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Abstract: In a traditional lumped-parameter thermal network, no distinction is made between the
heat and non-heat sources, resulting in both larger heat flux and temperature drop in the uniform heat
source. In this paper, an improved lumped-parameter thermal network is proposed to deal with such
problems. The innovative aspect of this proposed method is that it considers the influence of heat flux
change in the heat source, and then gives a half-resistance theory for the heat source to achieve the
temperature drop balance. In addition, the coupling relationship between the boundary temperature
and loading position of the heat generator is also added in the lumped-parameter thermal network,
so as to amend the loading position and nodes’ temperature through iterations. This approach breaks
the limitation of the traditional lumped-parameter thermal network: that the heat generator can only
be loaded at the midpoint, which is critical to determining the maximum temperature in asymmetric
heat dissipation. By adjusting the location of heat generator and thermal resistances of each branch,
the accuracy of temperature prediction is further improved. A simulation and an experiment on a
U-core motor show that the improved lumped-parameter thermal network not only achieves higher
accuracy than the traditional one, but also determines the loading position of the heat generator well.

Keywords: uniform heat source; lumped-parameter thermal network; thermal half-resistance;
loading position

1. Introduction

Thermal analysis is extremely important for the electrical machine design, because overheating
will accelerate insulation aging, demagnetize permanent magnets, and even cause system failure [1].
In general, there are three kinds of method for thermal analysis; i.e., the finite element method
(EFM), computational fluid dynamics (CFD) and the lumped-parameter thermal network (LPTN) [2–5].
FEM and CFD both belong to the numerical method that can build meshed models of complex
systems conveniently, and calculate the temperature distribution accurately [6–8]. However, they are
time consuming, usually taking a few hours, even several days [9–12]. In contrast, the LPTN is
a high-efficiency method that can predict the thermal distribution in an analytical way. It makes
the thermal path equivalent to an electric circuit, and the temperature distribution is thus obtained
by solving the circuit voltage. Mellor et al. first introduced the LPTN for electrical machines of
totally enclosed fan cooled (TEFC) design. They divided an induction motor into 10 key nodes,
connected them to build a thermal network, and then solved the temperature distribution [13].
The study shows that the LPTN can present the temperature distribution of an electrical motor to a
reasonable accuracy. After that, many researchers followed up and built various thermal networks.
For example, Yabiku et al. built a 9-node network for one linear motor, Rostami et al. built a 13-node
network for one axial flux permanent magnet machine [14–17], and Aldo Boglietti et al. established
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four different orders of LPTN to study the effect of order on temperature prediction [18]. Moreover,
Mohamed et al. built a 3D LPTN to describe the thermal behavior of a YASA motor [19]. However,
all these studies ignored the difference between the heat source and the non-heat source, and directly
applied the traditional LPTN to the heat source. That unavoidably compromises the model;s precision,
because the heat flux of heat source is not the same as the constant heat flux of the non-heat source.

In [20], Gerling et al. made some improvements to the traditional LPTN. They proposed the
equivalent heat flux by halving the heating power to avoid the excessively large heat flux in heat
source, so as to achieve the temperature drop balance. By this way the temperature drop deviation
is avoided in the separate heat source, but the halved heat flux will inevitably lead to other errors
in non-heat source. Hence, it is only suitable for the separate heat source. In order to make up this
shortcoming, Gerling et al. put forward a compensation measure; i.e., separately loading the remaining
half of the heating power to the non-heat source to keep the heat flux in non-heat source at a normal
level [21]. However, this brings another problem: how to prevent the external heat flux from flowing
back to the heat source. Besides that, Gerling proposed another negative compensation measure; i.e.,
directly loading the full heating power to the heat source and adding the negative elements on both
sides of the midpoint to achieve the temperature drop balance [22]. Although this compensation is
effective, it only works in symmetric heat dissipation. When it comes to asymmetric heat dissipation,
temperature error occurs, because in asymmetric hear dissipation the maximum temperature deviates
from the midpoint, the heat flux and thermal resistance will be redistributed. In [23] another improved
method for calculating the maximum temperature is mentioned. It achieves a rough temperature
estimation by linearizing the analytical solution. This process is tedious and complicated, and the
value of the compensation term is hard to determine.

