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Abstract: The following two approaches can address the drawbacks associated with mismatching
phenomena in photovoltaic (PV) plants: distributed maximum power point tracking (DMPPT)
architecture and reconfigurable PV array architecture. Until now, these two approaches have
represented alternative solutions. In this paper, for the first time, it is suggested that the two
approaches can be used together. In particular, it will be shown how the joint adoption of the DMPPT
and reconfiguration approaches can improve the performances of mismatched PV plants; here,
performance is understood as the best compromise between the efficiency and reliability of the
entire PV system. Numerical results confirm the above assumptions, providing the hints for the
development of innovative reconfiguration techniques suitable for distributed applications.
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1. Introduction

Decarbonization, as the main objective of the new green deal, accentuates the need to use renewable
sources for the production of electricity. In particular, photovoltaic (PV) sources are among the most
interesting renewable sources at large for the scientific community. In the last twenty years, the main
goal of researchers worldwide has been to optimize the energy performance of these sources [1–36],
that is, to ensure that the power extractable from PV systems to the best operating point (BOP) or to
the maximum power point (MPP) is the total available power (Pav), i.e., sum of the maximal power
over individual PV modules. Under uniform working conditions, or in the absence of mismatching
(due to clouds, shadows, dirt, aging, etc.), the above is guaranteed, regardless of the configuration
(electrical connections of PV modules) and of the weather conditions to which the PV modules are
subjected, both in terms of sun exposure (S) and temperature (T). Therefore, it is evident, from in these
details, that even under unlikely conditions, especially in reference to real applications (domestic or
industrial applications), the efficiency of the entire system is a single variable function, represented by
the tracking efficiency (ηMPPT) of the maximum power point tracking (MPPT) used. Efficiency is closely
related to the ability of the technique to converge the working point into a restricted round of the
BOP (steady-state capability), and also to its tracking speed. The tracking speed especially affects the
system’s performance under varying weather conditions (dynamic conditions). Under mismatching
conditions, which represent much more realistic scenarios, the situation changes dramatically [8–30].
In particular, as compared with the uniform case, in addition to the efficiency of the tracking technique,
other factors affect the energy performance of the entire system, including both static and dynamic
atmospheric conditions (SPV(t), TPV(t)) [8–20], the network topology (electrical connections between
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modules) [21–30], and the operating point (OP). Regarding the performances of different tracking
techniques, with particular reference to those based on the approach of “hill climbing” (e.g., perturb
and observe) which, in fact, represents the best compromise between good energy performance and
simplicity of implementation, their performances are strongly compromised by the multimodal nature
of the power-versus-voltage (P-V) curve of the entire PV field; multimodality resulting from the
presence of by-pass diodes which, for safety reasons, work in direct polarization [8–13]. The presence
of multiple peaks, for convenience divided into relative MPPS (RMPPs) and absolute MPP (AMPP),
is the main cause of failure of MPPT techniques, that are not skilled to differentiate the AMPP with
respect to RMPPs [14–18].

Additionally, although the power that is extracted at AMPPs is less than the total power
available [19], an AMPP is not a feasible point or does not belong to the operating range of the inverter;
thus, it is evident, under mismatching conditions, that the centralized approach, which adopts a unique
DC/AC converter that carries out the MPPT function of the entire field (Figure 1), cannot guarantee
good energy performance. The above approach is known as “Central Maximum Power Point Tracking
(CMPPT)”.
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Figure 1. Central Maximum Power Point Tracking (CMPPT) architecture in grid-connected photovoltaic
(PV) applications.

A specific tool that can mitigate the above drawbacks associated with mismatched operating
conditions is represented by the dynamic reconfiguration of PV modules by means of proper active
switches [21–31]. This reconfiguration approach can yield the best compromise between efficiency
(power maximization) and reliability (minimization of localized heating phenomena) [29–31].

