditions need to be stationary.



Energies 2020, 13, 1573 7 of 24

Table 4. Features table (d).

Cite Year Fault Type Technique Used Sensors Used Experiment or
Simulations

Various
Speed/Loads

Working
Condition

Limitations/
Advantages

[34] 2013 Permanent
Magnets faults

Model, AI and
NN-based
techniques,
Parameters
Estimation

Current,
Voltage and

Speed sensors
Experiments Various loads Stationary

Conditions
Proposes a method for demagnetisation. Comparison of the
proposed method with various other established methods.

[35] 2013

Armature,
Permanent

Magnets and
Mechanical Faults

Model, AI,
NN-based
techniques,
MCSA

Current
sensors Simulations Both Stationary

Conditions

The paper presents a good variety of motors, faults and working
conditions. The detection accuracy obtained is very high, but it
can be due to the use of clean signals from simulations.

[36] 2013 Armature faults
Model, AI
and NN-based
techniques

Current and
Voltage
Sensors

Both Both Stationary
Conditions

The training of the AI has been executed with data from
both experiments and simulations. The method uses current
measurements in time domain with no need of frequency domain
transformation. The method is capable of detecting fault severity
and location.

[37] 2013 Armature faults Parameters
estimation

Current,
Voltage and

Speed sensors
Both Various loads Stationary

Conditions

The method compares an estimated back-EMF with a reference
one for fault detection. The reference is obtained from a FEM
model or from an healthy machine. This method can be very
sensible to motor parameters change. The influence of the load is
not discussed.

[38] 2013 Armature faults MCSA
Current,

Voltage and
Speed sensors

Both Both Non-Stationary
Conditions

The proposed method has a low computational burden, but needs
access to the motor neutral point to be applied.

[39] 2011 Mechanical faults
Model, AI
and NN-based
techniques

Current,
Speed and

Torque
sensors,

Simulations Both Non-Stationary
Conditions

The method tries to detect mechanical faults by estimating the
bearing health status. A torque sensor is used, which is not usually
mounted in motors and the validation is carried out by simulation
without added noise.

[40] 2011 Armature faults Parameters
estimation

Current,
Voltage and

Speed sensors
Both Both Non-Stationary

Conditions

The back-EMF is estimated when the machine is healthy and then
frozen, which causes dependence on motor parameters changes.
There is a model for compensate the inverter losses compensation.

[41] 2011 Armature faults
Other (High
Frequency
Injection)

Current and
Angular
Position
sensors

Both Various loads Stationary
Conditions

The method has a very good resolution, but the detection is based
on a look-up table. This makes the algorithm ignore all the failures
(if any) present before the table creation.

[42] 2011 Armature faults MCSA Current
sensors Experiments Both Stationary

Conditions

Capable of detecting two failures. Use the FFT for the frequency
analysis, but detect periods of stationarity of the motor. Use linear
interpolation to define the healthy comparison term.
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Table 5. Features table (e).

Cite Year Fault Type Technique Used Sensors Used Experiment or
Simulations

Various
Speed/Loads

Working
Condition

Limitations/
Advantages

[43] 2011
Armature and

Mechanical
faults

Model, AI
NN-based
techniques

Current and
Voltage senors Experiments Various Loads Stationary

Conditions

Perform an interesting multi-class classification based on seven
parameters. The algorithm does not seem capable to classify
failures not present the training set.

[44] 2010 Mechanical
faults

Model, AI,
NN-based
techniques,
MCSA

Current sensors Both

Various loads
(Load

independence
demonstrated
analytically)

Stationary
Conditions Study on the impact of SNR.

[45] 2010 Armature
faults

Model, AI,
NN-based
techniques,
MCSA

Current sensors Both

Various loads
(Load

independence
demonstrated
analytically)

Stationary
Conditions

Study on the impact of SNR. Two failures studied, with fault
severity estimation.

[46] 2008 Armature
faults

Model, AI
and NN-based
techniques

Current, Voltage
and Speed

sensors
Experiments Various Loads Non-Stationary

Conditions

Training of a neural-network to predict current and include initial
asymmetries. The predicted value of the current is used as a
reference to detect failures under load variations.

