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Abstract: Microalgae biofilm-based culture has attracted much interest due to its high harvest
efficiency and low energy requirements. Using light-emitting diodes (LEDs) as light source for
microalgae culture has been considered as a promising choice to enhance the economic feasibility of
microalgae-based commodities. In this work, the LED power conversion capability and CO2 fixation
rate of microalgae biofilms (Chlorella ellipsoidea and Chlorella pyrenoidosa) cultured under different light
spectra (white, blue, green and red) were studied. The results indicated that the power-to-biomass
conversion capabilities of these two microalgae biofilms cultured under blue and white LEDs were
much higher than those under green and red LEDs (C. ellipsoidea: 32%–33% higher, C. pyrenoidosa:
34%–46% higher), and their power-to-lipid conversion capabilities cultured under blue LEDs were
61%–66% higher than those under green LEDs. The CO2 fixation rates of these two biofilms cultured
under blue LEDs were 13% and 31% higher, respectively, than those under green LEDs. The results
of this study have important implications for selecting the optimal energy-efficient LEDs using in
microalgae biofilm-based culture systems.

Keywords: microalga; biofilm-based cultivation; light spectrum; power conversion capability; CO2

fixation rate

1. Introduction

Microalgae are photosynthetic microorganisms that can convert light, CO2 and nutrients into
biomass [1–3]. Due to the high growth rates, high lipid contents and ability to mitigate CO2 emissions,
microalgae have potential to be promising biological sources to produce high-value biomolecules
and biofuels [4–6]. However, the success of microalgae-based commodities is dependent on the
biomass productivity and production cost [7–9]. Recently, some researchers reported that cultivating
microalgae as biofilm (i.e., cells are attached to solid surface) can enhance the economic feasibility of
microalgae-based commodities, due to its lower water consumption, higher volumetric productivity,
higher harvest efficiency and reduced energy requirements compared with suspended systems [10–12].
Therefore, developing more efficient biofilm-based microalgae culture system has attracted much
attention recently [13–15].
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To date, various microalgae biofilm-based reactors have been developed to enhance their
performance, such as horizontal [16], flow lane [17], twin-layer [18], and rotating biofilm reactors [19].
Extensive studies have reported that many factors can affect the performance of microalgae
biofilm-based systems, such as the light condition, the amount of CO2 supplementation, nutrient
type and concentration [12,20,21]. Among these factors, light directly affects the photosynthesis of
microalgae, thus their growth and cellular composition [22–25]. Generally, sunlight and artificial
illumination are often used as light sources for microalgae culture. The sunlight is cost-effective, but has
the disadvantages of changes in weather and season, and day and night cycles. Artificial illuminations,
such as fluorescent lamps and light-emitting diode (LED) lights, are more manageable and adjustable,
and are of growing interest.

Recently, using LEDs in microalgae culture has been considered as a promising choice due to
its advantages of small size, low power consumption, narrow wavelength band and reduced heat
release [26–29]. Some researchers have studied the LED power conversion efficiency of microalgae
cultured in suspended systems [30,31]. For example, Ma et al. studied LED power-to-biomass
efficiency for Nannochloropsis cultured in suspended systems, and reported that using LED as light
source in suspended microalgae culture was more energy efficient [30]. Ajayan et al. found that
LEDs provided more light penetration in a column photobioreactor compared with the fluorescent
lights, and improved the cell concentration, specific growth rate, total pigments and lipid contents of
C. reinhardtii [31]. Maroneze et al. evaluated the role of LED photoperiods on the growth and lipid
content of S. obliquus cultured in a bubble column photobioreactor, and found that the photoperiods
was an effective strategy to reduce the production cost of microalgae biomass [32]. These above studies
indicated that the LEDs might be promising using in suspended microalgae culture systems. It should
be noted that, for biofilm-based culture systems, the transmission and refraction of light are totally
different from that in suspended systems. This difference may affect the light conversion capability of
microalgae [33]. However, to date, little research has studied the LED power conversion capability of
microalgae cultured in biofilm-based systems.

To address this gap, this study explored the LED power conversion capability and CO2 fixation
rate of two widely used microalgae biofilms cultured under different light spectra (white, blue, green
and red). The conversion capabilities of LED power-to-biomass, power-to-lipid, power-to-protein,
and power-to-carbohydrate, as well as the CO2 fixation rate for two widely used microalgae biofilms
cultured under different LEDs were determined. This study would provide guidance in selecting
suitable light spectra and reducing energy consumption for developing more efficient microalgae
biofilm-based culture systems.