In this paper, a novel improved LPTN based on the half-resistance theory and localization of heat
generator is proposed to determine the maximum temperature in the uniform heat source. It has two
significant features. The first is the introduction of half-resistance theory in the heat source, which can
compensate the temperature error caused by uneven heat flux. The second is the determination of the
heat generator loading position, i.e., the boundary temperature is utilized to determine the loading
position, and then redistribute the heat flux and thermal resistances on each branch.

The rest is organized as follows. Section 2 presents the details of the proposed LPTN based
on the half-resistance theory and localization of heat generator. In Section 3, the improved LPTN is
compared with the conventional LPTN. In Section 4, it is implemented to the study of one U-core
motor. Experiments are conducted on the research prototype in Section 5 to validate the proposed
LPTN. Finally, the research work is concluded in Section 6.

2. Improved LPTN Method with Half-Resistance and Localization of Heat Generator

One typical heat conduction and diffusion case with heat and non-heat sources is shown in
Figure 1, where the middle part is a uniform heat source and the two sides are non-heat sources.
Because the thermal conductivity of non-heat sources and convection coefficients on both sides are
not exactly the same, i.e., λ1 6= λ3 and h1 6= h2, the heat dissipation is asymmetric. According to [24],
steady-state one-dimensional heat flow with heat source can be represented as,

d2t
d2x

+
Φ̇

λi
= 0, (1)

where t denotes the temperature, x denotes the medium thickness, Φ̇ denotes the heating power, λi
denotes the thermal conductivity and the subscript i denotes the different conducting media, such as I,
II and III in Figure 1.
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Figure 1. Typical case of heat conduction and diffusion.

2.1. Lumped Parameter Thermal Network

In a non-heat source, the heating power Φ̇ is zero. Thus, the solution of Equation (1) is linear; i.e.,

t = a1x + a2, (2)

where a1 and a2 are both constants.
According to Fourier law [24], the heat flux is obtained as

q = −λi
dt
dx

= −λia1. (3)

From Equation (3), it is found that the heat flux is constant. Therefore, for a wall with a thickness
of δ, the temperature difference can be easily calculated as follows:

∆tc = Q
δ

Aλi
= −Aλia1

δ

Aλi
= −a1δ, (4)

where Q denotes the heat flow and A denotes the cross sectional area of the wall.
Similarly, the similar result can be obtained for the convective heat dissipation as

∆th = Q
1

Ah
= −Aλia1

1
h

, (5)

where h denotes the convection coefficient.
As can be seen from Equations (4) and (5), they are similar in form to the Ohm’s law for electric

circuit; i.e., Q is analogous to the current, δ/Aλi and 1/Ah are analogous to the resistances and ∆ti is
analogous to the voltage. Therefore, the heat conduction can be expressed in the form of electric circuit,
as shown in Figure 2. It should be noted that the premise of all the above formulas is that Φ̇ = 0.

x [m]0 δ

λ

Q

Qδ/Aλ1/Ah10t1t tft 1t0tt [ ]
Figure 2. Equivalence of heat conduction and electric circuit.
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2.2. Half-Resistance Theory in the Heat Source

However, due to the heating power Φ̇ being non-zero in the heat source (region II), expressions of
temperature and heat flux are changed to

t = − Φ̇

2λ2
x2 + b1x + b2, l1 ≤ x ≤ l2, (6)

q = −λ2
dt
dx

= Φ̇x− λ2b1, l1 ≤ x ≤ l2, (7)

where b1 and b2 are constants.
Note that the heat flux in Equation (7) is different from that in Equation (3), which violates

the precondition of constant heat flux in traditional LPTN. As shown in Figure 3, the actual heat
flux changes linearly in the heat source, while the traditional LPTN divides it roughly into two
constants, which almost doubles the average heat flux and then doubles the temperature drop inside
the heat source. In order to solve this problem, the half-resistance theory is proposed. As presented in
Equation (8), the doubled heat fluxes are offset by halving the thermal resistances. Unlike halving the
heating power mentioned in [21], this approach is simple and has no effect on the regions beyond the
heat source.

