

Energies 2020, 13, 1543; doi:10.3390/en13071543 www.mdpi.com/journal/energies

Article

Crude Oil Prices Forecasting: An Approach of Using
CEEMDAN-Based Multi-Layer Gated Recurrent
Unit Networks

Hualing Lin * and Qiubi Sun

The Department of Statistics, School of Economics and Management, Fuzhou University,

Fuzhou 350018, China; sqb@fzu.edu.cn

* Correspondence: m160710006@fzu.edu.cn

Received: 26 February 2020; Accepted: 23 March 2020; Published: 25 March 2020

Abstract: Accurate prediction of crude oil prices is meaningful for reducing firm risks, stabilizing

commodity prices and maintaining national financial security. Wrong crude oil price forecasts can

bring huge losses to governments, enterprises, investors and even cause economic and social

instability. Many classic econometrics and computational approaches show good performance for

the ordinary time series prediction tasks, but not satisfactory in crude oil price predictions. They

ignore the characteristics of non-linearity and non-stationarity of crude oil prices data, which hinder

an accurate prediction and eventually lead to poor accuracy or the wrong result. Empirical mode

decomposition (EMD) and ensemble EMD (EEMD) solve the problems of non-stationary time series

forecasting, but they also generate new problems of mode mixing and reconstruction errors. We

propose a hybrid method that is combination of the complete ensemble empirical mode

decomposition with adaptive noise (CEEMDAN) and multi-layer gated recurrent unit (ML-GRU)

neural network to solve the abovementioned issues. This not only deals with the issue of mode

mixing effectively, but also makes the reconstruction error of data close to zero. Multi-layer GRU

has an excellent ability of nonlinear data-fitting. The experimental results of real WTI crude oil

dataset show that the proposed approach perform better in crude oil prices forecasts than some

state-of-the-art models.

Keywords: crude oil prices; forecasting; complete ensemble empirical mode decomposition with

adaptive noise (CEEMDAN); multi-layer gated recurrent unit (ML-GRU)

1. Introduction

Crude oil was once considered to be the blood flowing through the veins of the world economy

and played an extremely critical role in the development of the world economy. According to a report

by the U.S. Energy Information Administration (EIA), although renewable energy production and

consumption both reached their highest share in 2018, fossil fuel still accounted for 80% of the United

States’ energy consumption. In light of the International Energy Agency (IEA) data, the global

consumption of oil reached 1.0075 million barrels per day in 2019. In meeting world energy needs, oil

still plays the most important role. Asian emerging market countries have become the main contributors

to the growth in crude oil demand. The rapid economic growth has prompted them to significantly

increase demand for crude oil. For example, China's oil consumption has soared from an average of

69,700 barrels per day in 2005 to 145,100 barrels per day in 2019. As a production factor, the increase in

crude oil prices will lead to an increase in the non-oil companies’ production costs and a decrease in

profits. Sadorsky [1] verified the impact of fluctuations in crude oil prices on companies of different

firm size through evidence from the stock market. Rising oil prices may lead to inflation and hinder

economic growth. Volatility in oil prices increases risk and uncertainty to financial markets [2]. Not only

Energies 2020, 13, 1543 2 of 20

that, but the continued collapse or the sudden plunge in oil prices can also have a huge impact on the

economic development and financial markets of oil-producing countries [3]. An obvious piece of

evidence is the crisis signal coming from the credit default swap (CDS) market. The widening of the

CDS spread means that weak crude oil prices have caused investors to worry about the fiscal

sustainability of some oil producing countries [4]. The study of Haushalter et al. [5] concluded that there

is a negative correlation between the price of crude oil and the debt ratio of oil producers.

Based on the above discussion, it is obviously of great significance to find a method that can

accurately predict the price of crude oil. This means that policy makers will have more time to

introduce countermeasures to achieve the goal of avoiding or reducing risks. However, the trend of

oil prices is affected by not only the factors of market supply and demand, but also the other non-

market factors, such as geopolitical, alternative forms of energy, recession, war, natural disasters, and

technological development. Various uncertainties affect the crude oil market. The fluctuations in

these factors cause the nonlinear, volatile, and chaotic tendency of crude oil prices. Therefore,

achieving sufficiently reliable and accurate forecasting of crude oil prices has become one of the most

challenging issues.

In the past decades, various techniques have been tried to forecast the trend of crude oil prices.

The classic statistical or econometric models such as autoregressive integrated moving average

(ARIMA) model and the autoregressive conditional heteroskedasticity (ARCH)/generalized ARCH

(GARCH) family model are widely used in the time series prediction tasks [6–12]. Zhao and Wang

[9] used the ARIMA model to model and predict crude oil prices based on the international crude oil

prices data from the 1970s to 2006. Mohammadi and Lixian [13] applied the ARIMA-GARCH model

to forecast the conditional mean and volatility of weekly crude oil spot prices in eleven international

markets. Aamir and Shabri [14] used the Box-Jenkins ARIMA, GARCH and ARIMA-Kalman models

to model and forecast the monthly crude oil prices in Pakistan. The premise of applying these classic

models represented by ARMA /ARIMA is that there is an autocorrelation in the crude oil prices series.

So, the historical data is used to infer the future prices of crude oil. These methods are suitable for

capturing the linear relationships in time series analysis but not for the nonlinear time series [15]. In

addition to the classical methods mentioned above, the survey forecasting method is another

alternative method for crude oil price forecasting [16]. Kunze et al. [17] empirically studied the

performance of survey-based predictions of crude oil prices. The evaluation shows that the prediction

accuracy of the survey-based forecasts is not as good as that of the naive method in the short-term

crude oil prediction, but with the rise of the prediction horizon, the accuracy of the former will exceed

that of the naive method. This study demonstrates that survey predictions are not suitable for the

short-term prediction of crude oil prices.

Owning to the drawbacks of the classic approaches and the special features of crude oil price

data, artificial intelligence (AI), such as machine learning, deep learning or hybrid methods provide

more excellent nonlinear data predictive performance. In term of forecasting crude oil prices, the

approaches of AI are being widely used as alternative to the classic technologies. Li et al. [18]

proposed an approach that incorporates ensemble empirical mode decomposition (EEMD), sparse

Bayesian learning (SBL), for forecasting crude oil prices. Xie et al. [19] used support vector machines

to forecast crude oil prices and compared the performance with ARIMA and BPNN’s. Experiments

show that SVM has better performance than the other two methods. Fan et al. [20] propose an

independent component analysis based SVR scheme, for crude oil prices predictions. This approach

starts from an independent component analysis to decompose crude oil prices series into

independent components, which are respectively forecasted by support vector regression (SVR).

