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Abstract: Accurate prediction of crude oil prices is meaningful for reducing firm risks, stabilizing 

commodity prices and maintaining national financial security. Wrong crude oil price forecasts can 

bring huge losses to governments, enterprises, investors and even cause economic and social 

instability. Many classic econometrics and computational approaches show good performance for 

the ordinary time series prediction tasks, but not satisfactory in crude oil price predictions. They 

ignore the characteristics of non-linearity and non-stationarity of crude oil prices data, which hinder 

an accurate prediction and eventually lead to poor accuracy or the wrong result. Empirical mode 

decomposition (EMD) and ensemble EMD (EEMD) solve the problems of non-stationary time series 

forecasting, but they also generate new problems of mode mixing and reconstruction errors. We 

propose a hybrid method that is combination of the complete ensemble empirical mode 

decomposition with adaptive noise (CEEMDAN) and multi-layer gated recurrent unit (ML-GRU) 

neural network to solve the abovementioned issues. This not only deals with the issue of mode 

mixing effectively, but also makes the reconstruction error of data close to zero. Multi-layer GRU 

has an excellent ability of nonlinear data-fitting. The experimental results of real WTI crude oil 

dataset show that the proposed approach perform better in crude oil prices forecasts than some 

state-of-the-art models. 

Keywords: crude oil prices; forecasting; complete ensemble empirical mode decomposition with 

adaptive noise (CEEMDAN); multi-layer gated recurrent unit (ML-GRU) 

 

1. Introduction 

Crude oil was once considered to be the blood flowing through the veins of the world economy 

and played an extremely critical role in the development of the world economy. According to a report 

by the U.S. Energy Information Administration (EIA), although renewable energy production and 

consumption both reached their highest share in 2018, fossil fuel still accounted for 80% of the United 

States’ energy consumption. In light of the International Energy Agency (IEA) data, the global 

consumption of oil reached 1.0075 million barrels per day in 2019. In meeting world energy needs, oil 

still plays the most important role. Asian emerging market countries have become the main contributors 

to the growth in crude oil demand. The rapid economic growth has prompted them to significantly 

increase demand for crude oil. For example, China's oil consumption has soared from an average of 

69,700 barrels per day in 2005 to 145,100 barrels per day in 2019. As a production factor, the increase in 

crude oil prices will lead to an increase in the non-oil companies’ production costs and a decrease in 

profits. Sadorsky [1] verified the impact of fluctuations in crude oil prices on companies of different 

firm size through evidence from the stock market. Rising oil prices may lead to inflation and hinder 

economic growth. Volatility in oil prices increases risk and uncertainty to financial markets [2]. Not only 
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that, but the continued collapse or the sudden plunge in oil prices can also have a huge impact on the 

economic development and financial markets of oil-producing countries [3]. An obvious piece of 

evidence is the crisis signal coming from the credit default swap (CDS) market. The widening of the 

CDS spread means that weak crude oil prices have caused investors to worry about the fiscal 

sustainability of some oil producing countries [4]. The study of Haushalter et al. [5] concluded that there 

is a negative correlation between the price of crude oil and the debt ratio of oil producers. 

Based on the above discussion, it is obviously of great significance to find a method that can 

accurately predict the price of crude oil. This means that policy makers will have more time to 

introduce countermeasures to achieve the goal of avoiding or reducing risks. However, the trend of 

oil prices is affected by not only the factors of market supply and demand, but also the other non-

market factors, such as geopolitical, alternative forms of energy, recession, war, natural disasters, and 

technological development. Various uncertainties affect the crude oil market. The fluctuations in 

these factors cause the nonlinear, volatile, and chaotic tendency of crude oil prices. Therefore, 

achieving sufficiently reliable and accurate forecasting of crude oil prices has become one of the most 

challenging issues.  

In the past decades, various techniques have been tried to forecast the trend of crude oil prices. 

The classic statistical or econometric models such as autoregressive integrated moving average 

(ARIMA) model and the autoregressive conditional heteroskedasticity (ARCH)/generalized ARCH 

(GARCH) family model are widely used in the time series prediction tasks [6–12]. Zhao and Wang 

[9] used the ARIMA model to model and predict crude oil prices based on the international crude oil 

prices data from the 1970s to 2006. Mohammadi and Lixian [13] applied the ARIMA-GARCH model 

to forecast the conditional mean and volatility of weekly crude oil spot prices in eleven international 

markets. Aamir and Shabri [14] used the Box-Jenkins ARIMA, GARCH and ARIMA-Kalman models 

to model and forecast the monthly crude oil prices in Pakistan. The premise of applying these classic 

models represented by ARMA /ARIMA is that there is an autocorrelation in the crude oil prices series. 

So, the historical data is used to infer the future prices of crude oil. These methods are suitable for 

capturing the linear relationships in time series analysis but not for the nonlinear time series [15]. In 

addition to the classical methods mentioned above, the survey forecasting method is another 

alternative method for crude oil price forecasting [16]. Kunze et al. [17] empirically studied the 

performance of survey-based predictions of crude oil prices. The evaluation shows that the prediction 

accuracy of the survey-based forecasts is not as good as that of the naive method in the short-term 

crude oil prediction, but with the rise of the prediction horizon, the accuracy of the former will exceed 

that of the naive method. This study demonstrates that survey predictions are not suitable for the 

short-term prediction of crude oil prices. 

