
energies

Article

Monte Carlo-Based Procedure for Determining the
Maximum Energy at the Output of Accelerometers

Krzysztof Tomczyk

Faculty of Electrical and Computer Engineering, Cracow University of Technology, Warszawska 24,
31-155 Krakow, Poland; ktomczyk@pk.edu.pl; Tel.: +48-12-628-2543

Received: 13 February 2020; Accepted: 26 March 2020; Published: 27 March 2020
����������
�������

Abstract: The solutions presented in this paper can be the basis for mutual comparison of different
types of accelerometers produced by competing companies. An application of a procedure based
on the Monte Carlo method to determine the maximum energy at the output of accelerometers is
discussed here. The fixed-point algorithm controlled by the Monte Carlo method is used to determine
this energy. This algorithm can only be used for the time-invariant and linear measurement systems.
Hence, the accelerometer nonlinearities are not considered here. The mathematical models of the
accelerometer and the special filter, represented by the relevant transfer functions, are the basis for
the above procedure. Testing results of the voltage-mode accelerometer of type DJB A/1800/V are
presented here as an example of an implementation of the solutions proposed. Calculation of the
energy was executed in Mathcad 14 program with the built-in Programming Toolbar. The value of
the maximum output energy determined for a specified time interval corresponds to the maximum
integral-square error of the accelerometer. Such maximum energy can be a comparative ratio just
like the accuracy class in the case of instruments used for the static measurements. Hence, the main
analytical and technical contributions of this paper concern the development of theoretical procedures
and the presentation of their application on the example of a real type of accelerometer.
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1. Introduction

The basic condition for mutual comparison of different types of accelerometers [1–3] is that the
accelerometers under test have the same frequency bandwidth and it is necessary to develop the model
of special filter [4] which is the reference for such an analysis. The frequency bandwidth of the filter
must be the same as the operation frequency range of the compared accelerometers.

The reference of energies at the outputs of the accelerometer and the filter is necessary because,
from the point of view of the practical implementation of measurements, only the value of energy
for the operation range of the accelerometer, not for the full frequency bandwidth, is interesting [5].
Such comparison is carried out by subtracting the energy value at the outputs of both accelerometers.
The difference between these energies is defined below as the reference energy and, for the purpose of
determining its maximum value, it is convenient to apply the algorithm discussed in Section 3.

The reference energy of an accelerometer corresponds to the integral-square error [6] of the sensor
related to this type of error at the output of the special filter. Developing the procedure determines the
maximum value of the integral-square error (maximum reference energy) and seems to be the justified
proposal for the comparison of different accelerometers.

The basis for the implementation of the task described above is the mathematical model of the
accelerometer determined through its parametric identification [7–12], as well as the mathematical
model of the special filter. The model of the accelerometer is defined by the second-order transfer
function [1–3], whereas the model of the filter should be a high-order (a range of 10 to 15 order is
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sufficient). Determination of the parameters of the accelerometer model should be carried out on the
basis of measurement points of both components of the frequency response (the amplitude and phase)
in accordance with the procedures included in the relevant international guides [7]. In this way (e.g.,
by using the weighted least squares procedure (WLSP)), the accelerometer parameters and associated
uncertainties can be obtained [3,13,14]. Additionally, when we want to determine the associated
uncertainties, it is necessary to use the Monte Carlo procedure (MCP) [15–18], whose number of trials
can be assumed in advance according to the guidelines included in the JCGM (Joint Committee for
Guides in Metrology)—supplement 1 [13]. The model of the filter is expected to meet the so-called
non-distortion transformation [19], according to which the amplitude-frequency and phase-frequency
responses are flat and linear, respectively, within the frequency bandwidth of interest [20]. However,
these assumptions are ideal from a practical point of view. In practice, they are not possible to meet,
and one can only strive to attain them [20], for example, by using the above-mentioned high-order
filter. The degree of achievement for the approximation therefore depends on the type of filter used
and has an effect on the value of the reference energy (i.e., the higher the order of the approximation,
the lower value of this energy). Hence, there is the obvious necessity to use the same model of the filter
within the considered comparison of the different types of accelerometers.