Crude oil prices trends have significant nonlinear and non-stationary characteristics. Regardless

of the traditional statistics or machine learning methods, it is difficult to obtain satisfactory results by

directly predicting the original crude oil prices series. Therefore, scholars usually adopt the method

that, first, the original crude oil prices series is decomposed into multiple same time scales or

relatively simple sub-sequences by a signal decomposition algorithm. Next, create multiple subtasks.

Each sub-task completes the prediction of a sub-sequence individually. Finally, the results of all

subtasks are linearly calculated and the forecasting is obtained. Common signal decomposition

Energies 2020, 13, 1543 3 of 20

methods, such as the wavelet transform, EMD, and EEMD, have been widely used to process the

non-stationary time series. Yu et al. [21] proposed an EMD-based neural network crude oil price

forecasting. He et al. [22] come up with a wavelet-based ensemble model to improve the predictive

accuracy of oil prices. This approach introduced the wavelet to generate dynamic basic data within a

finer time-scale domain. Hamid and Shabri [23] proposed a wavelet multiple linear regression

method in daily forecasts of crude oil price. Wu et al. [24] propose a model based on EEMD and long

short-term memory (LSTM) for crude oil price forecasting. Zhou et al. [25] introduced a hybrid

approach of complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)

and XGBOOST-based approach to forecast crude oil prices.

Both wavelet analysis and EMD are becoming the common tools for analyzing non-stationary

time series but have their own limitations. The wavelet method can’t achieve an adaptive

decomposition in the light of time scales. It has been proven above that EMD perform well in

extracting signals from the non-stationary data. Mode mixing is the main limitations of EMD. It is a

consequence of signal intermittency which could result in the physical meaning of individual

intrinsic mode function (IMF) unclear [26]. To overcome this limitation of EMD, an ensemble EMD

named EEMD, was subsequently introduced by Wu and Huang [27]. EEMD adds white noise to the

original signal. After a sufficient number of EMD tests, the only lasting component of signal is then

identified as the substantial answer. EEMD eliminates the effects of mode mixing of EMD, but still

retains some noise in the IMFs, which affect the accuracy of signal reconstruction [28].

In summary, much effort has been made to improve the accuracy of forecasting crude oil prices,

but a more effective approach should be developed. The goal of this study is to propose a new novel

approach of CEEMDAN-based multi-layer gated recurrent unit networks (CEEMDAN-ML-GRU).

CEEMDAN is a variant of EEMD. In the applying of CEEMDAN, the multiple groups of adaptive

white noise is added to the original data at each stage of the decomposition and a unique residue is

computed to obtain each mode. CEEMDAN is complete, with a numerically negligible error of signal

reconstruction. Due to the excellent characteristics of CEEMDAN, in recent years, some researchers

have tried to apply it to no-stationary time series analysis [29,30].The gated recurrent unit (GRU), like

LSTM, is a recurrent neural network with a gating mechanism, but it has fewer parameters than

LSTM, as it lacks an output gate. GRU's performance on certain tasks was found to be similar or even

better to that of LSTM. A GRU network with a multi-layer stack structure has more powerful

performance than a single-layer structure. The following experiments show that our proposed hybrid

model goes on better than some other state-of-the-art’s in oil price forecast.

The content of this paper is organized as follows: Section 2 review the background works related

to our method. Section 3 introduce the proposed method in detail, Section 4 applies the proposed

approach to forecast crude oil prices of West Texas Intermediate (WTI), then compares it with other

standard models and some state-of-the-art hybrid models. Finally, Section 5 concludes the study and

summarizes several main interesting issues for future research.

2. Related Work

This section will briefly review the existing works that closely relate to our proposed approach.

2.1. Artificial Neural Networks (ANN)

ANN is made up of many "neurons", whose output can be the input of another neuron. One

kind of classic ANN, the multilayer perceptron (MLP) is illustrated in Figure 1. In the graph

illustrated in this figure, the variable X represents the input, and the circles represent the "neurons"

of the network. This ANN has three layers which relative positions, arranged from left to right, are

in sequence: input layer, output layer, and hidden layer. In Figure 1, the circles represent the nodes

of the network.

Energies 2020, 13, 1543 4 of 20

Figure 1. A multilayer perceptron (MLP) artificial neural network, which is a feedforward artificial

neural network.

There are m input neurons (nodes), n hidden neurons (nodes) and one output neuron (node) in

this network that each layer of neurons receives inputs from the previous layers. This type of network

is also called a multi-layer feedforward network, where the output of a node in one layer is the input

of the next layer. The nodes in the hidden layer receive the output of the previous layer and perform

weighted linear combination of the inputs. The result is then modified by an activation function

before being output. We introduce several concepts that are closely related to neural networks:

(1) Activate Function, it can normalize the output to a given range to ensure that the model is

convergent. Each neuron accepts input and passes it through an activation function. The

commonly used activation functions include Sigmoid, Tanh and ReLu.

(2) Backpropagation, it is an algorithm commonly used to train the neural networks. After the

inputs are loaded into the network, they pass forward through the neural network. Given an

initial weight, the network provides an output for each neuron. When there is an error between

the classification or regression results and the observations, the back-propagation mechanism

comes into play. It helps to adjust the weights of the neurons, bringing the results closer and

closer to the known true results.

(3) Optimization algorithm, they are commonly used mathematical techniques in neural network

optimization, and use the backpropagation to calculate the gradients. An example is gradient

descent, the most common optimization method. In each training cycle, the best strategy for

parameter (weight) adjustment is determined by observing the derivative of the error function

with respect to each parameter. It enables the parameters to be updated in the negative gradient

direction of the error function during each training to achieve the purpose of minimizing the

error. In deep learning, the commonly used optimizers include stochastic gradient descent

(SGD), adaptive gradient algorithm (Adagrad), adaptive moment estimation (Adam), etc.

2.2. Backpropagation

In ANN, especially in deep learning, backpropagation is an algorithm widely used to train feed-

forward neural networks for supervised learning. The backpropagation algorithm is to compute the

gradient of the loss function with respect to each parameter by the chain rules, and iterate backward

from the last layer to avoid repeating calculation of the intermediate term of the chain. All of deep

X1

input layer

Y

outputlayerhidden layer

X2

W[1]

……

Xm

bias

……

W[2]

b[1]

Z2[1]

Z2[2]

Z2[n]

S2[1]

S2[2]

S2[n]

Z3[1]S3[1]……

b[2]

X

Energies 2020, 13, 1543 5 of 20

learning models mentioned later, such as recurrent neural network (RNN), LSTM and GRU use the

backpropagation for training the network. The MLP is also shown in Figure 1.

Given a training set of m examples. The backpropagation algorithm is as follows:

(1) Perform a forward propagation, and so on up to the output layer.