[47] 2007 Mechanical
faults MCSA Current and

Voltage sensors Both Both Non-Stationary
Conditions

The experimental set-up is not described. There is a comparison
between three technique for time-frequency analysis and relative
fault detection.

[48] 2007 Mechanical
faults MCSA Current and

Voltage sensors Both Both Non-Stationary
Conditions

The experimental set-up is not described.

[49] 2007 Mechanical
faults MCSA Current and

Voltage sensors Both Various
Speeds Non-Stationary

Conditions

The influence of load is not taken into account. The experimental
set-up is not described.

[50] 2006

Armature,
Permanent

Magnets and
Mechanical

faults

MCSA Current and
Speed sensors Experiments Both Non-Stationary

Conditions

Method for tracking the fault frequencies during variable speed
operations. The test set-up is not described. Various faults have
been implemented.

[51] 2006 Mechanical
faults MCSA Current and

Speed sensors Both Both Non-Stationary
Conditions

Two methods presented based on different frequency tracking
algorithms. Real-time implementation with processor execution
time is also included.
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One of the basic steps of the protocol is the creation of a Boolean function that comprehensively
includes all the terms related to the chosen theme, including all the synonyms and terms that may
be related to the words of interest for the topic. To carry out this research based on keywords, it is
appropriate to deeply read about the theme to detect which words are most frequently used by
the authors.

The articulate Boolean function created for this work is as follows:

((("brushless DC" OR "permanent magnet electrical") AND (motor OR
machine)) OR BLDC OR PMSM)
AND
(((condition OR health) AND monitoring) OR ((diagnosis OR detection)
AND (fault OR failure)))

The first part of the Boolean function defines the type of motor, while the second one defines the
detection of the defect.

A difficulty encountered during the research is that the different bibliographic databases are not
prepared for this kind of revision, as they do not allow certain researches or to search in certain fields
of the papers. Indeed, the Boolean function based research was carried out in the title, abstract and
keywords of the papers.

Due to the research restrictions of the databases, as specified in [52], and thanks to the good
coverage of the editorials obtained shown in Table 6, the following databases have been used:

• IEEE Xplore Digital Library
• Scopus
• ACM Digital Library
• Science Direct
• Web of Science

Table 6. Databases coverage with respect to the content of the publishers: IE = IEEE, IT = IET, PE =
Pegamon-Elsevier, ES = Elsevier Science, WB = Wiley Blackwell, TF = Taylor & Francis, SP = Springer,
SI = SIAM Publications, OX = Oxford University Press, KO = Korean Inst. Electrical Eng., SA = Sage
Publications, AS = ASME, MP = Microtome Publications [52].

IE IT PE ES WB TF SP SI OX KO SA AS MP
IEEEX
ACM
Scopus
WoS
SD

Once the research questions have been identified and the relative Boolean function created, it must
be introduced in the different bibliographic databases, adapting it according to the search language
of each database. In this work, the research has been carried out by searching only in the abstract,
title and keywords of the papers, obtaining a total of 3167 items until of November 2019, as detailed in
Table 7.
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Table 7. Studies obtained by the chosen database.

Database Studies

IEEE Xplore 842

Web of Science 590

Scopus 697

ScienceDirect 600

ACM Digital Library 17

3167

A further, fundamental step of the Planning phase is the formulation of the inclusion and exclusion
criteria. This criteria are very important, as they are used as objective rules for the selection of the
studies that can become part of the review.

For a paper to become part of the review it must respect all the inclusion criteria, presented in
Table 8 and must not contain any of the exclusion criteria presented in Table 9.

Table 8. Inclusion Criteria [1].

Num. Description

1 The technique should not be restricted to a particular machine (number of phases, etc)

2
Shall propose at least one detection technique (a parameter or an index that clearly and
uniquely identifies the failure or an automatic detection algorithm)

3
The technique shall have been tested at various operation points (different speed or
loads or a combination of both)

4
The technique shall not need special set-ups, configurations, loads or motor
manoeuvres

5

Characteristics of the detection and diagnosis algorithm:

a The paper shall demonstrate that the algorithm is capable to discern between
healthy and faulty.

b The algorithm shall have been tested with success for at least one of the
following cases:

• Different levels of the same failure, demonstrating coherence (simulation or
test on real motor)

• On different real motors, demonstrating coherence
• Capability do discern between different failures
• On simulation and then real motor, demonstrating coherence

Table 9. Exclusion Criteria [1].