2. Materials and Methods

2.1. Microalgae Biofilm Culture

The microalgae used in this study were Chlorella ellipsoidea (FACHB–40) and Chlorella pyrenoidosa
(FACHB–9). Before inoculation of biofilm culture, both microalgae strains were pre-cultivated in 500 mL
flasks with 100 mL inoculum at 25 ± 1 ◦C under continuous irradiance of 100 µmol photons m−2 s−1

for 6 days. Afterwards, these preprepared cell suspensions were evenly vacuum filtered onto some
filtration membranes to form microalgae biofilm with an initial inoculum density of 4.0 ± 0.1 g m−2.
Then, these filtration membranes were put into the biofilm culture bioreactors (polymethyl methacrylate
chambers: 400 × 200 × 200 mm), containing the BG–11 culture medium solidified with 1% agar (see
Supplementary Materials Tables S1 and S2 for the details) [34]. As shown in Figure 1, these bioreactors
were placed into an incubator to maintain a proper temperature (25 ± 1 ◦C) for microalgae growth [35].
The inside of these bioreactors was aerated with compressed air enriched with 1% CO2 (vol/vol) at a
rate of 0.1 VVM (volume of air per volume of culture per minute).
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Figure 1. Schematic diagram of the microalgae biofilm culture system.

During cultivation, four kinds of LEDs (J&K Photoelectric Technology, Shanghai, China), including
white (JK–W300200, 400–750 nm), blue (JK–B300200, 440–500 nm), green (JK–G300200, 500–550 nm),
and red (JK–R300200, 610–650 nm) LEDs were fixed above the bioreactors as the light sources for
microalgae cultivation. All the LEDs in the biofilm cultivation were continuous lighting. The photon
flux densities of these LEDs at the biofilm surfaces were set to be approximately 100 µmol photons
m−2 s−1, which were measured with a 4π quantum scalar sensor (QSL 2100, Biospherical Instruments
Inc., San Diego, CA, USA). The light spectra of these four LEDs were characterized with a fiber
spectrometer (USB4000, Ocean Optics Inc., Dunedin, FL, USA) between 350 and 750 nm, as shown in
Figure 2a. Additionally, the absorption spectra of the C. ellipsoidea and C. pyrenoidosa were characterized
by a microplate spectrophotometer (Epoch, BioTek, Winooski, VT, USA), as shown in Figure 2b.
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Figure 2. Irradiation spectra of different light-emitting diodes (LEDs) (a) and absorption spectra of the
C. ellipsoidea and C. pyrenoidosa (b).

2.2. Determining the Biomass and Chlorophyll Contents

To evaluate microalgae growth, microalgae biofilm were harvested after 6 days culture. The
collected biofilm were resuspended with deionized water to remove the soluble nutrients, followed by
centrifuging and drying to a constant weight at 105 ◦C. After cooling in a desiccator, the microalgae
biomass was weighed by an analytical balance (XS105, METTLER TOLEDO, Switzerland).

The chlorophyll contents of microalgae cells cultured under white, blue, green and red LEDs
were determined according to the methods described by Wellburn [36]. In detail, the chlorophyll
was extracted with 80 vol% acetone. The absorbance of chlorophyll solvent was measured at 646 and
663 nm with a visible spectrophotometer (721, INESA, Shanghai, China). The chlorophyll a (chl–a),
chlorophyll b (chl–b) concentrations (mg L−1) were calculated by:

chl-a = 12.21 × OD663nm − 2.81 × OD646nm (1)
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chl-b = 20.13 × OD663nm − 5.03 × OD646nm (2)

The measurements for biomass and chlorophyll contents were repeated three times. The results
were shown as mean ± standard deviation.

2.3. Determining Cellular Composition

The cellular compositions of microalgae are critical evaluation parameters in various
microalgae-based commodities. Generally, the main organic components of microalgae are lipids,
proteins, and carbohydrates, which represent approximately 80% of the microalgal dry biomass. To
investigate the cellular compositions of microalgae biofilm cultured under different LEDs, the harvested
cells were frozen at −70 ◦C and lyophilized. The total lipids were measured according to the methods
described by Bligh and Dyer [37], in which chloroform was used to extract the lipid and evaporated
at 60 ◦C. The protein content was measured by a colorimetric method [38,39], in which microalgae
biomass was pretreated with thermal alkaline and the standard sample was bovine serum albumin
(see Figure S1). The carbohydrate content was determined by the phenol-sulfuric method [40,41], the
standard sample was glucose (see Figure S2). All the experiments were repeated in triplicate and the
results are shown in mean ± standard deviation.