 ��
��� = ∑ ���

(�)�
��� �� + ��

(�)
 (1)

 ��
(���)

= �(��
���) = �(∑ ���

(�)�
��� �� + ��

(�)
) (2)

 ��,�
(���)

(�) = �(∑ ��
(���)

+ ��
�
���). (3)

The (W,b) is the parameter where ���
(�)

 denote the weight associated with the connection

between unit i in layer l, and unit j in layer l + 1. ��
(�)

 is the bias associated with unit i in layer l.

� denotes the sigmoid function, which can transform the data into a value in the range of 0–1, thereby

serving as a gate signal. ��
(�)

 denote the activation of unit i in layer l. The computation steps of the

neural network Figure 1 represent is given by:

��
(�)

= �����
(�)

�� + ���
(�)

�� + ���
(�)

�� + ��
(�)

�

��
(�)

= �����
(�)

�� + ���
(�)

�� + ���
(�)

�� + ��
(�)

�

��
(�)

= �����
(�)

�� + ���
(�)

�� + ���
(�)

�� + ��
(�)

�

��,�(�) = ��
(�)

= �����
(�)

��
(�)

+ ���
(�)

��
(�)

+ ���
(�)

��
(�)

+ ��
(�)

�

(2) Define the overall cost function to be:

 ��,� =
�

�
∑ �

�

�
���,�(�) − ��

�
��

��� (4)

This cost function is used to compute error between the actual output and the expected output.

(3) Compute the partial derivatives with respect to (W,b):

 ��
� =

���,�

��
�
(�) �′(∑ ��

(���)
+ ��

�
���) (5)

The derivative tells us the direction of movement of the weight values and how to get a lower

cost in the next iteration.

2.3. Gradient Descent (GD)

In neural networks or deep learning, GD is one of the most common optimization algorithms

used to minimize the loss function by iteratively moving in the steepest direction. The process of

updating the parameters (W,b) in one iteration of GD is as shown below:

(1) Initialize the Δ�(�) and Δ�(�).

(2) Use backpropagation to compute ∇W(l) ��,� and ∇b(l) ��,�.

(3) Set: Δ�(�): = Δ�(�) + ∇�(�)�(�,�;�,�), Δ�(�): = Δ�(�) + ∇�(�)�(�,�;�,�)

(4) Update the parameters:

 ���
(�)

= ���
(�)

− �
�

��
��
(�) �(�,�) (6)

��
(�)

= ��
(�)

− �
�

��
�
(�) �(�,�) (7)

where α is the learning rate, which specifies how aggressively the gradient descent should jump

between successive iteration.

3. Methodology

This section will not only detail the method proposed in this paper, but also introduce some

models that are closely related to the proposed method. They include signal processing algorithm

such as EMD, EEMD and CEEMD, recurrent neural networks such as RNN, GRU and ML-GRU.

3.1. EMD, EEMD and CEEMDAN

Through EMD, the nonlinear and non-stationary signal can be adaptively decomposed into the

limited IMFs based on local characteristic of time scales. The essence of this method is to eliminates

Energies 2020, 13, 1543 6 of 20

the interference of noise and identify the intrinsic oscillatory modes in the data empirically. To obtain

the valuable instantaneous frequencies, the IMFs must satisfy two conditions:

(1) The numbers of extremes and zero crossings of the sequence must be equal or differ by no more

than one.

(2) At any location, the mean of the envelope determined by the local extrema is zero [26].

The EMD is developed as follows:

Connect all the local maxima (minima) with a cubic spline as the upper (lower) envelope.

Get the first IMF by calculating the difference between the original data and local mean envelope:

�(�) =
1

2
[�(�) − �(�)] (8)

IMF(�) = �(�) − �(�) (9)

where �(�) and �(�) are the upper envelope and the lower envelope respectively. If the difference

original data X(t) to the mean envelope (M(t) meets the IMF constraints, this difference is the new IMF.

The result of subtracting all the previous IMFs from original data is the current residue. Using

the residue as the new input and repeating the above procedure, the next IMF can be obtained:

��(�) = �(�) − ∑ IMF�
�
��� (10)

IMF���(�) = ��(�) − IMF��� (11)

where ��(�) is the residue series after K-th decomposition. A complete decomposition process stops

when the residue, ��(�), has been a monotonic function.

There are some drawbacks in EMD, mainly as follows: (a) In IMFs mode mixing exists. It means

that the IMFs composed of oscillations of different time-scales and no longer have physical meaning.

(b) The effects of end affect the results of decomposition. To overcome the drawbacks, Huang et al.

[27] introduced a novel EEMD approach that utilizes the advantages of white noise to eliminate the

effects of mode mixing. After EEMD, the reconstructed data includes residual noise and disparate

parameters of noise can produce disparate number of modes [28].

CEEMD, proposed by Torres et al. [28]. The final decomposition result is obtained by taking the

average by adaptively adding white noise to the time series with the same magnitude and opposite

direction. After engaging in EMD processing, the output of CEEMDAN obeys a Gaussian

distribution. Compared with EEMD and CEEMD, this method effectively eliminates the problem of

mode mixing, and no matter how many times the decomposition, the reconstruction error of the

signal is almost zero, the completeness is better, and at the same time solves the problem of low

decomposition efficiency, greatly reducing the calculation cost. CEEMDAN’s spectra shows a more

accurate decomposition of the frequency than the EEMD’s. The same time series, the number of

iterations of CEEMDAN shifting is usually equivalent to half of the EEMD’s.

The implementation of the algorithm is summarized as follows:

Generate a white noise plus series (��(�) = �(�) + ��(�)). Here, ��(�) denote the white noise of

finite variance, while �(�) represent the original data. Then decompose ��(�) to obtain the IMFs:

���� =
1

�
� ����

�(�)

�

���

 (12)

where ��
�(�) is the white noise added at the j-th time with the mean equal to zero and variance equal

to one. The imf� is the i-th mode component obtained after the signal is decomposed by CEEMDAN.

Calculate the first residue:

��(�) = �(�) − ���� (13)

Decompose the residue to get the second IMF and calculate the second residue:

 ���� =
�

�
∑ ��

�
��� ���(�) + �������

�
(�)�� (14)

 ��(�) = ��(�) − ���� (15)

Decompose the (k − 1)th residue of ����(�) and extract the ����(�) . The process can be

demonstrated in the following equation (k = 2, 3, … K):

Energies 2020, 13, 1543 7 of 20

 ����(�) =
�

�
∑ ��

�
��� �����(�) + ����

�
����(��(�))� (16)

Calculate the k-th residue:

 ��(�) = �(�) − ∑ ����
�
��� (17)

where k indicates the number of IMFs. The attributes of the original time series are denoted by all the

IMFs exacted from different time-scales. The only residue demonstrates the trend, which is smoother

than that of the original time series.