Owning to the drawbacks of the classic approaches and the special features of crude oil price 

data, artificial intelligence (AI), such as machine learning, deep learning or hybrid methods provide 

more excellent nonlinear data predictive performance. In term of forecasting crude oil prices, the 

approaches of AI are being widely used as alternative to the classic technologies. Li et al. [18] 

proposed an approach that incorporates ensemble empirical mode decomposition (EEMD), sparse 

Bayesian learning (SBL), for forecasting crude oil prices. Xie et al. [19] used support vector machines 

to forecast crude oil prices and compared the performance with ARIMA and BPNN’s. Experiments 

show that SVM has better performance than the other two methods. Fan et al. [20] propose an 

independent component analysis based SVR scheme, for crude oil prices predictions. This approach 

starts from an independent component analysis to decompose crude oil prices series into 

independent components, which are respectively forecasted by support vector regression (SVR). 

Crude oil prices trends have significant nonlinear and non-stationary characteristics. Regardless 

of the traditional statistics or machine learning methods, it is difficult to obtain satisfactory results by 

directly predicting the original crude oil prices series. Therefore, scholars usually adopt the method 

that, first, the original crude oil prices series is decomposed into multiple same time scales or 

relatively simple sub-sequences by a signal decomposition algorithm. Next, create multiple subtasks. 

Each sub-task completes the prediction of a sub-sequence individually. Finally, the results of all 

subtasks are linearly calculated and the forecasting is obtained. Common signal decomposition 
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methods, such as the wavelet transform, EMD, and EEMD, have been widely used to process the 

non-stationary time series. Yu et al. [21] proposed an EMD-based neural network crude oil price 

forecasting. He et al. [22] come up with a wavelet-based ensemble model to improve the predictive 

accuracy of oil prices. This approach introduced the wavelet to generate dynamic basic data within a 

finer time-scale domain. Hamid and Shabri [23] proposed a wavelet multiple linear regression 

method in daily forecasts of crude oil price. Wu et al. [24] propose a model based on EEMD and long 

short-term memory (LSTM) for crude oil price forecasting. Zhou et al. [25] introduced a hybrid 

approach of complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) 

and XGBOOST-based approach to forecast crude oil prices.  

Both wavelet analysis and EMD are becoming the common tools for analyzing non-stationary 

time series but have their own limitations. The wavelet method can’t achieve an adaptive 

decomposition in the light of time scales. It has been proven above that EMD perform well in 

extracting signals from the non-stationary data. Mode mixing is the main limitations of EMD. It is a 

consequence of signal intermittency which could result in the physical meaning of individual 

intrinsic mode function (IMF) unclear [26]. To overcome this limitation of EMD, an ensemble EMD 

named EEMD, was subsequently introduced by Wu and Huang [27]. EEMD adds white noise to the 

original signal. After a sufficient number of EMD tests, the only lasting component of signal is then 

identified as the substantial answer. EEMD eliminates the effects of mode mixing of EMD, but still 

retains some noise in the IMFs, which affect the accuracy of signal reconstruction [28]. 

In summary, much effort has been made to improve the accuracy of forecasting crude oil prices, 

but a more effective approach should be developed. The goal of this study is to propose a new novel 

approach of CEEMDAN-based multi-layer gated recurrent unit networks (CEEMDAN-ML-GRU). 

CEEMDAN is a variant of EEMD. In the applying of CEEMDAN, the multiple groups of adaptive 

white noise is added to the original data at each stage of the decomposition and a unique residue is 

computed to obtain each mode. CEEMDAN is complete, with a numerically negligible error of signal 

reconstruction. Due to the excellent characteristics of CEEMDAN, in recent years, some researchers 

have tried to apply it to no-stationary time series analysis [29,30].The gated recurrent unit (GRU), like 

LSTM, is a recurrent neural network with a gating mechanism, but it has fewer parameters than 

LSTM, as it lacks an output gate. GRU's performance on certain tasks was found to be similar or even 

better to that of LSTM. A GRU network with a multi-layer stack structure has more powerful 

performance than a single-layer structure. The following experiments show that our proposed hybrid 

model goes on better than some other state-of-the-art’s in oil price forecast. 

The content of this paper is organized as follows: Section 2 review the background works related 

to our method. Section 3 introduce the proposed method in detail, Section 4 applies the proposed 

approach to forecast crude oil prices of West Texas Intermediate (WTI), then compares it with other 

standard models and some state-of-the-art hybrid models. Finally, Section 5 concludes the study and 

summarizes several main interesting issues for future research. 

2. Related Work 

This section will briefly review the existing works that closely relate to our proposed approach. 

2.1. Artificial Neural Networks (ANN) 

ANN is made up of many "neurons", whose output can be the input of another neuron. One 

kind of classic ANN, the multilayer perceptron (MLP) is illustrated in Figure 1. In the graph 

illustrated in this figure, the variable X represents the input, and the circles represent the "neurons" 

of the network. This ANN has three layers which relative positions, arranged from left to right, are 

in sequence: input layer, output layer, and hidden layer. In Figure 1, the circles represent the nodes 

of the network. 
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Figure 1. A multilayer perceptron (MLP) artificial neural network, which is a feedforward artificial 

neural network. 