2.4. LED Power Conversion Capability

We determined the conversion capability of LED power-to-biomass, power-to-lipid,
power-to-protein, and power-to-carbohydrate for these microalgae biofilms cultured under different
LEDs, which were calculated by [30]:

LED power conversion capability =
Ct −C0

t× P
(3)

where Ct is the accumulation of biomass, lipid, protein and carbohydrate (g m−2) at time t, C0 is
the accumulation of biomass, lipid, protein and carbohydrate (g m−2) at time t0 (at the beginning of
inoculation), P is the power consumption of different LED units.

2.5. Determining CO2 Fixation Rate

The CO2 fixation rate of microalgae biofilms cultured under white, blue, green and red lights were
determined by [42]:

CO2 fixation rate =
Xt −X0

t
×C%×

44
12

(4)

where Xt is microalgae biomass (g m−2) at time t, X0 is microalgae biomass (g m−2) at time t0 (at the
beginning of inoculation), C% is the carbon content of the biomass, which was determined by an
elemental analysis (vario EL cube, Elementar, Germany). The experiments were repeated at least three
times. The results were shown as mean ± standard deviation.

3. Results and Discussion

3.1. Growth of Microalgae Biofilms Cultured Under Different LEDs

The dry biomass yields and chlorophyll contents (including chl–a and chl–b) of C. ellipsoidea
and C. pyrenoidosa biofilms were determined to evaluate their growth. Figure 3 indicates that the
microalgae biomasses cultivated under different light spectra were obviously different. In general, for
both microalgae, the biomass cultured under the blue LED was much higher than those under the
white, green and red LEDs. The total chlorophyll contents of microalgae cultured under the blue and
white LEDs were much higher than those under the green and red LEDs.
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Figure 3. Dry biomass yields and chlorophyll contents (including chl–a and chl–b) in C. ellipsoidea (a)
and C. pyrenoidosa (b) cultured under different LEDs.

Previously, many studies reported that both the blue and red light can promote the growth of
green algae in suspended culture system, because the green algae can absorb the blue light and red
light more efficiently [43]. In this work, Figure 3a indicates that the biomass of C. ellipsoidea was ~14%
higher under the blue light than that under the green light. Similarly, Figure 3b shows that the biomass
of C. pyrenoidosa was ~26% higher under the blue light than that under the green light. Evidently, the
above results suggested that the blue LED was efficient in enhancing cell growth, whereas, we found
that the red LED had little influence on cell growth. We think that it may be related to the characteristics
of microalgae pigments. On one hand, as shown in Figure 2b, the irradiation spectra of blue LEDs
match with the absorption peaks of C. ellipsoidea and C. pyrenoidosa at the light spectra of 420–480 nm
(blue), whereas, the irradiation spectra of red LEDs do not match well with the microalgal absorption
peaks at the light spectra of 620–680 nm (red). On the other hand, we found that the chlorophyll
contents of these two microalgae cultivated under red LEDs were much lower than those cultured
under blue LEDs.

3.2. The LED Power Conversion Capability of Microalgae Biofilm

The LED power conversion capability is an important factor in the assessment of
microalgae biofilm cultivation. In this work, we determined the conversion capabilities of LED
power-to-biomass, power-to-lipid, power-to-protein, and power-to-carbohydrate. Figure 4 shows the
LED power-to-biomass conversion capability for these two microalgae biofilms cultivated under
different light spectra, which were calculated based on the biomass accumulation and power
consumption of different LEDs (right axis in Figure 4). The results indicate that the power-to-biomass
conversion capability of C. ellipsoidea and C. pyrenoidosa cultured under different LEDs ranged from 862
to 1147 mg/kW·h, and from 618 to 905 mg/kW·h, respectively. The LED power-to-biomass conversion
capabilities for these two microalgae cultured under white and blue lights were much higher than
those cultured under green and red lights, indicating that these microalgae cells utilized blue and
white lights more effectively. Particularly, for C. ellipsoidea, the power-to-biomass conversion capability
of cells cultured under blue and white lights increased by 32%–33% compared with those under green
light. Similarly, for C. pyrenoidosa, the power-to-biomass conversion capability of cells cultured under
blue and white lights increased by 34%–46% compared with those under green light.