3.2. GRU and Multi-LayerML-GRU

3.2.1. RNN and GRU

Among deep learning methods, RNN is a powerful method for processing time series data. It is

widely used in many fields such as finance [31,32], industry and engineering [33], machine translation

[34], speech recognition [35], economic prediction [36], and so on. As shown in Figure 2, RNN has

certain information persistence capabilities, which enable information to be passed from one time-step

to the next. However, the classic RNN does not have the ability to store and memorize data for a long

time, so that it cannot capture long-term historical information. In addition, in the reverse process of

model training, once the sequence is too long, the RNN will cause the problem of gradient explosion or

gradient disappearance. To overcome these drawbacks, Hochreiter and Schmidhuber [37] proposed

the LSTM neural network which is capable of learning long-term dependencies of time series, as well

as forgetting the worthless information based on the current input. LSTM has since replaced RNN as

the most widely used recurrent neural network. LSTM has four gated unit that capable adaptively

regulate the information flow inside the unit. An LSTM neural network usually requires many gated

units，which need train a large number of parameters and occupy more computing resources. In order

to reduce the training parameters and simply the neural network, Cho et al. [38] proposed a neural

network named GRU which only have two gated units in the hidden unit.

Figure 2. Workflow graph of RNN. X denotes current input of neural network; Y denotes the output

of neural network; W, U and O are the parameters of recurrent neural network; h is the neuron state

of the hidden layer; The state at time t is related to the current input X and the hidden at time t−1.

As one of the variants of RNN, the input and output structure of GRU neural network is the

same as that of RNN and LSTM, as shown in the Figure 3 The neurons of GRU receive the hidden

state (ht−1) of the neuron of the previous neuron, and the current input xt. After passing through the

gating unit, the neural network gets the output yt and passes the hidden state ht to the next neuron.

Energies 2020, 13, 1543 8 of 20

Figure 3. The internal structure of the GRU cell. ��—Reset gate. It allows the cell to forget certain parts

of the state; ��—Update gate.

The GRU architecture, like LSTM, learns the long-term dependence of time series based on a

gate mechanism that includes reset gate and update gate. The former is used to control how much

information in the previous state will be ignored. The latter is used to control how much information

from the historical state is brought into the current state. GRU neural networks, like other neural

networks, consist of a large number of basic neurons. They are interconnected in a complex network.

A single neuron cell is shown in Figure 2. The specific process is designed as follows:

�� = �(����� + �ℎ�ℎ���) (18)

�� = �(����� + �ℎ�ℎ���) (19)

The internal structure of the GRU cell is shown in Figure 3.

The update gate is used to control the extent to which the state information from the previous

moment is retained to the current state. The more the value of the update gate approaches 0, the more

the state information from the previous moment is brought into the current state. The update gate

signal is the closer to 0, the more data it remembers. The closer to 1, the less it is forgotten.

Begin with getting the gating signal, GRU gets the reset data through the gate; then combine it

with the input �� , and use a tanh activation function to shrink the data to the range from −1 to 1. The

formula is shown in the following:

�� = ���ℎ ������ + �ℎ�(�� × ℎ���)� (20)

The last step of GRU, we can call it "update memory" phase. Combined with the previous

discussion, this step forgets some of the dimensional information passed in and add some new

information inputted by the current neuron to the state variable ℎ�:

 ℎ� = (1 − ��) × ℎ��� + �� × �� (21)

3.2.2. Multi-Layer GRU Architecture

If the problem is too complicated, a recurrent neural network with a single layer structure is not

enough to abstract the problem, and a multi-layer neural network is a better alternative. The multi-

layer neural network has more hidden layers and more powerful computing capabilities which is the

key to solving complex problems. The proposed model is one kind of forward multi-layer neural

networks, which demand the input layer are required to have the same number of input dimensions

as the input vector. The architecture and workflow of the ML-GRU are shown in Figure 4. The output

dimensions of the last layer demand only be equal to the number of labels for classification or a single

value of prediction for regression. With each training, the parameters are continuously updated. This

process continues until the output of the network is closer to the desired output.

ht

×

1-

×

sigmoid

Xt

output

tanh

+

sigmoid

×

input

Xt

htht-1

r z g

Energies 2020, 13, 1543 9 of 20

Figure 4. Architecture and workflow of ML-GRU.

The multi-layer architecture determines that data flows through more neurons and more

parameters need to be trained, as well as more powerful than the single layer network. If the recurrent

neural network is too deep beyond what is necessary, the computational cost will be expensive. Also,

the phenomenon of overfitting may occur.

3.3. CEEMDAN-Based Multi-Layer Gated Recurrent Unit Networks (CEEMDAN-ML-GRU)

In this study, we introduce a novel approach combining CEEMDAN and multi-layer GRU

neural networks. We call this model CEEMDAN-ML-GRU for crude oil price forecasts. Figure 5

shows the architecture and workflow of the hybrid model. It aimed at improving the exiting crude

oil price forecast techniques, which are less efficient or have poor accuracy in dealing with nonlinear

and nonstationary regression tasks.

Figure 5. CEEMDAN-based Multi-layer Gated Recurrent Unit Networks (CEEMDAN-ML-GRU).

This approach adopts a strategy of “divide and process”, which transforms a complicated issue into

Several simple issues, and processes them independently.

M-GRU

Prediction of
residue

Imfs(1) Imfs(2) …... Imfs(m) residue

M-GRU M-GRU …... M-GRU

Prediction
of Imfs(1)

Prediction
of Imfs(2) …...

Prediction of
Imfs(m)

Summeration

Output: overall Prediction

Ceemdan

Input: crude oil price data

Step 1

Step 2

Step 4

Step 3

Energies 2020, 13, 1543 10 of 20

Firstly, CEEMD technology is used to add positive and negative paired white noise to the

original exchange rate sequence, which overcomes the problem of large EEMD reconstruction errors

and poor completeness of decomposition, and effectively improves the decomposition efficiency.

Then the original exchange rate sequence is decomposed into IMFs based on different characteristics.

Finally, the multi-layer LSTM based forecasting model is input for each component, and each of the

IMF prediction results is superimposed to obtain the desired overall prediction.

As mentioned in the introduction, signal decomposition techniques such as wavelet transform,

EMD and EEMD have been used for the analysis of time series of predicting energy prices. Machine

learning, especially neural networks and deep learning methods, have also been applied to crude oil

price forecasting to improve the learning process and prediction accuracy of crude oil price data.