There are m input neurons (nodes), n hidden neurons (nodes) and one output neuron (node) in 

this network that each layer of neurons receives inputs from the previous layers. This type of network 

is also called a multi-layer feedforward network, where the output of a node in one layer is the input 

of the next layer. The nodes in the hidden layer receive the output of the previous layer and perform 

weighted linear combination of the inputs. The result is then modified by an activation function 

before being output. We introduce several concepts that are closely related to neural networks: 

(1) Activate Function, it can normalize the output to a given range to ensure that the model is 

convergent. Each neuron accepts input and passes it through an activation function. The 

commonly used activation functions include Sigmoid, Tanh and ReLu. 

(2) Backpropagation, it is an algorithm commonly used to train the neural networks. After the 

inputs are loaded into the network, they pass forward through the neural network. Given an 

initial weight, the network provides an output for each neuron. When there is an error between 

the classification or regression results and the observations, the back-propagation mechanism 

comes into play. It helps to adjust the weights of the neurons, bringing the results closer and 

closer to the known true results.  

(3) Optimization algorithm, they are commonly used mathematical techniques in neural network 

optimization, and use the backpropagation to calculate the gradients. An example is gradient 

descent, the most common optimization method. In each training cycle, the best strategy for 

parameter (weight) adjustment is determined by observing the derivative of the error function 

with respect to each parameter. It enables the parameters to be updated in the negative gradient 

direction of the error function during each training to achieve the purpose of minimizing the 

error. In deep learning, the commonly used optimizers include stochastic gradient descent 

(SGD), adaptive gradient algorithm (Adagrad), adaptive moment estimation (Adam), etc. 

2.2. Backpropagation 

In ANN, especially in deep learning, backpropagation is an algorithm widely used to train feed-

forward neural networks for supervised learning. The backpropagation algorithm is to compute the 

gradient of the loss function with respect to each parameter by the chain rules, and iterate backward 

from the last layer to avoid repeating calculation of the intermediate term of the chain. All of deep 
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learning models mentioned later, such as recurrent neural network (RNN), LSTM and GRU use the 

backpropagation for training the network. The MLP is also shown in Figure 1. 

Given a training set of m examples. The backpropagation algorithm is as follows: 

(1) Perform a forward propagation, and so on up to the output layer.  
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 is the bias associated with unit i in layer l. 
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neural network Figure 1 represent is given by: 
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This cost function is used to compute error between the actual output and the expected output.  

(3) Compute the partial derivatives with respect to (W,b): 

 ��
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The derivative tells us the direction of movement of the weight values and how to get a lower 

cost in the next iteration. 

2.3. Gradient Descent (GD) 

In neural networks or deep learning, GD is one of the most common optimization algorithms 

used to minimize the loss function by iteratively moving in the steepest direction. The process of 

updating the parameters (W,b) in one iteration of GD is as shown below: 

(1) Initialize the Δ�(�) and Δ�(�). 

(2) Use backpropagation to compute ∇W(l) ��,� and ∇b(l) ��,�. 

(3) Set: Δ�(�): = Δ�(�) + ∇�(�)�(�,�;�,�), Δ�(�): = Δ�(�) + ∇�(�)�(�,�;�,�) 

(4) Update the parameters: 
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where α is the learning rate, which specifies how aggressively the gradient descent should jump 

between successive iteration. 

3. Methodology 

This section will not only detail the method proposed in this paper, but also introduce some 

models that are closely related to the proposed method. They include signal processing algorithm 

such as EMD, EEMD and CEEMD, recurrent neural networks such as RNN, GRU and ML-GRU. 

3.1. EMD, EEMD and CEEMDAN 

Through EMD, the nonlinear and non-stationary signal can be adaptively decomposed into the 

limited IMFs based on local characteristic of time scales. The essence of this method is to eliminates 
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the interference of noise and identify the intrinsic oscillatory modes in the data empirically. To obtain 

the valuable instantaneous frequencies, the IMFs must satisfy two conditions: 

(1) The numbers of extremes and zero crossings of the sequence must be equal or differ by no more 

than one.  

(2) At any location, the mean of the envelope determined by the local extrema is zero [26]. 

The EMD is developed as follows: 

Connect all the local maxima (minima) with a cubic spline as the upper (lower) envelope. 

Get the first IMF by calculating the difference between the original data and local mean envelope: 

�(�) =
1

2
[�(�) − �(�)] (8) 

IMF(�) = �(�) − �(�) (9) 

where �(�) and �(�) are the upper envelope and the lower envelope respectively. If the difference 

original data X(t) to the mean envelope (M(t) meets the IMF constraints, this difference is the new IMF. 

The result of subtracting all the previous IMFs from original data is the current residue. Using 

the residue as the new input and repeating the above procedure, the next IMF can be obtained: 

��(�) = �(�) − ∑ IMF�
�
���   (10) 

IMF���(�) = ��(�) − IMF��� (11) 

where ��(�) is the residue series after K-th decomposition. A complete decomposition process stops 

when the residue, ��(�), has been a monotonic function.  

There are some drawbacks in EMD, mainly as follows: (a) In IMFs mode mixing exists. It means 

that the IMFs composed of oscillations of different time-scales and no longer have physical meaning. 

(b) The effects of end affect the results of decomposition. To overcome the drawbacks, Huang et al. 