Furthermore, cellular compositions of microalgae are generally critical evaluation parameters
in various applications. Figure S3 shows the lipids, proteins and carbohydrates contents for the
C. ellipsoidea and C. pyrenoidosa cultured under different LEDs. It was found that the main organic
components in the microalgae represented approximately 80% of microalgae dry biomass, which
were consistent with the literature [35]. Based on the cellular composition and power consumption of
different LEDs, we determined the conversion capabilities of LED power-to-lipid, power-to-protein, and
power-to-carbohydrate. Figure 5 indicates that the power-to-carbohydrate conversion capabilities for
both microalgae under white LEDs were the highest. The power-to-protein conversion capabilities for
both microalgae cultured under white and blue LEDs were higher than those under green and red lights.
Moreover, we found that both microalgae cultured under blue LED showed the highest power-to-lipid
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conversion capability. In particular, the power-to-lipid conversion capability for C. ellipsoidea and
C. pyrenoidosa were 12.6% and 14.8% higher, respectively, under blue light than under white light.
The power-to-lipid conversion capability for C. ellipsoidea and C. pyrenoidosa were 60.7% and 66.3%
higher, respectively, under blue light than under green light. Similar results have been reported for the
suspended culture system. Ra et al. evaluated the effects of LED wavelength on the lipid production
of Picochlorum atomus with two-phase suspended cultivation, and found that the lipid accumulation of
P. atomus was 329% higher under blue light than that under green light [44]. Kang et al. determined the
effect of using wastewater and wavelength filters on microalgal productivity and lipid accumulation
with open raceway ponds, and found that the lipid productivity was highest under blue wavelength, at
least 46.8% higher than that under white wavelength [45].This may be because blue light can promote
the synthesis of lipids [46,47] and has low energy consumption.Energies 2020, 13, x FOR PEER REVIEW 6 of 10 

 

 

Figure 4. The LED power-to-biomass conversion capability of microalgae cultured under different 180 

LEDs (blue and drab column), and power consumption of different LEDs (red pentagon ). 181 

Furthermore, cellular compositions of microalgae are generally critical evaluation parameters in 182 
various applications. Figure S3 shows the lipids, proteins and carbohydrates contents for the C. 183 
ellipsoidea and C. pyrenoidosa cultured under different LEDs. It was found that the main organic 184 

components in the microalgae represented approximately 80% of microalgae dry biomass, which 185 
were consistent with the literature [35]. Based on the cellular composition and power consumption 186 
of different LEDs, we determined the conversion capabilities of LED power-to-lipid, power-to-187 
protein, and power-to-carbohydrate. Figure 5 indicates that the power-to-carbohydrate conversion 188 
capabilities for both microalgae under white LEDs were the highest. The power-to-protein conversion 189 

capabilities for both microalgae cultured under white and blue LEDs were higher than those under 190 
green and red lights. Moreover, we found that both microalgae cultured under blue LED showed the 191 
highest power-to-lipid conversion capability. In particular, the power-to-lipid conversion capability 192 
for C. ellipsoidea and C. pyrenoidosa were 12.6% and 14.8% higher, respectively, under blue light than 193 
under white light. The power-to-lipid conversion capability for C. ellipsoidea and C. pyrenoidosa were 194 

60.7% and 66.3% higher, respectively, under blue light than under green light. Similar results have 195 
been reported for the suspended culture system. Ra et al. evaluated the effects of LED wavelength on 196 
the lipid production of Picochlorum atomus with two-phase suspended cultivation, and found that the 197 
lipid accumulation of P. atomus was 329% higher under blue light than that under green light [44]. 198 

Kang et al. determined the effect of using wastewater and wavelength filters on microalgal 199 
productivity and lipid accumulation with open raceway ponds, and found that the lipid productivity 200 
was highest under blue wavelength, at least 46.8% higher than that under white wavelength [45].This 201 
may be because blue light can promote the synthesis of lipids [46,47] and has low energy 202 
consumption. 203 

 

Figure 5. The conversion capabilities of power-to-carbohydrates, power-to-protein and power-to-204 
lipid for C. ellipsoidea (a) and C. pyrenoidosa (b). 205 

White Blue Green Red
0

300

600

900

1200

1500

 

 