Signal decomposition technology is good at processing non-stationary data, and deep learning shows

excellent performance when analyzing time series with nonlinear and long-term dependency

characteristics. Some scholars have proved that integrating signal decomposition and deep learning

methods for crude oil prices forecasting gained better results than only using a single method. In

section 1,we have mentioned that Wu et al. [24] proposed a novel model based on EEMD and long

LSTM for crude oil price forecast. We will compare them experimentally with the proposed method

in the next section. This kind of hybrid model is able to synthesize the strengths of each hybrid

method, and significantly avoids the negative impact of the single method's inherent disadvantages

on prediction performance.

The model first performs CEEMDAN on the original crude oil prices data. Then we input the

previously decomposed IMF into the ML-GRU neural network. As for the output, it is meaningless

to predict IMF alone, so we must use all the IMFs obtained by decomposing one sample at a time as

the input of a single training or test to directly predict the price trend of crude oil. We use a one-step

prediction strategy. By extracting the characteristics of IMFs, ML-GRU can use the crude oil prices

trend data of the last p days to predict the price trend of the next day. CEEMDAN-ML-GRU

prediction usually includes the following four main steps:

Step 1: Data preparing. In order to make the data meet the requirements of the model input, we first

preprocess the original data, where involved data cleaning, data reduction and data

transformation.

Step 2: Data decomposition. The training and test sets are decomposed into sets of IMFs and residue

using the CEEMDAN method. The original complex time series x(t), t = 1, 2, . . . , n is split

into a training set and a test set in a supervised form.

Step 3: Model training. Input the IMFs of training set into Multi-layer GRU neural network for training.

Step 4: Price forecasting. Input the IMFs of test set into the trained multi-layer neural network to

make one-step ahead forecasting for verification.

4. Experiments

4.1. Datasets

In this section, through a series of experiments, we verified the proposed CEEMDAN-ML-GRU

model is more advanced than the state-of-the-art methods, which include the EEMD-LSTM. In order to

measure and compare the forecasting performance of different models, WTI crude oil prices is

employed for the sample data set for the experiment. This dataset source is the U.S. Energy Information

Administration (EIA; http://www.eia.doe.gov/) and has 8321 observations that include all daily data

from 2 January 1986 to 3 January 2019. A test set with 1664 observations is used to evaluate the

prediction performance. The daily chart of WTI crude oil prices is illustrated in Figure 6.

Energies 2020, 13, 1543 11 of 20

Figure 6. The daily chart of WTI crude oil prices from 2 January 1986 to 3 January 2019.

4.2. Evaluation Metrics and Baselines

Following, we adopt three metrics including the root mean squared error (RMSE), mean

absolute percent error (MAPE) and Diebold-Mariano (DM) to evaluate our model.

(1) Root mean squared error (RMSE):

 RMSE(y,y�) = �∑ (��-y��)��
i=1

�
 (22)

RMSE is one of the most common metrics and often used to measure the deviation between

observations and prediction in the task of machine learning models. The letter y in the formula above

denotes the observations, �� is the prediction, and N indicate the number of samples.

(2) Mean absolute error (MAE):

 MAE(y,y�) =
∑ |��-y��|�

i=1

�
 (23)

(3) MAE can better reflect the actual situation of the error of prediction. Mean Absolute Error

Percentage (MAPE):

 MAPE(y,y�) =
1

�
∑ �

��-y��

��
��

i=1 (24)

MAPE measures not only the absolute error between the predicted value and the observations,

but also the relative distance. Unlike the previous two metrics, MAPE stands for percentage error,

which can help it compare errors between different data sets.

(4) Diebold-Mariano Test (DM test):

 DM =
��

����������
ℎ�����/�

 (25)

It is used to test the statistical significance of the forecast accuracy of two forecast methods.

Variable d is the subtraction of absolute error of the two methods. � is the mean of di. �� is the

autocovariance at lag k. DM ∼ N(0, 1), if the p-value > � , we conclude there is no significant

difference between the two forecasts.

An ideal metric is not only reflected in the description of prediction accuracy, but also required

to reflect the distribution characteristics of errors. Because of their effectiveness, these metrics are

widely used for error measurement in regression or prediction tasks. The definition of each metric is

different. When the sample size is large enough, RMSE is more reliable. RMSE is more suitable for

Gaussian distribution error measurement than MAE, and MAE has a better performance in

measuring uniform error. A single metric is not enough to judge the pros and cons of the model. We

need to combine multiple metrics to determine the pros and cons of the model [39].

To verify that the proposed method is advanced, we compare our method with a series of

models, most of them mentioned in previous sections. These models include not only the common

models such as: naïve forecasts(that the prediction is the same as the last period), ARRIMA, least

squares SVR (LSSVR), ANN RNN, LSTM, but also some hybrid models such as : EEMD-ELM, EEMD-

LSSVR, EEMD-ANN, EEMD-RNN, EEMD-LSTM and EEMD-SBL-ADD. Both EEMD-LSTM and

Energies 2020, 13, 1543 12 of 20

EMD-SBL-ADD have been proposed in the last two years and represent the current state-of-the-art

approaches for crude oil forecasting.

4.3. Experimental Settings

There is one input layer, two hidden layers of GRU and one dense layer in our proposed model.

Figure 7 illustrate its Tensorflow computation graph which indicate the network architecture in our

method. Each input sample is a matrix of n × m, which is represented by a NumPy array. ‘n’ is the

lagging order and 'm' is the number of IMFs and residue. By trial and error, we determine set the

number of hidden neurons to 32 and MSE as the loss function. The optimizer of training is adaptive

moment estimation (Adam) which solve the problems of other algorithm, such as learning rate

disappearing, convergence slowly or loss function fluctuating greatly. The learning rate in following

experiment is set to 0.01. We adopt the strategy of one day ahead prediction to carry out our tasks. In

other words, the prices of the past n days (p1, p2, ... pn−1, pn) is used to predict the price of the (n + 1)th

day. Letter n is called the lag order which related to the size of neuron of the GRU. We adopt a

strategy of grid search to determine the number of lagging order that is important for time series

analysis. By trial and error, the lag order was set to 32.

Figure 7. TensorFlow computation graphs of the network structure of proposed model. This figure

illustrates the data dependencies and control dependencies. The solid arrows indicate the data

dependencies that show the flow of tensors between two ops, while dotted lines indicate the control

dependencies.

For comparison purposes, we set the same initialization parameters for several deep learning

models that participated in the experiment. For other parameters, since they have little effect on the

results, we set the parameters to default.

The methods mentioned in the previous literature will be compared to our introduced approach

in the performance of crude oil prices forecasts. These methods include not only the single model,

LSSVR, ANN, ARIMA, and LSTM, but also the hybrid method EEMD-LSTM, which is considered

the state-out-of- art method in crude oil prices forecasting.

Energies 2020, 13, 1543 13 of 20

In this study, all experiments are conducted in Python 3.7 via several specialized package, such

as TensorFlow-GPU 2.0, Pyeemd 1.4, Keras 2.3 and so on. All experiments are conducted on a PC

with a 3.2 GHz CPU, 16 GB RAM and 12 GB CG card.