∆tL = Aq1Rx1 =
1
2

Aq1Rx1 = Aq1Rx1,

∆tR = Aq2Rx2 =
1
2

Aq2Rx2 = Aq2Rx2,
(8)

in which q1 = q1/2, q2 = q2/2, q1 and q2 denote the equivalent heat fluxes; Rx1 = Rx1/2, Rx2 = Rx2/2,
Rx1 and Rx2 denote the equivalent thermal resistances; and Rx1 + Rx2 = R2, R2 denotes the whole
thermal resistance of the heat source.

q [J/m2·s]

0 x [m]
q1

q2

Traditional LPTN method
FEM 

l1 l2 l3lm

Modified LPTN method

I IIIII

lx

Figure 3. Heat flux for FEM, half power and traditional LPTN.

Based on the half-resistance theory introduced above, the traditional LPTN has been successfully
applied to the heat source. However, this does not seem to accurately calculate the maximum
temperature inside the heat source yet. As presented in Figure 4, the heat source is divided into
two branches by the heat generator at the the maximum temperature node. While, in asymmetric heat
dissipation, the maximum temperature point will always deviate from the midpoint. Then how to
determine the loading position of the heat generator becomes the key.



Energies 2020, 13, 1566 5 of 18

GND

AFd A

1
t

x
t

2
t

1x
R

2x
R

Figure 4. Heat conduction within the heat source.

2.3. Determination of the Heat Generator Location and Thermal Resistances

In the heat source, loading position of the heat generator determines the boundary temperature.
Conversely, the location can be estimated from the boundary temperature. This fits extremely well with
only nodes’ temperature available in LPTN. Therefore, relationship between the boundary temperature
and loading position of the heat generator is the key. Assume that the boundary temperatures of the
heat source are

t
∣∣∣
x=l1

= t1, t
∣∣∣
x=l2

= t2. (9)

From Equation (1), the coefficients b1 and b2 in Equations (6) and (7) can be solved as

b1 =
t2 − t1

l2 − l1
+

Φ̇

2λ2
(l2 + l1),

b2 =
t1l2 − t2l1

l2 − l1
− Φ̇

2λ2
l1l2,

(10)

where l1 and l2 are the position coordinates.
Since the heat flux at the location of heat generator is zero, according to Equation (7), the location

can be obtained as

x =
λ2b1

Φ̇
. (11)

By substituting Equation (10) into Equation (11), the relationship between temperature and
position is derived as

x =
λ2

Φ̇

t2 − t1

l2 − l1
+

1
2
(l2 + l1). (12)

Convert this relationship to an updated correction factor k,

k =
x− l1
l2 − l1

=
λ2

Φ̇

t2 − t1

(l2 − l1)2 +
1
2

. (13)

Then the thermal resistance redistribute to each branch of the heat source is obtained.

Rx1 = kR2, Rx2 = (1− k)R2. (14)

However, the determination of boundary temperature and heat generator location is an algebraic
loop. Therefore, an initial k is needed here. Normally the initial value is set to 0.5. Then follow the flow
chart in Figure 5; the thermal field can be calculated by iterative method, in which n is the iterations
and the maximum iteration number is N; other terminating conditions such as a residual are also set
up to speed up the convergence of calculation.
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Figure 5. The flow chart of the iterative model.