[27] introduced a novel EEMD approach that utilizes the advantages of white noise to eliminate the 

effects of mode mixing. After EEMD, the reconstructed data includes residual noise and disparate 

parameters of noise can produce disparate number of modes [28].  

CEEMD, proposed by Torres et al. [28]. The final decomposition result is obtained by taking the 

average by adaptively adding white noise to the time series with the same magnitude and opposite 

direction. After engaging in EMD processing, the output of CEEMDAN obeys a Gaussian 

distribution. Compared with EEMD and CEEMD, this method effectively eliminates the problem of 

mode mixing, and no matter how many times the decomposition, the reconstruction error of the 

signal is almost zero, the completeness is better, and at the same time solves the problem of low 

decomposition efficiency, greatly reducing the calculation cost. CEEMDAN’s spectra shows a more 

accurate decomposition of the frequency than the EEMD’s. The same time series, the number of 

iterations of CEEMDAN shifting is usually equivalent to half of the EEMD’s.  

The implementation of the algorithm is summarized as follows: 

Generate a white noise plus series (��(�) = �(�) + ��(�)). Here, ��(�) denote the white noise of 

finite variance, while �(�) represent the original data. Then decompose ��(�) to obtain the IMFs: 

���� =
1

�
� ����

�(�)

�

���

 (12) 

where ��
�(�) is the white noise added at the j-th time with the mean equal to zero and variance equal 

to one. The imf� is the i-th mode component obtained after the signal is decomposed by CEEMDAN. 

Calculate the first residue: 

��(�) = �(�) − ���� (13) 

Decompose the residue to get the second IMF and calculate the second residue: 

 ���� =
�

�
∑ ��

�
��� ���(�) + �������

�
(�)��  (14) 

 ��(�) = ��(�) − ���� (15) 

Decompose the (k − 1)th residue of ����(�) and extract the ����(�) . The process can be 

demonstrated in the following equation (k = 2, 3, … K): 



Energies 2020, 13, 1543 7 of 20 

 

 ����(�) =
�

�
∑ ��

�
��� �����(�) + ����

�
����(��(�))� (16) 

Calculate the k-th residue: 

 ��(�) = �(�) − ∑ ����
�
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where k indicates the number of IMFs. The attributes of the original time series are denoted by all the 

IMFs exacted from different time-scales. The only residue demonstrates the trend, which is smoother 

than that of the original time series.  

3.2. GRU and Multi-LayerML-GRU 

3.2.1. RNN and GRU 

Among deep learning methods, RNN is a powerful method for processing time series data. It is 

widely used in many fields such as finance [31,32], industry and engineering [33], machine translation 

[34], speech recognition [35], economic prediction [36], and so on. As shown in Figure 2, RNN has 

certain information persistence capabilities, which enable information to be passed from one time-step 

to the next. However, the classic RNN does not have the ability to store and memorize data for a long 

time, so that it cannot capture long-term historical information. In addition, in the reverse process of 

model training, once the sequence is too long, the RNN will cause the problem of gradient explosion or 

gradient disappearance. To overcome these drawbacks, Hochreiter and Schmidhuber [37] proposed 

the LSTM neural network which is capable of learning long-term dependencies of time series, as well 

as forgetting the worthless information based on the current input. LSTM has since replaced RNN as 

the most widely used recurrent neural network. LSTM has four gated unit that capable adaptively 

regulate the information flow inside the unit. An LSTM neural network usually requires many gated 

units，which need train a large number of parameters and occupy more computing resources. In order 

to reduce the training parameters and simply the neural network, Cho et al. [38] proposed a neural 

network named GRU which only have two gated units in the hidden unit.  

 

Figure 2. Workflow graph of RNN. X denotes current input of neural network; Y denotes the output 

of neural network; W, U and O are the parameters of recurrent neural network; h is the neuron state 

of the hidden layer; The state at time t is related to the current input X and the hidden at time t−1. 

As one of the variants of RNN, the input and output structure of GRU neural network is the 

same as that of RNN and LSTM, as shown in the Figure 3 The neurons of GRU receive the hidden 

state (ht−1) of the neuron of the previous neuron, and the current input xt. After passing through the 

gating unit, the neural network gets the output yt and passes the hidden state ht to the next neuron. 
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Figure 3. The internal structure of the GRU cell. ��—Reset gate. It allows the cell to forget certain parts 

of the state; ��—Update gate.  

The GRU architecture, like LSTM, learns the long-term dependence of time series based on a 

gate mechanism that includes reset gate and update gate. The former is used to control how much 

information in the previous state will be ignored. The latter is used to control how much information 

from the historical state is brought into the current state. GRU neural networks, like other neural 

networks, consist of a large number of basic neurons. They are interconnected in a complex network. 

A single neuron cell is shown in Figure 2. The specific process is designed as follows: 

�� = �(����� + �ℎ�ℎ���) (18) 

�� = �(����� + �ℎ�ℎ���) (19) 

The internal structure of the GRU cell is shown in Figure 3. 

The update gate is used to control the extent to which the state information from the previous 

moment is retained to the current state. The more the value of the update gate approaches 0, the more 

the state information from the previous moment is brought into the current state. The update gate 

signal is the closer to 0, the more data it remembers. The closer to 1, the less it is forgotten. 