4.4. Experimental Process, Result and Analysis

4.4.1. Data Decomposition

The original WTI crude oil is decomposed to 13 components which include 12 IMFS and one

CEEMDAN residue, where we added the white noise with standard deviation of 0.01 and the number

of ensemble size is equal to the size of dataset. Then the IMFs and residue are splinted into the train

set and test set. Both them are illustrated in Figure 8, in which the left part of dotted line is train set

and the right part is test set.

By trial and error, we determine the parameters of ensemble size of 0.05 and noise strength of

100. It means that the white noise data with standard deviation of 0.05 and quantity of 100 will be

added to the original data. Before data decomposition, we initialize the other parameters of the

algorithm. Table 1 shows the names and descriptions of the main parameters. Table 2 shows the

parameter settings.

Table 1. EEMD and CEEMDAN parameters description.

Parameter Description

spline_kind Defines type of spline, which connects extrema

nbsym Number of extrema used in boundary mirroring

max_imf IMF number to which decomposition should be performed

ensemble_size Number of trials or EMD performance with added noise

noise_strength Standard deviation of the additional noise.

Table 2. Parameters settings.

Method nbsym max_imf trials noise_width/epsilon

EEMD 2 ALL 100 0.05

CEEMDAN 2 ALL 100 0.05

The time–frequency spectra of IMFs and the residue by CEEMDAN after decomposition are

shown in Figure 8. We divide the original data and the decomposed result into a training set and a

test set. The former accounts for 80% of the entire dataset, and the latter accounts for the remaining

20%. As shown in Figure 8, the data on the left side of the dotted line constitutes the training set, and

the test set is on the right. As one kind of supervised learning algorithm, the input paired to the

desired output in both the training and test sets.

Energies 2020, 13, 1543 14 of 20

Figure 8. The time–frequency spectrums of IMFs obtained by CEEMDAN. The top sub-picture shows

the original WTI price data. The next 12 images represent intrinsic mode functions (IMF), which is

listed in the order from the high to the low frequencies. The last component is the residue, which

represents the portion of the original data not decomposed and the real trend of the original data.

4.4.2. Training/Learning

After the model is build, we move on to the next step: training/learning. In this process, the

training data is continuously feed into the model to incrementally improve the model’s predictive

performance. Both the loss function and optimizer of adaptive moment estimation (Adam)

mentioned earlier are used to evaluate and optimize the model in training to achieve the purpose of

model optimization. The workflow of training as shown in Figure 9.

Energies 2020, 13, 1543 15 of 20

Figure 9. Workflow of training.

The trend of the loss function curve during the iteration of model training from 1st to 100th

epoch is shown in the Figure 10.

Figure 10. The loss curve graph of model.

The optimization algorithm mentioned above determines the optimization efficiency of the

model, while loss represents the distance between the prediction and the observation. From the

preceding graph, we observe that the loss curve descends rapidly in the initial epochs of training

iteration, which shows that the model is optimized significantly by tuning the hyperparameter.

However, between the 25th and 35th epochs of training, the loss curve is flat due to adaptive

adjustment of the learning rate. After that, the curve continues to descend rapidly. The curve

descending slowly means that loss saturated after 70 epochs of iterations. After 100 training epochs,

the loss (MSE) has descended to a very low level. In fact, we conducted 2500 epochs experiment for

each model, with 120 samples per batch. Once the training\learning of the hyperparameters (weight)

Energies 2020, 13, 1543 16 of 20

in the model is completed, the model can be used in the tasks of crude oil price forecasts. The

experimental results are shown later in the paper.

4.4.3. Predictive Performance of Different Single Model

We propose a hybrid model that includes two components, a decomposition algorithm

CEEMDAN and a prediction model Multi-layer GRU. In order to make the method evaluation more

accurate, we adopt a combination of independent evaluation and overall evaluation. So, we expand

single model comparison and hybrid model comparison between two sets of experiments.

Here, we will evaluate our proposed CEEMD-ML-GRU's effectiveness for improving forecasting

accuracy. The compared single models included the naïve forecasts, one classical time series method

of ARIMA, two famous machine models of LSSVR and ANN and two popular deep learning model

of LSTM and GRU. The samples used in each iteration of the deep learning model are randomly

drawn, which makes the results of each prediction different. In order to improve the robustness of

the model, experiments with each parameter condition were required to be trained 100 times. In order

of performance, the metric at the median position represents the model. The results are shown in

Table 3.

Table 3. Predictive performance comparison of single methods.

Metrics
Methods

ML-GRU GRU LSTM LSSVR ANN ARIMA Naive

RMSE 1.2869 1.4820 1.4818 1.6473 1.5223 2.4861 1.5336

MAE 1.2424 1.3817 1.3788 1.5219 1.3649 2.2134 0.9271

MAPE 0.0138 0.0152 0.0153 0.0168 0.0156 0.0268 0.0152

From Tables 3–5, we can see that:

(1) Among all these models, the multi-layer GRU (ML-GRU) stacking network performed the best on

the metrics of RMSE and MAPE. As shown in Table 5, ML-GRU significantly outperformed higher

prediction accuracy than other single models. This phenomenon further illustrates that the multi-

layer neural network can be used to solve complex issues.

(2) Both GRU and LSTM, designed for long term dependencies of time series show better performance

than other traditional machine learning models for crude oil price forecasts. From Table 3, we

observe that there is no significant difference between the LSTM and GRU models in the task of

crude oil price prediction. Table 4 indicates that GRU has higher efficiency than LSM, because GRU

network needs 30% less hyperparameters that need be learned than LSTM, during the training

process. It means that GRU neural network use less training parameters comparing to LSTM, and

therefore use less resources of computing and storage, execute faster and train faster than LSTM's.

(3) It is interesting that the comprehensive score of the naive forecasts surpasses classical methods

such as ARIMA, ANN and LSSVR, and even achieve the best score on MAE. This phenomenon

indicates that the complex crude oil price trends are difficult to predict. Misuse of some models,

the result is even worse than doing nothing.

(4) While ARIMA performed the worst. The results further confirm that ARIMA, a classic time series

analysis model, doesn’t perform well at issues of nonlinear and non-stationary time series.

Table 4. Comparison of GRU and LSTM model in the number of parameters.

Method Input Shape Output Shape Total Params

GRU (32, 13) (32, 32) 4416

LSTM (32, 13) (32, 32) 5888

Energies 2020, 13, 1543 17 of 20

Table 5. The Diebold–Mariano (DM) test results for single models on WTI crude oil prices.