Num. Description

1 Grey literature and secondary studies

2 Non English written papers

3 Duplicated studies

4 Full paper not available

5 Lack of tests or simulations

6 Use of big sensors, not embeddable in the motor

7 Not focused on the selected topic
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The inclusion criteria are all related to the research theme itself, i.e., they explain exactly what
is expected to be found in an article in order to be accepted. Among the exclusion criteria, however,
there are some points that are proper to the systematic review, such as the criterion that excludes all
secondary studies or grey literature (books, book chapters, PhD thesis, reviews, etc.). In this way it is
ensured that the selected articles have already passed through a peer-review process.

In addition to all these tools, needed to reduce the 3167 papers coming from the Boolean function
search (see Table 7), it is needed to define some guidelines on how to carry out the selection of the
studies and finally how to extract the data considered important from every paper.

The authors decided to extrapolate the following features from each article:

• Data of the article (e.g., author, year of publication, etc.)
• The type of failure
• The type of technique used
• The type of sensors used
• If it presents experiments or simulations
• If the algorithm has been tested at different speeds or loads
• If the algorithm has been tested in dynamic or stationary conditions

3. Conducting

The second phase of the SR is the conducting and is mainly divided into three parts: the selection
of primary studies, a study quality assessment and finally the extraction and synthesis of data for
each paper.

The main objectives of this phase are the following:

• to significantly reduce the large number of studies that have been obtained, by using the inclusion
and exclusion criteria,

• to extract a features table in which the main characteristics of each article are highlighted.

3.1. Selection of Primary Studies

To guide the selection process of primary studies, it is very common to use the PRISMA [53]
(Preferred Reporting Items for Systematic Reviews and Meta-Analyses) method. The method consists
of 27 points and a flow chart built with the aim of making the whole process simpler and more ordered.

Referring to Figure 1, of the 3167 papers initially selected, the first screening takes place eliminating
the duplicates, which in this case turn out to be 1217; this is due to the fact that many databases share
some publishers, as shown in Table 6. It is advisable to use a software (Mendeley, Zotero, JabRef, etc.)
to automatically detect the duplicates. Once the duplicates have been removed, it is necessary to take
care of the grey literature as for some databases was not possible to exclude it during the research.

The following step has been to read the title, abstracts and keywords of the remaining 1950 papers,
and to apply the inclusion and exclusion criteria to them.

Frequently, only by screening these particular fields, it is not possible to verify whether all
the requirements have been met and, as a consequence, it is necessary to read the whole paper.
This difficulty is principally due to the fact that generally, in the field of engineering, there is
no normalisation of rules to create these fields, as they exist in other sectors such as medicine
or psychology.

After this step, from the total amount of 1950 articles, 365 of them have been accepted for full
paper review and finally, only 44 papers have met the selected criteria for being included in the revision.
They will also be used to try to answer to all the questions previously formulated.

In conclusion, the papers that definitively became part of the review are 44 (see Figure 1), a much
smaller amount if compared to the initial 1950, as shown in Figure 2.

The Conducting phase is certainly the most difficult phase and where perhaps more time has
been spent compared to the whole systematic review, since 1950 papers have been carefully analysed.
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For many of these, the full-text review was necessary to verify and ascertain whether all the criteria
had actually been met or not.

At this stage it’s also where another reviewer comes in. As said there were two possibilities:
either to revise all 1950 papers and then compare the results, or randomly choose some paper and
review them to see if the SR has been carried out correctly.
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for eligibility 

(n = 365)
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Studies included in 
qualitative 
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Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
flowchart [53].

81.3%
(1585)

16.5%
(321)

2.2%
(44)

1st Screening - Rejected
Full Text Review

2nd Screening - Rejected
Accepted

Figure 2. Paper inclusion statistics

3.2. Study Quality Assessment

For the current systematic review 44 papers have been chosen.
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A quality study has been carried out on them, i.e., all the points presented in Table 10 have been
analysed. The results of this quality assessment are shown in Table 11.