3. Comparison with Traditional LPTN

In this section, the accuracy of the improved LPTN is compared with that of traditional LPTN.
The major parameters in simulation are listed in Table 1, and the results of the improved LPTN,
the traditional LPTN and the numerical computation, are shown in Figure 6. They show that the
traditional LPTN can describe the heat conduction well in the non-heat source regions (Regions I
and III), but leads to over temperature in the heat source (Region II). The maximum temperature
occurs at the midpoint of the heat source, which deviates from the FEM result. This large deviation is
closely related to its misuse of the loading position and heat flux in the heat source. Conversely,
the improved LPTN works well and achieves better results in both heat source and non-heat
source regions. Thanks to the half-resistance theory, the over temperature disappears. In addition,
benefit from Equation (12), loading position of the heat generator can be adjusted according to the
nodes’ temperature. With iteration, accuracy of the location and temperature is further improved.
As shown in Figure 7, details of the change of temperature and correction factor are recorded, in which
t1 and t2 are boundary temperatures, tp is the maximum temperature and k is the correction factor.
By the fifth iteration, both the maximum temperature and its location have reached a very high
precision, with an error less than 1 %. The improved LPTN successfully solves the two problems in the
traditional LPTN; i.e., over temperature and incorrect location. It has significant advantage over the
traditional LPTN in modeling the asymmetric heat dissipation, especially for those with low thermal
conductivity heat sources. As shown in Figure 8, the lower thermal conductivity, the greater error of
the traditional LPTN, while the improved LPTN can always predict accurately.
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Figure 6. (a) Temperature distribution in asymmetric heat dissipation with heat source. (b) Enlarged
view of local area.
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Figure 7. (a) Curve of temperature t1 with iterations. (b) Curve of temperature t2 with iterations.
(c) Curve of temperature tp with iterations. (d) Curve of correction factor k with iterations.
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Table 1. Major parameters for the simulation.

Symbol Quantity Vaule Unit

l1 Length 0.5 m
l2 Length 2.5 m
l3 Length 3 m
λ1 Thermal conductivity of medium I 1 W/m·K
λ2 Thermal conductivity of medium II 1.5 W/m·K
λ3 Thermal conductivity of medium III 2 W/m·K
h1 Convective heat transfer on left 1 W/m2·K
h2 Convective heat transfer on right 2 W/m2·K
Φ̇ Heating power 50 W/m3

tt f Ambient temperature 22 ◦C
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Figure 8. (a) Temperature comparison with different thermal conductivities. (b) Temperature errors at
maximum temperature.

4. Implementation into U-Core Motor

4.1. Thermal Network Model

In this section, the improved LPTN method is implemented on a U-core motor to predict the
temperature distribution. As shown in Figure 9, geometry of the U-core motor is presented. Each block
is a cube, so the Cartesian coordinates are selected for the thermal path determination in both planes.
According to the specific structure, only main thermal paths are retained in each plane. They are
connected at intersecting nodes, and then expand the two-dimensional network to a spatial one.
The basic 3-D element of that is shown in Figure 10.

Then, follow the thermal path shown in Figure 10 and connect these nodes; the improved LPTN
for the U-core motor is established in Figure 11. It is a spatial network with 123 nodes in total.
For easy identification, each thermal resistance is colored by the same color as the motor component,
and different color lines are used to distinguish heat conduction in different directions. Besides,
other auxiliary symbols, such as heat generator, ambient temperature and zero reference, are also
illustrated in this figure.
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Figure 9. (a) Cross section of the electric motor in XY plane. (b) Cross section of the electric motor in
XZ plane.
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Figure 10. Basic 3-D elements of the thermal network of the heat source.

Since all materials and dimensions of each block are known, the value of each thermal resistance is
easily determined. The contact and convective thermal resistances can also be determined by empirical
formulas [25] and identification method [26]. Their specific values are included in Appendix A. Besides,
because the eight “current sources” all originate from the same winding, they share the same heat
power density. So they can be determined according to their volume sizes. At 15 A, heating powers of
each source are listed in Table 2.

Table 2. Heat source power for simulation.