The maximum value of the reference energy can be determined by using the fixed-point algorithm
(FPA) [5,21–23] with its extension by the MCP [13,18]. The MCP can be implemented based on the
same assumptions as in the case of the procedure intended for determining the uncertainties associated
with the parameters of the accelerometer model by using the WLSP. A method based on a system
of complex convolution equations could also be applied instead of the above-mentioned FPA [4].
However, the possibilities of its application are limited due to the numerical difficulties of solving a
system including more than twenty-five equations [24]. Therefore, for the needs of this paper, the first
type of approach is chosen. This choice is also supported by the fact that by employing the FPA, the
maximum reference energy can be obtained quickly. The FPA also allows determination of the critical
case of the input signal of the accelerometer that is limited both in magnitude and in time interval [25],
and which produces this energy. Both the number of reversals of such a signal and the times at which
this reversal occurs are determined. It should be emphasized here that any other signal contained
in these limits generates less energy than that produced by the critical case of the magnitude-limited
signal [4].

The FPA determines, by an application of the MCP, the numerical value of the maximum reference
energy in an iterative way for the ranges of variability of the model parameter of the accelerometer
by the values of associated uncertainties [26,27]. Taking into account the uniform distribution of
parameters in the above ranges, the Monte Carlo simulation (MCS) should therefore be based on a
uniform pseudo-random number generator [28].

The assessment of the impact of the uncertainties associated with the parameters of the
accelerometer on the value of the absolute error is presented in studies by Tomczyk [26,27]. However,
this assessment does not apply to full ranges of parameter variability on the values of uncertainties
associated with them. Additionally, the cited assessment concerns only the values of parameters
increased or decreased by the values of the uncertainties associated with them. Therefore, it was not
necessary to use the MCP in such a case.

The above-mentioned issues are developed in this paper using the MCP. The block diagrams with
an exact description of both the proposed MCP as well as the algorithm for determining the maximum
reference energy at the output of accelerometers are discussed here. This maximum reference energy
can be the basis for mutual comparison [4] of accelerometers with the same bandwidth but produced
by different companies. This comparison relates to the maximum integral-square error, which reflects
an accuracy of the accelerometer. It can therefore help one choose the proper accelerometer from many
types at different prices.

The practical solutions presented here are applied to the testing of the DJB A/1800/V type of
accelerometer [29].
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2. Accelerometer Modeling

The model of the accelerometer is defined by using the transfer function,

K(s) =
Saω2

0

s2 + 2βω0s +ω2
0

, (1)

where Sa and β are the accelerometer voltage sensitivity and damping factor, respectively, while
ω0 = 2π f0, where f0 denotes the non-damped natural frequency.

Parametric identification of the accelerometer model is directed towards determining the
parameters of the transfer function given by Equation (1) together with associated uncertainties [8,9].
The first step in this subject is the determination of the measurement points for both frequency
responses. This is achieved by applying the back-to-back method commonly used in the measurement
practice. The block diagram for this type of identification method is shown in Figure 1. The reference
accelerometer is used here as the comparison signal source, while the data acquisition card together with
the LabVIEW software are employed for the control of the shaker and recording of the measurement data.
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The sensitivity Sa of the tested accelerometer is determined on the basis of the relation,

Sa = Sr
Va

Vr
, (2)

where Sr, Va, and Vr are the sensitivity of the reference accelerometer, the voltage output of the system
for signal conditioning at the output of the accelerometer, and the voltage output of the reference,
respectively.

Based on the measurement points of the frequency responses of the accelerometer, the estimates
S̃a, f̃0, and β̃ are associated with the parameters Sa, f0, and β which occur in the transfer function given
by Equation (1), as well as the associated uncertainties u

(
S̃a

)
, u

(
f̃0
)
, and u

(
β̃
)
, which are determined by

applying the WLSP [3,13]. This procedure employs the MCP which utilizes the Box–Muller and the
Wichmann–Hill pseudo-random number generator with normal and uniform distributions, respectively.
The minimum number M of Monte Carlo trials (MCts) should be determined based on the relation,

M >
104

1− p
, (3)

where p denotes the assumed coverage probability [13].