Table 10. Checklist for quality assessment

Question Score

Q1 Is the problem presented clearly? Yes/Partly/No
Q2 Is the methodology used presented clearly? Yes/Partly/No
Q3 Is there a discussion of the results? Yes/Partly/No
Q4 Does it answer to the presented problem(s)? Yes/Partly/No
Q5 Number of cites Cites
Q6 Where was it published? Journal / Conference

Table 11. Checklist for quality assessment for the selected papers

Q1 Q2 Q3 Q4 Q5 Q6

[9] Y Y P Y 3 Journal
[10] Y P Y Y 12 Journal
[11] Y Y Y Y 5 Journal
[12] Y P Y P 1 Journal
[1] Y Y Y Y 3 Journal
[13] Y Y P P 1 Journal
[14] Y Y Y Y 2 Conference
[15] P Y Y P 1 Conference
[16] Y Y Y Y 1 Journal
[17] Y Y P P 0 Conference
[18] Y P P P 0 Conference
[19] Y P Y Y 1 Conference
[20] Y Y Y Y 13 Journal
[21] Y N N P 2 Journal
[22] Y Y P Y 1 Conference
[23] Y P Y Y 7 Journal
[24] P Y P Y 7 Journal
[25] Y P P Y 5 Conference
[26] Y Y Y Y 21 Journal
[27] Y P Y Y 18 Journal
[28] Y Y Y Y 15 Journal
[29] Y Y Y Y 5 Journal
[30] Y Y P Y 4 Journal
[31] Y Y P Y 5 Conference
[32] Y Y P P 3 Conference
[33] Y P Y P 30 Journal
[34] P N Y Y 20 Journal
[35] Y P N Y 19 Conference
[36] Y P Y Y 24 Journal
[37] Y P P P 70 Journal
[38] Y P Y Y 68 Journal
[39] Y P P Y 5 Conference
[40] N Y Y Y 38 Journal
[41] Y Y Y Y 45 Journal
[42] Y Y Y Y 35 Journal
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Table 11. Cont.

Q1 Q2 Q3 Q4 Q5 Q6

[43] Y P P Y 6 Conference
[44] Y P Y Y 45 Journal
[45] Y P Y Y 84 Journal
[46] Y P P Y 14 Conference
[47] P P P P 3 Conference
[48] P P P P 13 Conference
[49] P P P P 10 Conference
[50] P Y P P 18 Conference
[51] Y Y Y Y 108 Journal

Table 11 contains only qualitative information related to the selected articles. Some answers may
be more or less objective, as for example if the problem or methodology have been presented clearly,
while others are completely objective, as for example the cites of each article with respect to year of
publication or if it has been published in a journal or in a conference.

3.3. Extraction and Synthesis Of Data

In order to extract and synthesise the data of the selected papers, a summary table (Tables 1–4) has
been created. It has to be pointed out that the data presented in this work is updated to November 2019.
In this tables are listed the more important characteristics of the papers related to the research topic.

• Year of publication;
• The category of the detected fault. This field can be one or more of the following items: armature

faults, mechanical faults or permanent magnet faults;
• The class of the technique used for the detection. The main categories have been selected to be:

– Radio-frequency emissions monitoring,
– Electromagnetic field monitoring,
– Infrared recognition,
– Noise and vibration monitoring,
– Model, AI, and neural-network-based techniques,
– Temperature measurements,
– Chemical analysis,
– Acoustic noise measurements,
– Parameters estimation,
– MCSA,
– Other (specify).

The last item has been left if some technique cannot be classified into the previously listed
categories;

• The sensor(s) needed for the failure detection technique implementation;
• If the demonstration of the effectiveness of the proposed detection techniques has been carried

out with simulations and/or experiments;
• If the simulations and/or experiments have been carried out under different working conditions,

such as different speeds and/or different loads;
• If the proposed technique is capable of working during changes in load and/or speed or the

working conditions should be kept stationary;
• Other limitations and/or advantages. This feature is the only one that is subjective, but it contains

useful information that cannot be collected in the other features.