L
E

D
 p

o
w

e
r-

to
-b

io
m

a
s
s

 c
o
n
v
e
rs

io
n

 c
a
p
a
b
ili

ty
 (

m
g
/k

W
·h

)

 C. ellipsoidea

 C. pyrenoidosa

0

50

100

150

200

250

P
o
w

e
r 

c
o
n
s
u

m
p
ti
o
n
 (

W
/m

2
)

Figure 4. The LED power-to-biomass conversion capability of microalgae cultured under different
LEDs (blue and drab column), and power consumption of different LEDs (red pentagon

Energies 2020, 13, x FOR PEER REVIEW 6 of 10 

 

 

Figure 4. The LED power-to-biomass conversion capability of microalgae cultured under different 180 

LEDs (blue and drab column), and power consumption of different LEDs (red pentagon ). 181 

Furthermore, cellular compositions of microalgae are generally critical evaluation parameters in 182 
various applications. Figure S3 shows the lipids, proteins and carbohydrates contents for the C. 183 
ellipsoidea and C. pyrenoidosa cultured under different LEDs. It was found that the main organic 184 

components in the microalgae represented approximately 80% of microalgae dry biomass, which 185 
were consistent with the literature [35]. Based on the cellular composition and power consumption 186 
of different LEDs, we determined the conversion capabilities of LED power-to-lipid, power-to-187 
protein, and power-to-carbohydrate. Figure 5 indicates that the power-to-carbohydrate conversion 188 
capabilities for both microalgae under white LEDs were the highest. The power-to-protein conversion 189 

capabilities for both microalgae cultured under white and blue LEDs were higher than those under 190 
green and red lights. Moreover, we found that both microalgae cultured under blue LED showed the 191 
highest power-to-lipid conversion capability. In particular, the power-to-lipid conversion capability 192 
for C. ellipsoidea and C. pyrenoidosa were 12.6% and 14.8% higher, respectively, under blue light than 193 
under white light. The power-to-lipid conversion capability for C. ellipsoidea and C. pyrenoidosa were 194 

60.7% and 66.3% higher, respectively, under blue light than under green light. Similar results have 195 
been reported for the suspended culture system. Ra et al. evaluated the effects of LED wavelength on 196 
the lipid production of Picochlorum atomus with two-phase suspended cultivation, and found that the 197 
lipid accumulation of P. atomus was 329% higher under blue light than that under green light [44]. 198 

Kang et al. determined the effect of using wastewater and wavelength filters on microalgal 199 
productivity and lipid accumulation with open raceway ponds, and found that the lipid productivity 200 
was highest under blue wavelength, at least 46.8% higher than that under white wavelength [45].This 201 
may be because blue light can promote the synthesis of lipids [46,47] and has low energy 202 
consumption. 203 

 

Figure 5. The conversion capabilities of power-to-carbohydrates, power-to-protein and power-to-204 
lipid for C. ellipsoidea (a) and C. pyrenoidosa (b). 205 

White Blue Green Red
0

300

600

900

1200

1500

 

 

L
E

D
 p

o
w

e
r-

to
-b

io
m

a
s
s

 c
o
n
v
e
rs

io
n

 c
a
p
a
b
ili

ty
 (

m
g
/k

W
·h

)

 C. ellipsoidea

 C. pyrenoidosa

0

50

100

150

200

250

P
o
w

e
r 

c
o
n
s
u

m
p
ti
o
n
 (

W
/m

2
)

).

Energies 2020, 13, x FOR PEER REVIEW 6 of 10 

 

 

Figure 4. The LED power-to-biomass conversion capability of microalgae cultured under different 180 

LEDs (blue and drab column), and power consumption of different LEDs (red pentagon ). 181 

Furthermore, cellular compositions of microalgae are generally critical evaluation parameters in 182 
various applications. Figure S3 shows the lipids, proteins and carbohydrates contents for the C. 183 
ellipsoidea and C. pyrenoidosa cultured under different LEDs. It was found that the main organic 184 

components in the microalgae represented approximately 80% of microalgae dry biomass, which 185 
were consistent with the literature [35]. Based on the cellular composition and power consumption 186 
of different LEDs, we determined the conversion capabilities of LED power-to-lipid, power-to-187 
protein, and power-to-carbohydrate. Figure 5 indicates that the power-to-carbohydrate conversion 188 
capabilities for both microalgae under white LEDs were the highest. The power-to-protein conversion 189 

capabilities for both microalgae cultured under white and blue LEDs were higher than those under 190 
green and red lights. Moreover, we found that both microalgae cultured under blue LED showed the 191 
highest power-to-lipid conversion capability. In particular, the power-to-lipid conversion capability 192 
for C. ellipsoidea and C. pyrenoidosa were 12.6% and 14.8% higher, respectively, under blue light than 193 
under white light. The power-to-lipid conversion capability for C. ellipsoidea and C. pyrenoidosa were 194 