3. Algorithm for Determining the Maximum Energy (ME)

The optimization algorithm for determining the ME is based on the integral equation,
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∫ T

0
x(v)Φ(τ, v)dv = ξ·x(τ), (4)

where
Φ(τ, v) = Φa(τ, v) −Φf(τ, v) =

∫ T
0 ka(t− τ)ka(t− v)dt+

−

∫ T
0 kf(t− τ)kf(t− v)dt, t ∈ (0, T),

(5)

while x(t) is any signal at the input of the accelerometer, ξ is the Lagrange multiplier [5], ka(t) and kf(t)
are the impulse responses of the accelerometer and the filter, respectively, and T denotes the time of
accelerometer testing. The impulse responses ka(t) and kf(t) are determined as the inverse Laplace
transforms of the corresponding transfer functions Ka(s) and Kf(s). In turn, the transfer function Ka(s)
is obtained by way of the parametric identification of the accelerometer, while the transfer function
Kf(s) is convenient to be defined by the low-pass Butterworth filter given by,

Kf(s) =
Sa∏L

i=1

(
s

2π fc
− e

j(2i+L−1)π
2L

) . (6)

In Equation (6), L is the order of the filter, fc is the filter’s cut-off frequency, which is equal to the
frequency bandwidth of the accelerometer, and j denotes the imaginary number.

The solution to Equation (4) determines the signal xm(t) that yields the maximum value of the
coefficient ξ for which the ratio is satisfied,

ξ(x, y) =
E(y)
E(x)

(7)

where E(x) and E(y) are the energies of any input and output signals x(t) and y(t), respectively.
The error y(t) is defined by,

y(t) = ya(t) − yf(t), (8)

where

ya(t) =
∫ t

0
ka(t− τ)x(τ)dτ (9)

and

yf(t) =
∫ t

0
kf(t− τ)x(τ)dτ (10)

are the output signals of the accelerometer and filter, respectively.
Both the signal x(t) as well as the signal xm(t), maximizing the coefficient ξ, are limited in time T

and magnitude a. Thus, we can write,

x(t) ≤ a, xm(t) ≤ a. (11)

The denominator and nominator of Equation (7) are represented by,

E(x) =
∫ T

0
[x(t)]2dt, (12)

and

E(y) = E(ya) − E(yf) =

∫ T

0
[ya(t)]

2dt−
∫ T

0
[yf(t)]

2dt =
∫ T

0
[y(t)]2dt. (13)

Substituting Equations (9) and (10) into Equation (13) and taking into account the relationship
between the impulse responses,
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k(t) = ka(t)−kf(t) = L−1[Ka(s)] −L−1[Kf(s)], (14)

we finally have

E(y) =
∫ T

0

[∫ t

0
k(t− τ)x(τ)dτ

]2

dt. (15)

When the signal x(t) is limited in magnitude M (i.e., it has a rectangular shape), then we can
consider the condition given by,

a·sgn
[∫ T

0
x(v)Φ(τ, v)dv

]
= ξx(τ) (16)

where sgn denotes the signum operation.
Hence, the signal maximizing the energy E(y) is represented by,

xm(τ) =
a·sgn

[∫ T
0 x(v)Φ(τ, v)dv

]
ξmax

(17)

and ξmax is the maximum value of ξ(x, y) defined by Equation (7).
The procedure for determining the input signal that maximizes the energy E(y) is based on the

FPA [5] and includes the following stages:

1. Calculate the function Φ(τ, v) based on Equation (5);
2. Determine the initial input signal x0(τ), where ξ0 is the initial Lagrange multiplier, assumed in

advance by the formula,

x0(τ) =
a·sgn[Φ(τ, v)]

ξ0 (18)

3. Determine the maximizing signal on the basis of the iterative algorithm, given by,

xi+1(τ) =
a·sgn

[∫ T
0 xi(v)Φ(τ,v)dv

]
ξi+1

for i = 0, 1, 2, . . . , J − 1,
(19)

where J denotes the number of assumed iterations. It should be emphasized that for each iteration
step i, the Lagrange multiplier ξi+1 must be determined based on Equation (7).

4. Calculate the energy E(y) by using Equation (15).

The signal xm(t) that yields the maximum value of the quotient ξ(x, y) is the one that maximizes the
energy E(y). This ME denoted by Emax(y) is obtained by substituting the signal xm(t) into Equation (15).
Then, we have

Emax(y) =
∫ T

0

[∫ t

0
k(t− τ)xm(τ)dτ

]2

dt (20)

The energy Emax(y) is the accelerometer output energy, referred to as the output energy of filter,
and is valid for the accelerometer frequency bandwidth.

Figure 2 shows the block diagram of the algorithm described above applied for determining the
ME at the output of accelerometers. The switch S has the position 1 for i = 0, and it has the position 2
when i > 0. During the particular iterations i = 1, 2, . . . , J−1 of the algorithm above, the energies E

(
yi
)

and E
(
yi−1

)
are compared with each other, and the value of the current ME and the corresponding

input signal limited in magnitude are stored in the memory. This signal can be then processed by using
specialized IT tools, e.g., neural network [30].
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The final solutions of the ME and corresponding signal are delivered for i = J − 1. It should be
noted that this algorithm converges quickly because the maximum number J of iterations does not
exceed 30.