Begin with getting the gating signal, GRU gets the reset data through the gate; then combine it 

with the input �� , and use a tanh activation function to shrink the data to the range from −1 to 1. The 

formula is shown in the following: 

�� = ���ℎ ������ + �ℎ�(�� × ℎ���)� (20) 

The last step of GRU, we can call it "update memory" phase. Combined with the previous 

discussion, this step forgets some of the dimensional information passed in and add some new 

information inputted by the current neuron to the state variable ℎ�: 

 ℎ� = (1 − ��) × ℎ��� + �� × �� (21) 

3.2.2. Multi-Layer GRU Architecture 

If the problem is too complicated, a recurrent neural network with a single layer structure is not 

enough to abstract the problem, and a multi-layer neural network is a better alternative. The multi-

layer neural network has more hidden layers and more powerful computing capabilities which is the 

key to solving complex problems. The proposed model is one kind of forward multi-layer neural 

networks, which demand the input layer are required to have the same number of input dimensions 

as the input vector. The architecture and workflow of the ML-GRU are shown in Figure 4. The output 

dimensions of the last layer demand only be equal to the number of labels for classification or a single 

value of prediction for regression. With each training, the parameters are continuously updated. This 

process continues until the output of the network is closer to the desired output. 
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Figure 4. Architecture and workflow of ML-GRU. 

The multi-layer architecture determines that data flows through more neurons and more 

parameters need to be trained, as well as more powerful than the single layer network. If the recurrent 

neural network is too deep beyond what is necessary, the computational cost will be expensive. Also, 

the phenomenon of overfitting may occur. 

3.3. CEEMDAN-Based Multi-Layer Gated Recurrent Unit Networks (CEEMDAN-ML-GRU) 

In this study, we introduce a novel approach combining CEEMDAN and multi-layer GRU 

neural networks. We call this model CEEMDAN-ML-GRU for crude oil price forecasts. Figure 5 

shows the architecture and workflow of the hybrid model. It aimed at improving the exiting crude 

oil price forecast techniques, which are less efficient or have poor accuracy in dealing with nonlinear 

and nonstationary regression tasks.  

 

Figure 5. CEEMDAN-based Multi-layer Gated Recurrent Unit Networks (CEEMDAN-ML-GRU). 

This approach adopts a strategy of “divide and process”, which transforms a complicated issue into 

Several simple issues, and processes them independently. 
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Firstly, CEEMD technology is used to add positive and negative paired white noise to the 

original exchange rate sequence, which overcomes the problem of large EEMD reconstruction errors 

and poor completeness of decomposition, and effectively improves the decomposition efficiency. 

Then the original exchange rate sequence is decomposed into IMFs based on different characteristics. 

Finally, the multi-layer LSTM based forecasting model is input for each component, and each of the 

IMF prediction results is superimposed to obtain the desired overall prediction. 

As mentioned in the introduction, signal decomposition techniques such as wavelet transform, 

EMD and EEMD have been used for the analysis of time series of predicting energy prices. Machine 

learning, especially neural networks and deep learning methods, have also been applied to crude oil 

price forecasting to improve the learning process and prediction accuracy of crude oil price data. 

Signal decomposition technology is good at processing non-stationary data, and deep learning shows 

excellent performance when analyzing time series with nonlinear and long-term dependency 

characteristics. Some scholars have proved that integrating signal decomposition and deep learning 

methods for crude oil prices forecasting gained better results than only using a single method. In 

section 1,we have mentioned that Wu et al. [24] proposed a novel model based on EEMD and long 

LSTM for crude oil price forecast. We will compare them experimentally with the proposed method 

in the next section. This kind of hybrid model is able to synthesize the strengths of each hybrid 

method, and significantly avoids the negative impact of the single method's inherent disadvantages 

on prediction performance. 

The model first performs CEEMDAN on the original crude oil prices data. Then we input the 

previously decomposed IMF into the ML-GRU neural network. As for the output, it is meaningless 

to predict IMF alone, so we must use all the IMFs obtained by decomposing one sample at a time as 

the input of a single training or test to directly predict the price trend of crude oil. We use a one-step 

prediction strategy. By extracting the characteristics of IMFs, ML-GRU can use the crude oil prices 

trend data of the last p days to predict the price trend of the next day. CEEMDAN-ML-GRU 

prediction usually includes the following four main steps: 

Step 1: Data preparing. In order to make the data meet the requirements of the model input, we first 

preprocess the original data, where involved data cleaning, data reduction and data 

transformation. 

Step 2: Data decomposition. The training and test sets are decomposed into sets of IMFs and residue 

using the CEEMDAN method. The original complex time series x(t ), t = 1, 2, . . . , n  is split 

into a training set and a test set in a supervised form. 

Step 3: Model training. Input the IMFs of training set into Multi-layer GRU neural network for training. 

Step 4: Price forecasting. Input the IMFs of test set into the trained multi-layer neural network to 

make one-step ahead forecasting for verification. 

4. Experiments  

4.1.  Datasets  

In this section, through a series of experiments, we verified the proposed CEEMDAN-ML-GRU 

model is more advanced than the state-of-the-art methods, which include the EEMD-LSTM. In order to 

measure and compare the forecasting performance of different models, WTI crude oil prices is 

employed for the sample data set for the experiment. This dataset source is the U.S. Energy Information 

Administration (EIA; http://www.eia.doe.gov/) and has 8321 observations that include all daily data 

from 2 January 1986 to 3 January 2019. A test set with 1664 observations is used to evaluate the 

prediction performance. The daily chart of WTI crude oil prices is illustrated in Figure 6. 
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Figure 6. The daily chart of WTI crude oil prices from 2 January 1986 to 3 January 2019. 