The papers are presented in chronological order. This is usually done when performing a
systematic review to put in evidence the major number of articles on the topic published during the
last years. It is also useful to show if there is some clear change in research trend about one of the
considered parameters.
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4. Reporting

The SR is completed here by carrying out the reporting, i.e., a discussion about the obtained
results. Additionally, a detailed answers to each of the research questions previously formulated and
general considerations about the techniques are provided.

4.1. Discussion

This section will present some statistical data about the study and the present review and, more in
general, about the chosen topic. Figure 3 shows this trend by representing the number of papers per
year published on this thematic (results from 1990 to 2018) emerged from the research after that the
first screening has been passed (year 2019 was not included in Figure 3, because it was not considered
the whole year). This is a clear sign that research community is highly interested in the topic and this
interest is growing very fast during the last years.
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Figure 3. Papers on the topic, after the first screening of title and abstract and keywords.

This tendency is perhaps due to the current impulse in developing high reliability aircraft
and electric vehicles, and similarly to the recent availability of new techniques and more powerful
processors which promoted innovative applications [1]. In this view, it is useful to analyse how the
number of articles based on certain techniques are distributed over the year of publication (Figure 4).
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Figure 4 is not representative of the whole literature, but it is possible to use it to investigate
the progresses on the topic. During the last years, the techniques based on artificial intelligence,
parameters estimation and models, are being utilised with increasing frequency, often as classifiers,
in conjunction with established methods like the MCSA. On the other hand, the number of articles
presenting detection techniques based on MCSA has drastically reduced, probably because these
techniques have been intensively studied in the past years and there is less space left for innovations.
Starting from 2016 techniques tagged with Other, i.e., the techniques not classifiable in the previously
defined categories, have steadily increased in number. This indicates that previously unexplored
phenomena are being used for BLDC fault detection and outlines that the research on the chosen topic
is in turmoil.

Figure 5 shows the overall distribution of the papers according to the used technique.
The following techniques have been omitted from the graph because they have not been found:

• radio-frequency emissions monitoring,
• temperature measurements,
• infrared recognition,
• chemical analysis.

6%
2%

2%
40%

32% 6%

12%

Electromagnetic field monitoring
Radio-frequency (RF) emissions monitoring
Noise and vibration monitoring
MCSA
Model, AI, NN-based techniques
Parameters Estimation
Other

Figure 5. Distribution articles according to the used techniques

The MCSA is the most used technique, followed by the AI algorithms. It is important to point out
that frequently the techniques based on Artificial Intelligence are used as classifiers of results obtained
with other, already established, methods for failure detection. This association demonstrated to be
have a great impact in improving the detection rate and in extending the use of the technique for a
wider range of both speed and load.

One other key aspect in the graph, is the presence of a good amount of papers using techniques
which were not previously classified (grouped under the tag other). Between them it is possible to find
innovative techniques based on High Frequency Injection [41], hall effect sensors measurements [22]
or innovative motor signals analysis [1,14,15].

An interesting alternative for the techniques based on Electromagnetic field monitoring is
represented by [13]. The authors use external sensor to sense the stray magnetic fields outside
the stator to detect armature failures severity and location, solving one of the biggest drawback of this
powerful techniques category, i.e., the invasive procedure of placing additional windings inside the
stator core.

The next paragraphs are dedicated to answer to the previously formulated research questions by
using the selected papers.
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4.1.1. Rq.1: Most Common Failures of Bldc Motors

Figure 6 shows the distribution of the papers in relation to the type of failure discussed. The results
are in accordance with the failure distribution presented in various papers [29,31,36,54], and, in turn,
this means that the research efforts are consistent with the failures occurrence.

Armature Fault

48%

Permanent Magnetic
Faults (partial or

complete)

21%

Mechanical Faults
(bearing failure and
eccentricity)

31%

Figure 6. Distribution of the papers according the type of failure

4.1.2. Rq.2: Parameters Used for Failure Detection in Bldc Motors

Due to the intense research in this field, many of the motor parameters have been used for fault
detection purposes. In the following, the variables used will be listed, dividing them between those
directly measurable and those estimated.

Directly measurable quantities
The quantities listed below are directly measurable by using specific sensors.

Output torque Torque-meters shall be used to measure this variable and it can provide very useful
information. The problem resides in the fact that this type of sensors are often big and expensive.