The signal producing the ME has the property that any other signal contained in its limitations
can only yield less energy than the energy value caused by the maximizing signal [4]. Figure 3 shows
examples of the maximizing signal xm(t) limited simultaneously in time and magnitude and three
other signals x1(t), x2(t), and x3(t) contained in its limitations denoted by ±a (magnitude) and T (time).
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The limited signal xm(t) in Figure 3 has seven time switches denoted by t1, t2, . . . , t7. The number
of these switches and the times at which they occur are determined by the FPA, and they constitute the
shape of the signal that maximizes the energy at the output of the accelerometer.

4. Monte Carlo-Based Procedure for Determining the ME

On the basis of obtaining both estimates S̃a, f̃0, and β̃ of the accelerometer model and the associated
uncertainties u

(
S̃a

)
, u

(
f̃0
)
, and u

(
β̃
)
, the values of the parameters denoted by S̃max

a , f̃ max
0 , and β̃max that

produce the energy Emax(y) should be determined. This can be carried out for the rectangular ranges
shown in Figure 4 (the lines slanting to the right), by applying the MCP with the number of trials
determined using Equation (3), where:

rmin(α) = α− u(α)
rmax(α) = α+ u(α)

r(α) = rmax(α) − rmin(α)
(21)

and α corresponds to the estimates S̃a, f̃0, and β̃, respectively, in the case of three ranges shown in
Figure 4.
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Figure 4. Range of the Monte Carlo procedure (MCP) for the estimates associated with the accelerometer
model.

The trials of the MCP executed in three ranges were carried out by employing a uniform distribution.
Hence, it is recommended to use the Wichmann–Hill pseudo-random number generator [28], according
to the guidelines included in the JCGM supplement 1 [13]. The horizontal ranges of a uniform
distribution in Figure 4 are constrained by the values of uncertainty associated with the parameter
estimates of the accelerometer, while the vertical ranges of this distribution are contained in the range〈
0, γ

〉
, where γ = 1/r(α) is inversely proportional to the range of the parameter estimate variability.

Figure 5 shows the block diagram of the MCP for determining the Emax(y). This procedure
includes three main sub-blocks:

1. Back-to-back procedure for identification and determination of the accelerometer parameters and
associated uncertainties.

2. Selection of the special filter which is the reference for calculation of the energy at the output
of accelerometer.

3. Execution of the FPA.
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The input parameter for the MCP is the number of MCts assumed in advance according to
Equation (3), while the input parameters for the FPA are: number of iterations J, value of time T,
quantization step size ∆s of the calculation, values of the signal limit a, and initial Lagrange multiplier ξ0.

5. Results

The results of testing the accelerometer of the type DJB A/1800/V are presented below. Typical
parameters for the accelerometer, taken from the corresponding datasheet [29], are as follows:

– voltage sensitivity Sa (±10%): 1.02 V/(m/s2),
– frequency response (accelerometer bandwidth): 0.2 Hz–1 kHz ±5%,
– maximum continuous g level: 4903 m/s2,
– resonant frequency: ≈ 4 kHz.

The B&K8305 charge mode accelerometer was applied as the reference. The parameters of this
accelerometer, contained in the datasheet [31], are:

– charge sensitivity (±10%): 1.08 pC/g,
– amplitude (±10%) and phase (±1◦) range: 0.2 Hz–1 kHz.

The results of the back-to-back identification are obtained based on the measurement of the
amplitude and phase responses carried out for 42 frequencies within the range 30 Hz–6 kHz. This range
was selected in such a way as to exceed the value of the resonant frequency since it has a significant
influence on the value of the estimates f̃0 and β̃.

The measurement points of both frequency responses, obtained for the above frequencies (the first
column denoted by F), are contained in the second and third columns (denoted by A and Φ) of Table 1.

Table 1. Measurement points of the frequency responses together with expanded uncertainties (k = 2)
for the accelerometer DJB A/1800/V.

F
[Hz]

A
[V/(m/s2)]

Φ

[deg.]
u(A)

[V/(m/s2)]
u(Φ)

[deg.]
F

[Hz]
A

[V/(m/s2)]
Φ

[deg.]
u(A)

[V/(m/s2)]
u(Φ)

[deg.]