60.7% and 66.3% higher, respectively, under blue light than under green light. Similar results have 195 
been reported for the suspended culture system. Ra et al. evaluated the effects of LED wavelength on 196 
the lipid production of Picochlorum atomus with two-phase suspended cultivation, and found that the 197 
lipid accumulation of P. atomus was 329% higher under blue light than that under green light [44]. 198 

Kang et al. determined the effect of using wastewater and wavelength filters on microalgal 199 
productivity and lipid accumulation with open raceway ponds, and found that the lipid productivity 200 
was highest under blue wavelength, at least 46.8% higher than that under white wavelength [45].This 201 
may be because blue light can promote the synthesis of lipids [46,47] and has low energy 202 
consumption. 203 

 

Figure 5. The conversion capabilities of power-to-carbohydrates, power-to-protein and power-to-204 
lipid for C. ellipsoidea (a) and C. pyrenoidosa (b). 205 

White Blue Green Red
0

300

600

900

1200

1500

 

 

L
E

D
 p

o
w

e
r-

to
-b

io
m

a
s
s

 c
o
n
v
e
rs

io
n

 c
a
p
a
b
ili

ty
 (

m
g
/k

W
·h

)

 C. ellipsoidea

 C. pyrenoidosa

0

50

100

150

200

250

P
o
w

e
r 

c
o
n
s
u

m
p
ti
o
n
 (

W
/m

2
)

Figure 5. The conversion capabilities of power-to-carbohydrates, power-to-protein and power-to-lipid
for C. ellipsoidea (a) and C. pyrenoidosa (b).

Overall, these results suggested that these two microalgae biofilms cultured under blue and white
LEDs showed higher conversion capabilities of power-to-biomass and power-to-protein compared
with those under green and red LEDs. These two microalgae cultured under blue LEDs possessed
the highest power-to-lipid conversion capabilities. The results revealed that it is feasible to induce
the synthesis of different chemical components in cells by adjusting the light spectrum in microalgae
biofilm-based culture systems.
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3.3. The CO2 Fixation Rate of Microalgae Biofilm

The CO2 fixation rates of microalgae biofilms cultivated under different LEDs were determined by
evaluating the difference in the carbon content (C%) of microalgae between the inoculation and harvest
(see Table S3). Figure 6 indicates that the CO2 fixation rates for the C. ellipsoidea and C. pyrenoidosa
cultured under blue LEDs were ~13% and ~31% higher, respectively, than those under green light. This
may be attributed to the higher photosynthetic performance of microalgae. Additionally, previous
study reported that, in suspended culture system, white light was the most effective light for CO2

fixation compared with the blue, red and yellow lights [48]. Evidently, this study indicated that
the influence of the light spectra on the CO2 fixation rate of microalgae would be different between
the biofilm cultured system and the suspended culture system. This may be due to the different
characteristics of light transmission and refraction in these two microalgae culture systems. Further
studies should be conducted to understand the light transfer phenomena in microalgae biofilm.

Energies 2020, 13, x FOR PEER REVIEW 7 of 10 

 

Overall, these results suggested that these two microalgae biofilms cultured under blue and white 206 

LEDs showed higher conversion capabilities of power-to-biomass and power-to-protein compared 207 
with those under green and red LEDs. These two microalgae cultured under blue LEDs possessed the 208 
highest power-to-lipid conversion capabilities. The results revealed that it is feasible to induce the 209 
synthesis of different chemical components in cells by adjusting the light spectrum in microalgae 210 

biofilm-based culture systems. 211 

3.3. The CO2 Fixation Rate of Microalgae Biofilm 212 

The CO2 fixation rates of microalgae biofilms cultivated under different LEDs were determined 213 
by evaluating the difference in the carbon content (C%) of microalgae between the inoculation and 214 
harvest (see Table S3). Figure 6 indicates that the CO2 fixation rates for the C. ellipsoidea and C. 215 

pyrenoidosa cultured under blue LEDs were ~13% and ~31% higher, respectively, than those under 216 
green light. This may be attributed to the higher photosynthetic performance of microalgae. Additionally, 217 
previous study reported that, in suspended culture system, white light was the most effective light for 218 
CO2 fixation compared with the blue, red and yellow lights [48]. Evidently, this study indicated that 219 
the influence of the light spectra on the CO2 fixation rate of microalgae would be different between 220 

the biofilm cultured system and the suspended culture system. This may be due to the different 221 
characteristics of light transmission and refraction in these two microalgae culture systems. Further 222 
studies should be conducted to understand the light transfer phenomena in microalgae biofilm. 223 