Name Value Unit Name Value Unit Name Value Unit

S1 0.8992 W S4 0.5183 W S7 0.8992 W
S2 0.5183 W S5 0.8992 W S8 0.5183 W
S3 0.8992 W S6 0.5183 W Total 5.67 W
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4.2. Simulation and Analysis

A comparative study is conducted among the improved LPTN, traditional LPTN and FEM to
verify the advantage of the improved LPTN. As shown in Figure 12, two splines are selected along the
x and z directions on the motor, and then their temperatures are compared.

(a) (b)

Figure 12. (a) Test spline in x direction. (b) Test spline in z direction.

Figure 13 shows the results in x direction. Temperatures of the two LPTNs are almost the same;
they both have a temperature error of 3 ◦C compared with the numerical result. Only at S1 and
S2, locations of the heat generator, does the improved LPTN perform better, but the improvement
is not obvious. There are two reasons for this result: one is the high thermal conductivity of
winding; the other is the small thickness of winding in x direction. Both of them lead to a small
thermal-resistance inside the heat source, and then advantages of the improved LPTN are weakened.
However, the result still fits with the half-resistance theory and validates its effectiveness inside the
heat source.

A

-24.1 24.1-20 -10 0 10 20
48

50

52

54

56

58

60

62

Displacement [mm]

Te
m

pe
ra

tu
re

 [
]

 

 

FEM
Traditional LPTN
Improved LPTN
Traditional LPTN
Improved LPTN

FEM
Traditional LPTN
Improved LPTN
Traditional LPTNTraditional LPTNTraditional LPTN

B

C

D

(a)

Shell out (A) S1(B) Silicon steel (C) S3 (D)

0

0.5

1

1.5

2

2.5

3

Te
m

pe
ra

tu
re

 e
rro

r [
]

 

 

Traditional LPTN
Improved LPTN

(b)

Figure 13. (a) Temperature distribution in x direction at 15 A. (b) Temperature error at several points.

Figure 14 shows the comparison results in z direction. Because the uniform heat source is thicker in
z direction, the improved LPTN performs better in z direction than x. It achieves a smaller temperature
error at the heat generator, about 0.3 ◦C. Although the improvement in temperature prediction is not
great, the improved LPTN has an absolute advantage in determining the loading position of heat
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generator. As shown in Figure 14c, with the increase of the number of iterations, location of the heat
generator gradually approaches the real position. The introduction of the relationship between loading
position and nodes’ temperature plays an important role for that.
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Figure 14. (a) Temperature distribution in z direction at 15 A. (b) Temperature error at several points.
(c) Curve of correction factor k with iterations.

In z direction, two more sets of comparisons are made at 10 A and 20 A. The results are shown in
Figures 15 and 16; they are consistent with the conclusion in Figure 14, which further confirms the
advantage of the improved LPTN and illustrates that the simulation models are stable and reliable.
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Figure 15. (a) Temperature distribution in z direction at 10 A. (b) Temperature error at several points.
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Figure 16. (a) Temperature distribution in z direction at 20 A. (b) Temperature error at several points.

5. Experimental Validation

In this section, one prototype of U-core electric motor is presented, and experiments are conducted
to validate the proposed improved LPTN.

5.1. Experimental Platform

A research prototype of pump motor is selected for experimental study. As shown in Figure 17a,
it consists of a silicon steel sheet, permanent magnets, a winding, molded plastic, a rotating shaft,
a shell, etc. Among these components, the winding is the main source of heat, wrapped in polystyrene
resin on both sides of the U-shaped core. This embedded component has a negative effect on the heat
dissipation and measurement, resulting in only the surface temperature can be measured directly by
experiment. Therefore, the improved LPTN can only be validated by the experiment indirectly; i.e.,
utilize the experimental surface data to verify the FEM model first, and then validate the improved
LPTN by the credible FEM model in heat source.

Winding
Shell

Silicon steel sheet

Molded plastic

PM

(a)

Point1

Point2

Point3

Point4

(b)

Figure 17. (a) Structure of the U-core motor. (b) Distribution of measurement points.