30 1.03 −0.1 0.01 1.0 2000 1.26 −20.4 0.03 1.0
40 1.04 −0.4 0.01 1.0 2200 1.25 −19.5 0.04 1.0
50 1.00 −0.3 0.01 1.0 2400 1.38 −30.0 0.04 1.0
60 1.02 −0.5 0.01 1.0 2600 1.52 −40.5 0.05 1.0
70 1.03 −0.4 0.01 1.0 2800 1.66 −53.7 0.05 1.0
80 0.98 −0.7 0.01 1.0 3000 1.65 −38.1 0.05 1.0
90 1.04 −0.7 0.01 1.0 3200 1.77 −41.6 0.05 1.0

100 0.96 −0.9 0.01 1.0 3400 1.93 −53.8 0.06 1.0
200 0.95 −2.3 0.01 1.0 3600 2.12 −58.2 0.06 1.0
300 1.05 −2.0 0.01 1.0 3800 2.05 −73.1 0.06 1.0
400 1.01 −3.2 0.01 1.0 4000 2.20 −93.2 0.07 1.0
500 0.96 −2.4 0.01 1.0 4200 1.81 −108.9 0.05 1.0
600 0.98 −6.3 0.01 1.0 4400 1.79 −99.9 0.05 1.0
700 1.03 −3.0 0.01 1.0 4600 1.46 −126.2 0.04 1.0
800 1.04 −6.0 0.01 1.0 4800 1.40 −111.2 0.04 1.0
900 0.97 −2.4 0.01 1.0 5000 1.25 −117.6 0.04 1.0
1000 1.05 −3.5 0.01 1.0 5200 1.07 −138.0 0.03 1.0
1200 1.16 −14.9 0.02 1.0 5400 0.94 −140.0 0.03 1.0
1400 1.06 −18.7 0.02 1.0 5600 0.89 −143.0 0.03 1.0
1600 1.15 −9.6 0.02 1.0 5800 0.81 −154.4 0.02 1.0
1800 1.27 −8.2 0.03 1.0 6000 0.96 −158.5 0.03 1.0

The measurement points above are registered by the NI-6221 data acquisition card with a sampling
rate equal to 100 kS/s and the computer programs developed in the LabVIEW software.

The expanded uncertainties u(A) and u(Φ) which are contained in the fourth and fifth columns of
Table 1 were determined based on Table 1 included in the ISO 16063-21:2003(E) standard (7). These
uncertainties are valid for the coverage factor k = 2.
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The accelerometer model responses (solid lines) obtained by utilizing the WLSP are shown in
Figure 6. The covariance matrices involved in the basis kernel of the WLSP used for calculating
the estimates of the accelerometer model parameters and applied for determining the uncertainties
associated with these estimates are determined by using the MCP. The number M of MCts, which
is equal to 2 × 105, was taken as the minimum acceptable value obtained based on Equation (3).
The coverage probability p equal to 0.95 was assumed in advance.
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The estimates S̃a, f̃0, and β̃ of the parameters of the accelerometer model and the associated
uncertainties u

(
S̃a

)
, u

(
f̃0
)
, and u

(
β̃
)

determined by using the WLSP are tabulated in Table 2.

Table 2. Estimated parameters and associated uncertainties obtained by using the weighted least
squares procedure (WLSP).

~
Sa

[V/(m/s2)]

~
f0

[Hz]

~
β

[–]
u(

~
Sa)

[V/(m/s2)]
u(

~
f0)

[Hz]
u(

~
β)

[–]

1.037 4073 0.3182 0.003 6 0.0004

The model responses shown in Figure 6 are obtained by relative approximation by using the
functions A( f ) and ϕ( f ) for the parameters tabulated in Table 2, where

A( f ) =
S̃a√[

1−
(

f / f̃0
)2

]2
+ 4β̃2

(
f / f̃0

)2
(22)



Energies 2020, 13, 1552 10 of 13

and

ϕ( f ) = −arctan
2β̃

(
f / f̃0

)
1−

(
f / f̃0

)2 (23)