DM test
Benchmark Model

GRU LSTM LSSVR ANN ARIMA Naive

ML-GRU
−2.1644

(0.02365)

−2.319

(0.02017)

−15.6146

(0.0000)

−3.4532

(0.0000)

−20.198

(0.0000)

−2.1581

(0.02517)

4.4.4. Effect of Selecting Different Hybrid Approaches

On the basis of the previous single model prediction, we continue to evaluate the performance

of the hybrid model based on the decomposition method. Table 6 shows the prediction performance

of the corresponding hybrid models based on EEMD or CEEMDAN. Table 7 demonstrates that the

result of DM test between CEEMDAN-ML-GRU and the other two models.

Table 6. The experimental results in terms of hybrid approaches on WTI crude oil prices forecasting.

Metrics
EEMD CEEMDAN

RMSE MAE MAPE RMSE MAE MAPE

ML-GRU 0.9619 0.9341 0.00987 0.9276 0.9134 0.0094

GRU 0.9912 0.9719 0.0106 0.9334 0.9278 0.0101

LSTM 0.9862 0.965 0.0104 0.9329 0.9261 0.0099

LSSVR 1.1265 1.0847 0.0116 1.1197 1.0903 0.0114

ANN 1.0508 1.0121 0.0106 1.0476 1.0118 0.0105

Table 7. The Diebold–Mariano (DM) test results for hybrid models on WTI crude oil prices.

Benchmark Model

DM test ML-GRU EEMD-LSTM

EEMD-ML-GRU CEEMDAN-ML-GRU −6.3309(0.0000) −1.759(0.0776)

-15.6146(0.0000)

In this set of experiments, we added a prediction model based on the EEMD decomposition

algorithm, and these hybrid models have appeared in the latest literature. Each single model combines

CEEMDAN and EEMD respectively, and thus two sets of mixed methods will be obtained.

Subsequently, these models were tested in the WTI crude oil price prediction task to derive who is the

optimal model. Table 6 demonstrates the predictions of different hybrid models. From the Tables 6 and

7, we can observe that:

(1) Both EEMD and CEEMDAN plus prediction models outperform single model significantly

in this prediction task. It indicates that machine learning models with signal processing algorithm

based contribute to the better forecasting performance in the nonlinear and non-stationary time series

analysis.

(2) The hybrid model based on CEEMDAN has better prediction accuracy than that based on

EEMD's. The residual noise from the components decomposed by EEMD, cause a certain extent of

reconstruction error, and affect the overall predictive accuracy ultimately.

(3) The ML-GRU with multi-layer architecture still performs better than the GRU with single-

layer architecture on the decomposed data. CEEMDAN-ML-GRU, our proposed method has been

verified to the best method for the task of crude oil price forecasting.

5. Conclusions

In this study, a hybrid model called CEEMDAN-ML-GRU for crude oil price forecasting is

proposed. This model takes full use of the advantages of the signal processing algorithm CEEMDAN

and the multi-layer gated recurrent unit networks (ML-GRU). As mentioned in the previous section,

the hybrid model uses CEEMDAN to solve the non-stationarity problem of crude oil price data, and

generalizes the nonlinear crude oil prices data by a multi-layered GRU neural network. We conduct

a large number of experiments to verify the effect of the proposed method in forecasting task by using

Energies 2020, 13, 1543 18 of 20

the WTI price data as sample data. The experimental results show that our proposed method goes

beyond other traditional statistical methods, machine intelligent algorithms and other hybrid models,

which include the EEMD-LSTM method proposed in 2019.

In addition to crude oil price forecasts, the introduced CEEMDAN-ML-GRU model can also be

extended to solve other complex problems in other areas, such as time series forecasts or risk

measurements in financial markets. The main purpose of this approach is to improve the accuracy of

short-term crude oil price predictions and help decision makers minimize the risks of the crude oil

market. However, the proposed method is mainly applied to short-term forecasts, so only daily data

is used. If we need to predict long-term price trends, we need to combine this method with economic

theory or measurement methods to play a greater role. This is exactly the research plan that we will

follow in our future research.

Author Contributions: Conceptualization, H.L.; Formal analysis, Q.S.; Investigation, Q.S.; Methodology, H.L.;

Project administration, H.L. and Q.S.; Supervision, Q.S.; Writing – original draft, H.L. All authors have read and

agreed to the published version of the manuscript.

Funding: This research was funded by the provincial social science fund of Fujian (No. FJ2018B056), A Study on

the Supervision of Taiwan-funded Banks in the Fujian Free Trade Zone, and the National Natural Science

Foundation of China (No. 71872046), Environmental Regulation, Enterprise Innovation and Industrial

Transformation and Upgrade: Theory and Practice Based on Energy Saving and Emissions Supervision.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sadorsky, P. Assessing the impact of oil prices on firms of different sizes: Its tough being in the middle.

Energy Policy 2008, 36, 3854–3861.

2. Basher, S.A.; Sadorsky, P. Oil price risk and emerging stock markets. Glob. Financ. J. 2006, 17, 224–251,

doi:10.1016/j.gfj.2006.04.001.

3. Bouri, E.; Kachacha, I.; Roubaud, D. Oil market conditions and sovereign risk in MENA oil exporters and

importers. Energy Policy 2020, 137, 111073, doi:10.1016/j.enpol.2019.111073.

4. Wegener, C.; Basse, T.; Kunze, F.; von Mettenheim, H.J. Oil prices and sovereign credit risk of oil producing

countries: An empirical investigation. Quant. Financ. 2016, 16, 1961–1968.

5. Haushalter, G.D.; Heron, R.A.; Lie, E. Price uncertainty and corporate value. J. Corp. Finance 2002, 8, 271–286.

6. Ediger, V.; Serta, A. ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy 2007,

35, 1701–1708.

7. Krithikaivasan, B.; Zeng, Y.; Deka, K.; Medhi, D. ARCH-Based Traffic Forecasting and Dynamic Bandwidth

Provisioning for Periodically Measured Nonstationary Traffic. IEEE ACM Trans. Netw. 2007, 15, 683–696.

8. Yu, H.; Shan, G.; Hao, C. Wind Speed Forecasting Based on ARMA-ARCH Model in Wind Farms. Electricity

2011, 22, 30–34.

9. Zhao, C.L.; Wang, B. Forecasting Crude Oil Price with an Autoregressive Integrated Moving Average

(ARIMA) Model. In Fuzzy Information & Engineering and Operations Research & Management; Springer:

Berlin/Heidelberg, Germany, 2014.

10. Newbold, P. ARIMA Model Building and the Time Series Analysis Approach to Forecasting. J. Forecast.

1983, 2, 23–35.

11. Kaiser, T. One-Factor-GARCH Models for German Stocks—Estimation and Forecasting. Tuebinger

Diskussionsbeitraege 1996, doi:10.2139/ssrn.1063.