4.2. Evaluation Metrics and Baselines 

Following, we adopt three metrics including the root mean squared error (RMSE), mean 

absolute percent error (MAPE) and Diebold-Mariano (DM) to evaluate our model. 

(1) Root mean squared error (RMSE): 

 RMSE(y,y�) = �∑ (��-y��)��
i=1

�
 (22) 

RMSE is one of the most common metrics and often used to measure the deviation between 

observations and prediction in the task of machine learning models. The letter y in the formula above 

denotes the observations, �� is the prediction, and N indicate the number of samples. 

(2) Mean absolute error (MAE): 

 MAE(y,y�) =
∑ |��-y��|�

i=1

�
 (23) 

(3) MAE can better reflect the actual situation of the error of prediction. Mean Absolute Error 

Percentage (MAPE): 

 MAPE(y,y�) =
1

�
∑ �

��-y��

��
��

i=1  (24) 

MAPE measures not only the absolute error between the predicted value and the observations, 

but also the relative distance. Unlike the previous two metrics, MAPE stands for percentage error, 

which can help it compare errors between different data sets. 

(4) Diebold-Mariano Test (DM test): 

 DM =
��

����������
ℎ�����/�

 (25) 

It is used to test the statistical significance of the forecast accuracy of two forecast methods. 

Variable d is the subtraction of absolute error of the two methods. � is the mean of di. �� is the 

autocovariance at lag k. DM ∼ N(0, 1), if the  p-value >  �  , we conclude there is no significant 

difference between the two forecasts. 

An ideal metric is not only reflected in the description of prediction accuracy, but also required 

to reflect the distribution characteristics of errors. Because of their effectiveness, these metrics are 

widely used for error measurement in regression or prediction tasks. The definition of each metric is 

different. When the sample size is large enough, RMSE is more reliable. RMSE is more suitable for 

Gaussian distribution error measurement than MAE, and MAE has a better performance in 

measuring uniform error. A single metric is not enough to judge the pros and cons of the model. We 

need to combine multiple metrics to determine the pros and cons of the model [39].  

To verify that the proposed method is advanced, we compare our method with a series of 

models, most of them mentioned in previous sections. These models include not only the common 

models such as: naïve forecasts(that the prediction is the same as the last period), ARRIMA, least 

squares SVR (LSSVR), ANN RNN, LSTM, but also some hybrid models such as : EEMD-ELM, EEMD-

LSSVR, EEMD-ANN, EEMD-RNN, EEMD-LSTM and EEMD-SBL-ADD. Both EEMD-LSTM and 
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EMD-SBL-ADD have been proposed in the last two years and represent the current state-of-the-art 

approaches for crude oil forecasting. 

4.3. Experimental Settings 

There is one input layer, two hidden layers of GRU and one dense layer in our proposed model. 

Figure 7 illustrate its Tensorflow computation graph which indicate the network architecture in our 

method. Each input sample is a matrix of n × m, which is represented by a NumPy array. ‘n’ is the 

lagging order and 'm' is the number of IMFs and residue. By trial and error, we determine set the 

number of hidden neurons to 32 and MSE as the loss function. The optimizer of training is adaptive 

moment estimation (Adam) which solve the problems of other algorithm, such as learning rate 

disappearing, convergence slowly or loss function fluctuating greatly. The learning rate in following 

experiment is set to 0.01. We adopt the strategy of one day ahead prediction to carry out our tasks. In 

other words, the prices of the past n days (p1, p2, ... pn−1, pn) is used to predict the price of the (n + 1)th 

day. Letter n is called the lag order which related to the size of neuron of the GRU. We adopt a 

strategy of grid search to determine the number of lagging order that is important for time series 

analysis. By trial and error, the lag order was set to 32. 

 

Figure 7. TensorFlow computation graphs of the network structure of proposed model. This figure 

illustrates the data dependencies and control dependencies. The solid arrows indicate the data 

dependencies that show the flow of tensors between two ops, while dotted lines indicate the control 

dependencies. 

For comparison purposes, we set the same initialization parameters for several deep learning 

models that participated in the experiment. For other parameters, since they have little effect on the 

results, we set the parameters to default. 

The methods mentioned in the previous literature will be compared to our introduced approach 

in the performance of crude oil prices forecasts. These methods include not only the single model, 

LSSVR, ANN, ARIMA, and LSTM, but also the hybrid method EEMD-LSTM, which is considered 

the state-out-of- art method in crude oil prices forecasting. 
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In this study, all experiments are conducted in Python 3.7 via several specialized package, such 

as TensorFlow-GPU 2.0, Pyeemd 1.4, Keras 2.3 and so on. All experiments are conducted on a PC 

with a 3.2 GHz CPU, 16 GB RAM and 12 GB CG card. 