The estimates and associated uncertainties from Table 2 were utilized to determine the parameters
S̃max

a , f̃ max
0 , and β̃max giving the maximum value of the reference energy determined by the FPA

controlled by the MCP. The input parameters for the FPA were selected as: J = 30, T = 2 ms, ∆s = 2 µs,
and ξ0 = 1, and the value of signal limit a = 1.037 V was assumed as equal to the estimate of the voltage
sensitivity S̃a of the considered accelerometer. The time T was obtained from the steady state of the
impulse response k(t) calculated based on Equation (14). This steady state was assumed to be equal to
5% of the maximum deviation (peak response) from zero of this impulse response. The tenth-order
(L = 10) analog Butterworth filter was adopted and is described by Equation (6). The filter cut-off

frequency fc is equal to the frequency response of the considered accelerometer and is 1 kHz. The values
of both the gain factor a and the signal limit a are equal to 1.03 V (i.e., the value of the estimate S̃a of the
accelerometer voltage sensitivity). The upper limit of the filter order results from the computational
limitation of the MathCad program which was applied for calculation of the impulse response in the
way of determining the inverse Laplace transform on the basis of the relevant transfer function Kf(s).

Figure 7 shows the impulse responses k(t), where the maximum deviations of these responses
from the steady state value are equal to 1764. The number of MCts for the procedure controlling
the FPA was 2 × 105, similar to the WLSP. Based on parameters and uncertainties given in Table 2,
the following values were obtained: umin

(
S̃a

)
= 1.034 V/(m/s2); umax

(
S̃a

)
= 1.040 V/(m/s2); u

(
S̃a

)
= 0.016

V/(m/s2); umin
(

f̃0
)

= 4067 Hz; umax
(

f̃0
)

= 4079 Hz; u
(

f̃0
)

= 12 Hz; umin
(
β̃
)

= 0.3178; umax
(
β̃
)

= 0.3186;

and u
(
β̃
)

= 8 for the ranges shown in Figure 4.
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The values of the parameters S̃max
a = 1.038 V/(m/s2), f̃ max

0 = 4070 Hz, and β̃max = 0.3178, which
give the maximum reference energy E(y)max = 5.862 mV·m2, are obtained by applying the MCP for T
= 2 ms, m = 127,548, and J = 15. The obtained uncertainty u(Emax) of the MCP is equal to 0.008 mV·m2.

The relationship between the maximum reference energy Emax(y) and the time T of the considered
accelerometer is linear [5] for the steady state of the impulse response k(t) (i.e., for T > 2 ms). Thus, it is
possible to determine the functional relationship between this energy and any time T higher than 2 ms.
Hence, the value of energy Emax(y) should be determined for any time higher than 2 ms, and then the
relevant formula can be easily determined based on the linear regression. For example, if T = 10 ms,
then we have Emax(y) = 34.115 mV·m2 and u(Emax) = 0.012 mV·m2, which are obtained for m = 93,515
and J = 9. Based on the two values of the energy Emax(y) and the values of time T, we have:

E(y, T)max = 3531.0·T − 1.2.
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Figure 8 shows the signal xm(t) with two reversals producing the Emax(y) at the output of the
considered accelerometer obtained for T = 2 ms.
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The reversals of the signal xm(t) are 0.68 ms and 1.49 ms.

6. Conclusions

The paper presents a proposal for the application of the FPA controlled by the MCP to determine
the maximum reference energy at the output of accelerometers. Block diagrams together with a detailed
description of the proposed solutions are presented.

The reference energy of the accelerometer should be understood as its output energy decreased
by the output energy of the special filter (modeled by the low-pass type) with the cut-off frequency
corresponding to the upper limit of the accelerometer frequency response. The lower limit of this
response is neglected in this paper due to its low value (0.2 Hz).

Additionally, the MCP was used for parametric identification of both the parameters associated
with the transfer function of the accelerometer and the associated uncertainties. Then, the value
of the maximum reference energy was determined along with the associated uncertainties at the
output of the accelerometer of the type DJB A/1800/V, considered as an example of the accelerometer.
This was performed by checking the full range of the parameter variability of the accelerometer model
by value-associated uncertainties. This is possible to perform only by using the MCP based on the
pseudo-random number generator with a uniform distribution. This necessity results from the fact that
the energy above can be obtained for the values of parameters contained within the variability ranges
and not, for example, at their ends or in their middles. Only in this way it is possible to accurately
determine the maximum reference energy, which can be the basis for mutual comparison of different
types of accelerometers. The presentation of the relevant procedures together with a practical example
giving the possibility of such comparison is the main contribution of this paper.
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Republic of Poland (grant no. E-31/2020).
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