One test platform is structured for experimental validation, as shown in Figure 18. It includes a
heat source, prototype, sensors and acquisition module. The adjustable DC power serves as the input
of the uniform heat source, it can supply constant current to simulate the heating status under the
condition of motor stall. Thermal sensors PT100 are shown in Figure 17b; they are attached on the
motor to measure the temperature, and then collected by the ADAM-4015 module and transmitted to
PC via the RS485 interface.
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Adjustable 
DC Power

Motor

ADAM-4015

RS485 
Converter

DC 24 V

PC

PT100

Figure 18. Experimental platform for temperature test.

5.2. Experimental Results and Discussion

Consistent with settings in simulation, three groups of currents of 10, 15 and 20 A were used to
validate the FEM model. After the temperature stabilized, temperatures of each point were recorded
and presented in Figure 19. It can be seen that in three groups of test, the FEM model fits well with
the results of the experimental measurement, and their errors are kept within 2 ◦C, indicating that
the FEM model is exactly reliable and credible. Therefore, it is reasonable and scientific to validate
the improved LPTN by the FEM model within the heat source. The conclusion in Section 4 has been
validated indirectly, showing that the improved LPTN performs better than the traditional LPTN,
especially in the uniform heat source with large thickness and low thermal conductivity.
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Figure 19. (a) Temperature at test points. (b) Temperature error at test points.
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6. Conclusions

In this paper, considering the change of heat flux in a uniform heat source, a novel improved
LPTN is proposed to predict the thermal distribution more accurately. Compared with the traditional
LPTN, the key achievements of this contribution are: 1. It reduces temperature error inside the heat
source. Thanks to the compensation of the half-resistance theory, the lager heat flux is offset by
the halved thermal resistance, ensuring the equilibrium of the temperature drop in the heat source
without any negative impacts outside the heat source. 2. It determines the loading position of the heat
generator; i.e., the maximum temperature position. Benefiting from the coupling relationship between
the nodes’ temperature and the location of heat generator, the correction factor is derived, which is
quite significant in asymmetric heat dissipation. It provides the chance for adjusting the loading
position of the heat generator and redistributing thermal resistances. The iterative algorithm further
strengthens the above advantages. Simulation and experiment are conducted on a U-core electric
motor, and the results show that the improved LPTN fits with their results closely. Compared with
the traditional LPTN, the improved LPTN can not only achieve higher accuracy for the maximum
temperature prediction, but also determine its location.
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Abbreviations

The following abbreviations are used in this manuscript:

LPTN Lemped parameter thermal network
CFD computational fluid dynamics
FEM finite element method
TEFC totally enclosed fan cooled
∆ti Temperature difference (◦C)
δ Thickness of the wall (m)
Φ̇ Heating power (W/m3)
λ1 Thermal conductivity of medium I (W/m·K)
λ2 Thermal conductivity of medium II (W/m·K)
λ3 Thermal conductivity of medium III (W/m·K)
qi Equivalent heat flux (J/m2·s)
Rxi Equivalent thermal resistance (Ω)
A Cross section area of heat flow (m2)
ai Constant coefficient (-)
bi Constant coefficient (-)
h1 Convective heat transfer on the left side of medium I (W/m2·K)
h2 Convective heat transfer on the right side of medium III (W/m2·K)
k Correction factor (-)
l1 Boundary position between media I and II (m)
l2 Boundary position between media II and III (m)
l3 Boundary position of medium III (m)
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Q Heat flow (J·s)
q Heat flux (J/m2·s)
Rxi Thermal resistance (Ω)
t Temperature (◦C)
tt f Ambient temperature (◦C)

Appendix A

Parameters in the thermal network are listed in Table A1.

Table A1. Parameter Values in the Thermal Network.