12. Garcia, R.C.; Contreras, J.; Akkeren, M.V.; Garcia, J.B.C. A GARCH forecasting model to predict day-ahead

electricity prices. IEEE Trans. Power Syst. 2005, 20, 867–874.

13. Mohammadi, H.; Lixian, S. International evidence on crude oil price dynamics: Applications of ARIMA-

GARCH models. Energy Econ. 2010, 32, 1001–1008.

14. Aamir, M.; Shabri, A. Modelling and Forecasting Monthly Crude Oil Price of Pakistan: A Comparative

Study of ARIMA, GARCH and ARIMA Kalman Model. In Advances in Industrial and Applied Mathematics;

Salleh, S., Aris, N., Bahar, A., Zainuddin, Z.M., Maan, N., Lee, M.H., Ahmad, T., Yusof, Y.M., Eds.; AIP

Publishing LLC: Melville, NY, USA, 2016; Volume 1750.

15. Liu, L. Nonlinear Test and Forecasting of Petroleum Futures Prices Time Series. Energy Procedia 2011, 5, 754–758.

16. Alquist, R.; Kilian, L.; Vigfusson, R.J. Forecasting the Price of Oil. In Handbook of Economic Forecasting; Chapter 8;

Energies 2020, 13, 1543 19 of 20

Elliott, G., Timmermann, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 2, pp. 427–507.

17. Kunze, F.; Spiwoks, M.; Bizer, K.; Windels, T. The usefulness of oil price forecasts—Evidence from survey

predictions. Managerial Decis. Econ. Int. J. Res. Progress Manag. Econ. 2018, 39, 427–446.

18. Li, T.; Hu, Z.; Jia, Y.; Wu, J.; Zhou, Y. Forecasting Crude Oil Prices Using Ensemble Empirical Mode

Decomposition and Sparse Bayesian Learning. Energies 2018, 11, 1882, doi:10.3390/en11071882.

19. Xie, W.; Yu, L.; Xu, S.; Wang, S. A new method for crude oil price forecasting based on support vector

machines. In International Conference on Computational Science; Springer: Berlin/Heidelberg, Germany, 2006;

pp. 444–451.

20. Fan, L.; Pan, S.; Li, Z.; Li, H. An ICA-based support vector regression scheme for forecasting crude oil prices.

Technol. Forecast. Soc. Change 2016, 112, 245–253, doi:10.1016/j.techfore.2016.04.027.

21. Yu, L.; Wang, S.; Lai, K.K. Forecasting crude oil price with an EMD-based neural network ensemble

learning paradigm. Energy Econ. 2008, 30, 2623–2635, doi:10.1016/j.eneco.2008.05.003.

22. He, K.; Yu, L.; Lai, K.K. Crude oil price analysis and forecasting using wavelet decomposed ensemble

model. Energy 2012, 46, 564–574, doi:10.1016/j.energy.2012.07.055.

23. Hamid, M.H.; Shabri, A. Wavelet Regression Model in Forecasting Crude Oil Price. In 3rd Ism International

Statistical Conference 2016; AbuBakar, S.A., Yunus, R.M., Mohamed, I., Eds.; AIP Publishing LLC: Melville,

NY, USA, 2017; Volume 1842.

24. Wu, Y.-X.; Wu, Q.-B.; Zhu, J.-Q. Improved EEMD-based crude oil price forecasting using LSTM networks.

Phys. A Statist. Mech. Appl. 2019, 516, 114–124, doi:10.1016/j.physa.2018.09.120.

25. Zhou, Y.; Li, T.; Shi, J.; Qian, Z. A CEEMDAN and XGBOOST-Based Approach to Forecast Crude Oil Prices.

Complexity 2019, doi:10.1155/2019/4392785.

26. Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.L.C.; Shih, H.H.; Zheng, Q.N.; Yen, N.C.; Tung, C.C.; Liu, H.H.

The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series

analysis. Proc. R. Soc. a-Math. Phys. Eng Sci. 1998, 454, 903–995, doi:10.1098/rspa.1998.0193.

27. Wu, Z.; Huang, N. Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method.

Adv. Adapt. Data Anal. 2009, 1, 1–41, doi:10.1142/S1793536909000047.

28. Torres, M.E.; Colominas, M.A.; Schlotthauer, G.; Flandrin, P. A complete ensemble empirical mode

decomposition with adaptive noise. In Proceedings of 2011 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011; pp. 4144–4147.

29. Zhang, W.; Qu, Z.; Zhang, K.; Mao, W.; Ma, Y.; Fan, X. A combined model based on CEEMDAN and

modified flower pollination algorithm for wind speed forecasting. Energy Convers. Manag. 2017, 136, 439–

451, doi:10.1016/j.enconman.2017.01.022.

30. Cao, J.; Li, Z.; Li, J. Financial time series forecasting model based on CEEMDAN and LSTM. Phys. A Stat.

Mech. Appl. 2018, doi:10.1016/j.physa.2018.11.061.

31. Duan, J. Financial system modeling using deep neural networks (DNNs) for effective risk assessment and

prediction. J. Franklin Inst. 2019, 356, 4716–4731, doi:10.1016/j.jfranklin.2019.01.046.

32. Hosaka, T. Bankruptcy prediction using imaged financial ratios and convolutional neural networks. Expert

Syst. Appl. 2019, 117, 287–299, doi:10.1016/j.eswa.2018.09.039.

33. Yang, B.; Sun, S.; Li, J.; Lin, X.; Tian, Y. Traffic flow prediction using LSTM with feature enhancement.

Neurocomputing 2019, 332, 320–327, doi:10.1016/j.neucom.2018.12.016.

34. Fernando, T.; Denman, S.; Sridharan, S.; Fookes, C. Soft + Hardwired attention: An LSTM framework for

human trajectory prediction and abnormal event detection. Neural Netw. 2018, 108, 466–478,

doi:10.1016/j.neunet.2018.09.002.

35. Stafylakis, T.; Khan, M.H.; Tzimiropoulos, G. Pushing the boundaries of audiovisual word recognition

using Residual Networks and LSTMs. Comput. Vis. Image Underst. 2018, 176, 22–32,

doi:10.1016/j.cviu.2018.10.003.

36. Uthayakumar, J.; Metawa, N.; Shankar, K.; Lakshmanaprabu, S.K. Financial crisis prediction model using

ant colony optimization. Int. J. Inf. Manag. 2020, 50, 538–556, doi:10.1016/j.ijinfomgt.2018.12.001.

37. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780.

Energies 2020, 13, 1543 20 of 20

38. Cho, K.; van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning

Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. arXiv 2014,

doi:10.3115/v1/D14-1179.

39. Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against

avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