 224 

Figure 6. The CO2 fixation rate for C. ellipsoidea and C. pyrenoidosa cultured under different LEDs. 225 

3.4 Implications of LED Selection in Biofilm-Based Microalgae Cultivation 226 

Previous studies reported that using LEDs with specific narrow bands in suspended microalgae 227 
culture systems may be more economical than the fluorescent lamp and filament lamp [29,49]. The 228 
results of this study suggest that the LEDs are also promising in biofilm-based microalgae culture 229 

systems. Furthermore, the study also indicates that the light spectra of LEDs can significantly affect 230 
the power conversion capability and CO2 fixation rate of microalgae biofilms. For the C. ellipsoidea 231 
and C. pyrenoidosa biofilms, the power-to-biomass conversion capabilities and power-to-protein 232 
conversion capabilities were much higher for cells cultured under blue and white LEDs than those 233 
under green and red LEDs. Meanwhile, the power-to-lipid conversion capabilities and CO2 fixation 234 

rate were the highest for these two microalgae biofilms cultured under blue LEDs. Moreover, 235 
considering the simultaneous improvement of power-to-biomass conversion capabilities, power-to-236 
lipid conversion capabilities and CO2 fixation rate, blue LEDs may have great potential using in 237 
microalgae biofilm cultivation for the biofuel production and CO2 mitigation. The results of this study 238 
will have important implications for selecting the optimal energy-efficient LEDs to use in microalgae 239 

biofilm-based culture systems. 240 

4. Conclusions 241 

The results of this study indicated that the LED power conversion capability and CO2 fixation 242 
rate of C. ellipsoidea and C. pyrenoidosa biofilms cultured under white, blue, green and red LEDs were 243 

White Blue Green Red
2

3

4

5

6

7

8

 

 

C
O

2
 f
ix

a
ti
o
n

 r
a

te
 (

g
/m

2
·d

)

 C. ellipsoidea

 C. pyrenoidosa
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3.4. Implications of LED Selection in Biofilm-Based Microalgae Cultivation

Previous studies reported that using LEDs with specific narrow bands in suspended microalgae
culture systems may be more economical than the fluorescent lamp and filament lamp [29,49]. The
results of this study suggest that the LEDs are also promising in biofilm-based microalgae culture
systems. Furthermore, the study also indicates that the light spectra of LEDs can significantly affect the
power conversion capability and CO2 fixation rate of microalgae biofilms. For the C. ellipsoidea and
C. pyrenoidosa biofilms, the power-to-biomass conversion capabilities and power-to-protein conversion
capabilities were much higher for cells cultured under blue and white LEDs than those under green and
red LEDs. Meanwhile, the power-to-lipid conversion capabilities and CO2 fixation rate were the highest
for these two microalgae biofilms cultured under blue LEDs. Moreover, considering the simultaneous
improvement of power-to-biomass conversion capabilities, power-to-lipid conversion capabilities and
CO2 fixation rate, blue LEDs may have great potential using in microalgae biofilm cultivation for the
biofuel production and CO2 mitigation. The results of this study will have important implications for
selecting the optimal energy-efficient LEDs to use in microalgae biofilm-based culture systems.

4. Conclusions

The results of this study indicated that the LED power conversion capability and CO2 fixation
rate of C. ellipsoidea and C. pyrenoidosa biofilms cultured under white, blue, green and red LEDs were
significantly different. These two microalgae biofilms cultured under white and blue LEDs showed
higher power-to-biomass conversion capabilities and power-to-protein conversion capabilities than
those under green and red LEDs. The power-to-lipid conversion capabilities and CO2 fixation rate
were the highest for these two microalgae biofilms cultured under blue LEDs. This study would
provide guidance in selection of suitable LEDs and reducing energy consumption for developing more
efficient microalgae biofilm-based culture systems.
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