Current The current is always already measured by the motor controller and there are an immense
quantity of failure detection algorithms based on this variable.

Voltage The voltage is also commonly measured by the motor controller.
Vibrations By placing accelerometers on the motor, it is possible to measure its vibration level.

The algorithms based on vibration analysis could present problems when used in moving
systems, like aircraft, due to the coupling of external and unpredictable vibrations.

Magnetic flux The magnetic flux gives a deep insight on how the motor is working. In order to
measure it, it is usually necessary to include in the motor winding so called search coils, i.e., some
additional windings not connected to the phases. The inclusion of these additional coils is not
common and, although being a simple procedure, it need to unmount the motor, rewound it
and to extract from the interior as many pairs of wires as many search coils as are inserted.
An alternative to this procedure is to place external magnetic sensors on the stator to sense the
stray magnetic fields.

Estimated quantities
The procedures based on parameters estimation can identify failures by evaluating the changes

within the measured motor parameters as well as evaluating factors which are not straightforwardly
quantifiable, such as:
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• Back-EMF,
• Magnetic flux,
• Winding resistance,
• Winding inductance.

Estimation could be a effective instrument which allows the use of variables straightforwardly
related to the fault and something else not measurable. The drawback is that it depends on models
which can be constrained to particular working points and affected by the shift of some parameter.

4.1.3. Rq.3: Type of Failures Detectable by Each Technique

Figure 7 represents the distribution of the different papers according to the various techniques
proposed for detecting different types of faults. This allows to evaluate which techniques are most
suitable for detecting and distinguishing between different types of failure or if some techniques are
more suitable for detecting specific faults or can be used as a broad spectrum analysis tool.

The techniques are widely distributed among the types detection methods, with the exception of
vibration monitoring which appears limited to the detection of mechanical faults; however, this specific
item can be biased due to the presence of only one single paper in the review for this category.
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Figure 7. Distribution of the papers according the type of failure and the used technique.

4.1.4. Rq.4: Computational Power Needed for Each Technique

Only a few papers ([18,19,55]) offered a clear quantification of the computational power needed to
implement the proposed technique, and therefore this question can only be answered in a qualitative
manner. By what has emerged it can be seen that by a theoretical point of view the most costly
strategies are those focused on models. That is because of the necessity of running the computer model
parallel to the machine itself when comparing the outputs.

In addition, the complexity increases with the level of detail of the model, the parameters involved,
etc. The following techniques in terms of computational cost are those based on the estimation of the
parameter and then those that use the NNs. In any case, it mostly depends on the way the algorithms
are implemented. The least expensive techniques are the MCSA and other techniques which directly
analyse sensor data.

4.1.5. Rq.5: Sensors Needed for Each Technique

Generally the techniques that require less sensors are based on current or voltage analysis, such
as MCSA. The near-totality of the reviewed methods must at least measure current consumption and
motor voltage, although this is not an issue as these quantities are already available in most drivers.
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Many methods also employ the motor speed to diagnose the fault. It can be speed can be estimated,
from back-EMF measurements, or obtained directly from Hall effect frequency sensors or from a
resolver [1].

4.1.6. Rq.6: Best Detection Results

Only some selected papers ([10,11,18,19,26,29–31,35,43,45]) provide statistics on the rate of error
detection and are mostly based on the use of AI. It is very complex to compare all these results, since
the test conditions are not uniform.

This is considered a weak point in this topic, which, although being very rich in ideas and
proposed techniques, lacks validation and verification of the same. A possible solution to this problem,
would be to propose a minimum standard set of tests to be performed in order to validate a fault
detection algorithm and generate a set of minimum comparable outcomes [1].

4.2. General Considerations About The Techniques

In Table 12 the main characteristics of the detection methods have been grouped. As previously
mentioned, the techniques based on AI are very effective. These can be used either as stand-alone
fault detectors or in combination with other techniques to significantly improve their performance in
detection. It must be noted, in any case, that their success relies on an intense process of learning and
they take considerable time before working properly [1].

Referring to the statistics listed above, in particular Figure 4, it is possible to notice how fault
detection techniques based on parameter estimation have also seen an increase in number.