4.4. Experimental Process, Result and Analysis 

4.4.1. Data Decomposition 

The original WTI crude oil is decomposed to 13 components which include 12 IMFS and one 

CEEMDAN residue, where we added the white noise with standard deviation of 0.01 and the number 

of ensemble size is equal to the size of dataset. Then the IMFs and residue are splinted into the train 

set and test set. Both them are illustrated in Figure 8, in which the left part of dotted line is train set 

and the right part is test set. 

By trial and error, we determine the parameters of ensemble size of 0.05 and noise strength of 

100. It means that the white noise data with standard deviation of 0.05 and quantity of 100 will be 

added to the original data. Before data decomposition, we initialize the other parameters of the 

algorithm. Table 1 shows the names and descriptions of the main parameters. Table 2 shows the 

parameter settings. 

Table 1. EEMD and CEEMDAN parameters description. 

Parameter Description 

spline_kind Defines type of spline, which connects extrema 

nbsym Number of extrema used in boundary mirroring 

max_imf IMF number to which decomposition should be performed 

ensemble_size Number of trials or EMD performance with added noise 

noise_strength Standard deviation of the additional noise. 

Table 2. Parameters settings. 

Method nbsym max_imf trials noise_width/epsilon 

EEMD 2 ALL 100 0.05 

CEEMDAN 2 ALL 100 0.05 

The time–frequency spectra of IMFs and the residue by CEEMDAN after decomposition are 

shown in Figure 8. We divide the original data and the decomposed result into a training set and a 

test set. The former accounts for 80% of the entire dataset, and the latter accounts for the remaining 

20%. As shown in Figure 8, the data on the left side of the dotted line constitutes the training set, and 

the test set is on the right. As one kind of supervised learning algorithm, the input paired to the 

desired output in both the training and test sets. 
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Figure 8. The time–frequency spectrums of IMFs obtained by CEEMDAN. The top sub-picture shows 

the original WTI price data. The next 12 images represent intrinsic mode functions (IMF), which is 

listed in the order from the high to the low frequencies. The last component is the residue, which 

represents the portion of the original data not decomposed and the real trend of the original data. 

4.4.2. Training/Learning 

After the model is build, we move on to the next step: training/learning. In this process, the 

training data is continuously feed into the model to incrementally improve the model’s predictive 

performance. Both the loss function and optimizer of adaptive moment estimation (Adam) 

mentioned earlier are used to evaluate and optimize the model in training to achieve the purpose of 

model optimization. The workflow of training as shown in Figure 9. 
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Figure 9. Workflow of training. 

The trend of the loss function curve during the iteration of model training from 1st to 100th 

epoch is shown in the Figure 10.  

 

Figure 10. The loss curve graph of model. 

The optimization algorithm mentioned above determines the optimization efficiency of the 

model, while loss represents the distance between the prediction and the observation. From the 

preceding graph, we observe that the loss curve descends rapidly in the initial epochs of training 

iteration, which shows that the model is optimized significantly by tuning the hyperparameter. 

However, between the 25th and 35th epochs of training, the loss curve is flat due to adaptive 

adjustment of the learning rate. After that, the curve continues to descend rapidly. The curve 

descending slowly means that loss saturated after 70 epochs of iterations. After 100 training epochs, 

the loss (MSE) has descended to a very low level. In fact, we conducted 2500 epochs experiment for 

each model, with 120 samples per batch. Once the training\learning of the hyperparameters (weight) 
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in the model is completed, the model can be used in the tasks of crude oil price forecasts. The 

experimental results are shown later in the paper. 

4.4.3. Predictive Performance of Different Single Model 

We propose a hybrid model that includes two components, a decomposition algorithm 

CEEMDAN and a prediction model Multi-layer GRU. In order to make the method evaluation more 

accurate, we adopt a combination of independent evaluation and overall evaluation. So, we expand 

single model comparison and hybrid model comparison between two sets of experiments.  

Here, we will evaluate our proposed CEEMD-ML-GRU's effectiveness for improving forecasting 

accuracy. The compared single models included the naïve forecasts, one classical time series method 

of ARIMA, two famous machine models of LSSVR and ANN and two popular deep learning model 

of LSTM and GRU. The samples used in each iteration of the deep learning model are randomly 

drawn, which makes the results of each prediction different. In order to improve the robustness of 

the model, experiments with each parameter condition were required to be trained 100 times. In order 

of performance, the metric at the median position represents the model. The results are shown in 

Table 3.  

Table 3. Predictive performance comparison of single methods. 

Metrics 
Methods 

ML-GRU GRU LSTM LSSVR ANN ARIMA Naive 

RMSE 1.2869 1.4820 1.4818 1.6473 1.5223 2.4861 1.5336 

MAE 1.2424 1.3817 1.3788 1.5219 1.3649 2.2134 0.9271 

MAPE 0.0138 0.0152 0.0153 0.0168 0.0156 0.0268 0.0152 

From Tables 3–5, we can see that: 

(1) Among all these models, the multi-layer GRU (ML-GRU) stacking network performed the best on 

the metrics of RMSE and MAPE. As shown in Table 5, ML-GRU significantly outperformed higher 

prediction accuracy than other single models. This phenomenon further illustrates that the multi-

layer neural network can be used to solve complex issues. 