Name Value Name Value Name Value Name Value

Rc1 52.9629 Rc40 0.0016 Rd17 0.0036 Rd56 1.4233 × 10−6
Rc2 5.6167 × 103 Rc41 1.5556 × 103 Rd18 0.0036 Rd57 5.7212
Rc3 408.4491 Rc42 16.6860 Rd19 16.2393 Rd58 0.0841
Rc4 0.4861 Rc43 298.6437 Rd20 0.6481 Rd59 8.5556 × 10−4

Rc5 885.7161 Rc44 1.2307 Rd21 0.6481 Rd60 3.5000 × 10−4

Rc6 4.2940 Rc45 1.4768 Rd22 16.2393 Rd61 2.7654 × 10−4

Rc7 4.2940 Rc46 4.6765 Rd23 0.0036 Rd62 0.8711
Rc8 386.4556 Rc47 4.6765 Rd24 0.0036 Rd63 0.8711
Rc9 0.5833 Rc48 1.4768 Rd25 35.0000 Rd64 0.1628
Rc10 6.0602 × 104 Rc49 1.2307 Rd26 0.8711 Rd65 0.7432
Rc11 881.3901 Rc50 289.6437 Rd27 0.0841 Rd66 0.1628
Rc12 0.9348 Rc51 0.9348 Rd28 0.8711 Rd67 0.7432
Rc13 298.6437 Rc52 6.0602 × 104 Rd29 3.5 × 10−4 Rd68 35.0000
Rc14 1.2307 Rc53 0.5833 Rd30 8.5556 × 10−4 Rd69 0.0036
Rc15 1.4768 Rc54 881.3901 Rd31 2.7654 × 10−4 Rd70 0.0036
Rc16 4.6765 Rc55 885.7161 Rd32 0.1628 Rd71 16.2393
Rc17 4.6765 Rc56 4.2940 Rd33 0.7432 Rd72 0.6481
Rc18 1.4768 Rc57 4.2940 Rd34 0.1628 Rd73 0.6481
Rc19 1.2307 Rc58 386.4556 Rd35 0.7432 Rd74 16.2393
Rc20 298.6437 Rc59 0.4861 Rd36 5.7212 Rd75 0.0036
Rc21 0.9348 Rc60 5.6167 × 103 Rd37 1.4223 × 10−6 Rd76 0.0036
Rc22 0.5833 Rc61 52.9629 Rd38 86.7995 Rd77 35.0000
Rc23 5.2790 Rc62 408.4491 Rd39 0.1427 Rd78 0.0841
Rc24 0.4861 Rd1 7.5223 Rd40 0.2843 Rd79 15.9856
Rc25 5.2790 Rd2 282.7724 Rd41 60.9119 Rd80 750.1786
Rc26 1.3751 × 103 Rd3 282.7724 Rd42 1.4204 × 10−6 Rd81 15.9856
Rc27 2.3932 Rd4 7.5523 Rd43 0.3737 Rd82 750.1786
Rc28 215.3846 Rd5 1.4204 × 10−6 Rd44 0.0803 Rd83 1.4211 × 10−6

Rc29 0.4861 Rd6 82.9889 Rd45 0.0803 Rd84 82.9889
Rc30 5.2790 Rd7 0.1405 Rd46 41.7196 Rd85 0.1405
Rc31 5.2790 Rd8 0.1545 Rd47 436.2265 Rd86 0.1545
Rc32 5.2790 Rd9 82.9889 Rd48 436.2265 Rd87 82.9889
Rc33 0.5833 Rd10 1.4211 × 10−6 Rd49 49.0389 Rd88 1.4226 × 10−6

Rc34 0.9848 Rd11 15.9856 Rd50 0.3737 Rd89 7.5523
Rc35 1.5556 × 103 Rd12 750.1786 Rd51 1.4204 × 10−6 Rd90 282.7724
Rc36 1.5556 × 103 Rd13 750.1786 Rd52 86.7995 Rd91 7.5523
Rc37 16.6860 Rd14 15.9856 Rd53 0.1427 Rd92 282.7724
Rc38 1.5556 × 103 Rd15 0.0841 Rd54 0.1523 Rd93 0.4884
Rc39 0.0016 Rd16 35.0000 Rd55 60.9119 tt f 22.0000
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