Such techniques can provide continuous access to otherwise unobservable variables such as
back-EMF or magnetic flux, facilitate the task of fault detection or identify more explicitly observable
fault indicators. Noteworthy is their characteristic of being able of working while the motor is running
in non-steady-state conditions of speed and/or torque. On the other hand, the potential problem with
these techniques is that they are based on assumptions, models and measurements of motor variables
whose limited validity and inaccuracy could hinder fault detection. According to the results of this
research, about one third of the selected articles propose a technique able to work in non-stationary
conditions and most of them are based on AI, NN and parameters estimation.

The need to operate the motor under steady-state conditions can be a significant limitation,
above all if this is necessary to measure signals over a long period of time. Such condition may be
achieved with large industrial machines working at constant load but rarely in aircraft actuators [1].

Table 12. Techniques summary [1].

Noise and Vibration
Monitoring

Electromagnetic
Field Monitoring

Motor Current
Signature Analysis

Model and AI based
techniques

Parameters
Estimation

Advantages

Most suitable method
for detecting
mechanical faults,
as the accelerometers
can be placed close to
the vibration source

Can directly measure
the electromagnetic
field inside the motor,
does not need
complicated
algorithm to detect
failures, can virtually
detect all the
motor failures

Does not need
additional sensors,
can detect a large
variety of failures, is
the most used
technique

Can be used during
non-stationary motor
operation, can be
used in conjunction
with other techniques

Can be used during
non-stationary motor
operation, can
virtually monitor
every
motor parameter

Disadvantages

Need to install
accelerometers on the
motor, measurements
can be corrupted by
environmental
vibrations, difficult to
use in non-stationary
motor operation

Need to rewind the
stator and to extract
as many additional
cables as many
coils inserted

Need to transform
the signal in the
frequency domain,
the motor current
depend on the load,
cannot be used
during
non-stationary
motor operation

Need extensive
training

The method depends
on the knowledge of
various motor
parameters and on
the accuracy of the
model, their variation
(or incorrectness) can
result in poor
diagnosis performance
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5. Conclusions

This paper presents a systematic review of high TRL techniques for BLDC motors failures
detection, that have been published in the period of time from the early 1990s to November 2019.
In addition, the article itself can be considered as a proof of concept of applying the SR to a particular
study case in the aerospace field, in order to demonstrate its feasibility.

The studies presented in this work, have been analysed to respond to the research questions
posed, that is, what are the techniques applied for fault detection, the sensors used, the working
condition, what are their advantages and limitations. These results have been included in multiple
tables to illustrate the findings and ease the consultation.

The greatest difficulty encountered during this study has been the impossibility of comparing
the the different proposed algorithms in terms of performance, due to the lack of uniformity in tests,
features measurement and estimation and presentation of the results. The authors would suggest, as a
possible solution to this issue, a study to introduce a standardised benchmark and a set of parameters
to be presented in order to harmonise the evaluation of the fault detection algorithms.
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Abbreviations

The following abbreviations are used in this manuscript:

AI Artificial Intelligence
BLDC Brushless Direct Current
FEM Finite Element Method
HF High Frequency
MCSA Motor Current Signature Analysis
NN Neural Network
SR Systematic Review
SVM Support Vector Machine
TRL Technology Readiness Level

Appendix A Nomenclature

By going through the literature, the terminology in this field appears non-uniform. This is due
to the fact that fault detection and diagnosis is usually distributed over many different disciplines.
The definition of the following terms is specified in the glossary section and is based on [1,56].
This terminology will be used along the entire document.

Fault : Unpermitted deviation of at least one feature (characteristic property) of the system out of the
acceptable standard condition threshold. The fault is a state of the system and can be of various
types (manufacturing, assembly, maintenance, software, operators, wrong operation). It may not
affect the correct functioning of the overall system

Failure : Permanent interruption of a system’s ability to perform a required function under determined
operating conditions.

Malfunction : Intermittent irregularity in the fulfilment of a system’s function. It can arise from one
or more faults.

From the description it is possible to draw the relationship between faults, failures and
malfunctions (Figure A1).
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Figure A1. Scheme of the relation between faults, failures and malfunctions [1].
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