(2) Both GRU and LSTM, designed for long term dependencies of time series show better performance 

than other traditional machine learning models for crude oil price forecasts. From Table 3, we 

observe that there is no significant difference between the LSTM and GRU models in the task of 

crude oil price prediction. Table 4 indicates that GRU has higher efficiency than LSM, because GRU 

network needs 30% less hyperparameters that need be learned than LSTM, during the training 

process. It means that GRU neural network use less training parameters comparing to LSTM, and 

therefore use less resources of computing and storage, execute faster and train faster than LSTM's. 

(3) It is interesting that the comprehensive score of the naive forecasts surpasses classical methods 

such as ARIMA, ANN and LSSVR, and even achieve the best score on MAE. This phenomenon 

indicates that the complex crude oil price trends are difficult to predict. Misuse of some models, 

the result is even worse than doing nothing.  

(4) While ARIMA performed the worst. The results further confirm that ARIMA, a classic time series 

analysis model, doesn’t perform well at issues of nonlinear and non-stationary time series. 

Table 4. Comparison of GRU and LSTM model in the number of parameters. 

Method Input Shape Output Shape Total Params 

GRU (32, 13) (32, 32) 4416 

LSTM (32, 13) (32, 32) 5888 
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Table 5. The Diebold–Mariano (DM) test results for single models on WTI crude oil prices. 

DM test 
Benchmark Model 

GRU LSTM LSSVR ANN ARIMA Naive 

ML-GRU 
−2.1644 

(0.02365) 

−2.319 

(0.02017) 

−15.6146 

(0.0000) 

−3.4532 

(0.0000) 

−20.198 

(0.0000) 

−2.1581 

(0.02517) 

4.4.4. Effect of Selecting Different Hybrid Approaches 

On the basis of the previous single model prediction, we continue to evaluate the performance 

of the hybrid model based on the decomposition method. Table 6 shows the prediction performance 

of the corresponding hybrid models based on EEMD or CEEMDAN. Table 7 demonstrates that the 

result of DM test between CEEMDAN-ML-GRU and the other two models.  

Table 6. The experimental results in terms of hybrid approaches on WTI crude oil prices forecasting. 

Metrics 
EEMD CEEMDAN 

RMSE MAE MAPE RMSE MAE MAPE 

ML-GRU 0.9619 0.9341 0.00987 0.9276 0.9134 0.0094 

GRU 0.9912 0.9719 0.0106 0.9334 0.9278 0.0101 

LSTM 0.9862 0.965 0.0104 0.9329 0.9261 0.0099 

LSSVR 1.1265 1.0847 0.0116 1.1197 1.0903 0.0114 

ANN 1.0508 1.0121 0.0106 1.0476 1.0118 0.0105 

Table 7. The Diebold–Mariano (DM) test results for hybrid models on WTI crude oil prices. 

Benchmark Model 

DM test ML-GRU EEMD-LSTM 

EEMD-ML-GRU CEEMDAN-ML-GRU −6.3309(0.0000) −1.759(0.0776) 

-15.6146(0.0000) 

In this set of experiments, we added a prediction model based on the EEMD decomposition 

algorithm, and these hybrid models have appeared in the latest literature. Each single model combines 

CEEMDAN and EEMD respectively, and thus two sets of mixed methods will be obtained. 

Subsequently, these models were tested in the WTI crude oil price prediction task to derive who is the 

optimal model. Table 6 demonstrates the predictions of different hybrid models. From the Tables 6 and 

7, we can observe that: 

(1) Both EEMD and CEEMDAN plus prediction models outperform single model significantly 

in this prediction task. It indicates that machine learning models with signal processing algorithm 

based contribute to the better forecasting performance in the nonlinear and non-stationary time series 

analysis. 

(2) The hybrid model based on CEEMDAN has better prediction accuracy than that based on 

EEMD's. The residual noise from the components decomposed by EEMD, cause a certain extent of 

reconstruction error, and affect the overall predictive accuracy ultimately.  

(3) The ML-GRU with multi-layer architecture still performs better than the GRU with single-

layer architecture on the decomposed data. CEEMDAN-ML-GRU, our proposed method has been 

verified to the best method for the task of crude oil price forecasting. 

5. Conclusions  

In this study, a hybrid model called CEEMDAN-ML-GRU for crude oil price forecasting is 

proposed. This model takes full use of the advantages of the signal processing algorithm CEEMDAN 

and the multi-layer gated recurrent unit networks (ML-GRU). As mentioned in the previous section, 

the hybrid model uses CEEMDAN to solve the non-stationarity problem of crude oil price data, and 

generalizes the nonlinear crude oil prices data by a multi-layered GRU neural network. We conduct 

a large number of experiments to verify the effect of the proposed method in forecasting task by using 
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the WTI price data as sample data. The experimental results show that our proposed method goes 

beyond other traditional statistical methods, machine intelligent algorithms and other hybrid models, 

which include the EEMD-LSTM method proposed in 2019. 

In addition to crude oil price forecasts, the introduced CEEMDAN-ML-GRU model can also be 

extended to solve other complex problems in other areas, such as time series forecasts or risk 

measurements in financial markets. The main purpose of this approach is to improve the accuracy of 

short-term crude oil price predictions and help decision makers minimize the risks of the crude oil 

market. However, the proposed method is mainly applied to short-term forecasts, so only daily data 

is used. If we need to predict long-term price trends, we need to combine this method with economic 

theory or measurement methods to play a greater role. This is exactly the research plan that we will 

follow in our future research. 
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