An alternative solution is to use the distributed approach, the classical layout of which is shown
schematically in Figure 2 [32–36]. In this case, each PV module is equipped with a DC/DC converter that
performs the MPPT function. A system composed of a PV module equipped with a DC/DC converter
is called a self-controlled PV module (SCPVM). In particular, SCPVMs, based on the boost topology,
are analyzed in this study. Another possibility is to consider SCPVMs based on the buck or buck-boost
topology [32,36]. With respect to buck-boost topology, it is characterized by lower efficiencies and
higher costs due to enhanced component stresses. In [32,36], such a result has been verified by using
the tool represented by the so-called “feasibility region”. In particular, in [32,36], it was shown that
a real energy productivity of a buck-boost converter was guaranteed in cases where the mismatch



Energies 2020, 13, 1511 3 of 19

conditions were quite heavy. In all other mismatching scenarios, the buck-boost “feasibility regions” do
not include the AMPP, causing a marked reduction of the overall system efficiency. Regarding the buck
converter, it optimally works especially in PV systems characterized by a light mismatching scenario,
in other words, when, for example, shade or mismatch occurs only on a few PV modules. In this
case, the buck DC/DC converter is installed only on those PV modules experiencing shade [32,36].
The adoption of buck converters on all the PV modules of the string is unpractical because of the
associated step-down voltage conversion ratio, since it leads to an increase of the number of modules
for each string to obtain a string voltage compatible with the input voltage range of the inverter. On the
basis of the above assumptions, it is evident that the choice of boost topology provides a less expensive
and more reliable solution for distributed maximum power point tracking (DMPPT) applications.
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Figure 2. Distributed maximum power point tracking (DMPPT) architecture in grid-connected
PV applications.

Theoretically, the distributed approach can guarantee maximal efficiency, regardless of the
atmospheric conditions and configuration, in terms of electrical connections of SCPVMs. In other
words, the efficiency of the entire PV system, as in the case of the centralized approach that works
under uniform atmospheric conditions, is related only to the tracking efficiency of the utilized MPPT
technique. This aspect is substantially tied to the requirement of ideal conditions, that is, the unit
efficiency of the power stage and the total absence of limitations both on the current and on the voltage
of the involved silicon devices. In particular, the occurrence of the abovementioned condition (ideal
condition) means that the optimal working range is unrestricted, and also that it exhibits a power that
coincides with the total available power. These last conditions should hold regardless of the weather
conditions and the network topology.

Moving away from these ideal assumptions toward more realistic situations, the energy
performance of the distributed approach depends on the power stage efficiency and on the network
topology. While the dependence of the distribute approach’s efficiency on the environmental conditions
and on the power stage efficiency have been discussed extensively in literature, as highlighted
in [31–35], the same discourse cannot be extended to the role assumed by the dynamic reconfiguration
of SCPVM-like tools for improving the energy performance of the distributed approach. Until now,
reconfiguration techniques and distributed MPPT (DMPPT) have been considered as two alternative
techniques. In this work, for the first time, these two methods are combined. In particular, the
present work aims to analyze the impact of the joint action of the distributed approach and dynamic
reconfiguration in a broader perspective as compared with those closely related to the extracted power.
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2. The Current Versus Voltage (I-V) and P-V Characteristics of a Single SCPVM

A few simple guidelines are provided to obtain the current versus voltage (I-V) and the P-V
output static characteristics of lossless SCPVM, based on the boost topology. The knowledge of
such features represents the starting point for developing the I-V and P-V characteristics of a string,
consisting of an arbitrary number of SCPVMs connected in series. The term “lossless” means that,
in the ensuing reasoning, the losses occurring in the power stage of the adopted DC/DC converters
(switching losses, conduction losses, and iron losses) are neglected. In addition, the MPPT efficiency of
the DMPPT controllers is considered to be equal to one. In a follow-up study, the above assumptions
will be relaxed. In this study, VSCPVM (ISCPVM) denotes the output voltage (current) of the considered
SCPVM, and VDSMAX indicates the maximal allowed voltage provided by the utilized silicon devices.
As shown in Figure 3, the I-V characteristic of a single lossless SCPVM is defined by the following
three different regions: best operating region (BOR), and two worst operating regions (WOR1 and
WOR2). The BOR, defined for VMPP ≤ VSCPVM < VDSMAX, is delimited by the hyperbole of equation
VSCPVM ISCPVM = PMPP, where VMPP (PMPP) is the maximum voltage (power) that can be provided
by the adopted PV module under the considered atmospheric conditions (irradiance and ambient
temperature) [19,20]. The voltage (RV BOR) and current (RC BOR) ranges associated with the BOR are as
follows:

RC BOR = ] I0, IMPP] (1)

RV BOR = ]VMPP, VDSMAX] (2)

where I0 represents the value of the output current when the output voltage is equal to VDSMAX.
Its value is:

I0 =
PMPP

VDSMAX
(3)

Regarding WOR1, defined for 0 ≤ VSCPVM < VMPP, it is delimited by a portion that coincides
with the I-V characteristic of the adopted PV module (dashed line of Figure 3) under the considered
atmospheric conditions [19,20]. As shown in Figure 3, WOR 1 can be identified through the
following ranges:

RC WOR1 = ] IMPP, ISC] (4)

RV WOR1 = [0, VMPP[ (5)

where ISC represents the short circuit current of the PV module. At the right-ended limit, WOR2 is
characterized by a vertical drop located at V = VDSMAX and by the action of the output overvoltage
protection circuitry. The range of currents associated with WOR 2 is the following one:

RC WOR 2 = [0, I0] (6)

Equations (1) and (2) highlight the propensity of the BOR to assume, under non-stationary
operating conditions (S(t), T(t)), time-varying characteristics. This last aspect is crucial in the following
reasoning. As an example, Figure 4 shows the power versus current (P-I) characteristics of a single
SCPVM obtained by considering four different irradiance values (Si with i = 1, . . . , 4). In particular,
the following condition is assumed to be met:

S1 > S2 > S3 > S4 (7)
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3. The Role of the Reconfiguration in DMPPT PV Applications

In the previous section, it was shown that under non-stationary operating conditions, the optimal
working interval of a single SCPVM, whether assessed in terms of the current or the voltage, has
time-varying characteristics; the latter were attributed not only to their position in the I-V plane, but
also to their amplitude (Figure 4). The same considerations, as expected, can be extended to more
complex systems, as those shown in Figure 2, which consist of many strings of SCPVMs connected
in parallel. Evidently, once this property is confirmed, there is a need to continuously converge the
work-point to be within that range. The need for the joint action between centralized and distributed
control, given the characteristic time variation of the optimal work range, is well assessed, as can be
seen in [19,20]. This approach is known as hybrid maximum power point tracking (HMPPT). The
hybrid approach is the most effective solution for overcoming the highlighted limits of the distributed
approach. However, there are working conditions under which, even for the hybrid approach, the
efficiency of the entire system is strongly weakened. When the critical aspects of the distributed
approach against the reliability of DC/DC converters and PV panels are considered, in addition to the
aspect of energy performance, in terms of the power extracted, it becomes clear that the impaired
quantity is the energy that is produced during the entire useful life of the PV plant itself.

To better understand the above concepts, in the following it is considered appropriate, first of all,
to refer to a PV system with a simple topology, and then to extend the results to more complex systems.
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In particular, at first a PV system consisting of a single string of NS = 4 SCPVMs (SCPVM1, SCPVM2,
. . . , SCPVM4) is considered. The decision to analyze a system of only four SCPVMs connected in
series arises from the need to identify a configuration that is easy to be resolved but, at the same time,
considers all the previously highlighted arguments. The most scrutinized aspect is the role assumed
by a particular network topology on the energy performance of the entire system. In other words,
we show how the critical issues affecting the distributed approach are overcome, both partially and
totally, by acting on the configuration [36]. In particular, the authors want to highlight the idea that
the distributed approach and reconfiguration techniques, which up to now have been considered as
alternative techniques, are actually complementary.

To better understand the exposed aspects, the tested system (shown in Figure 5), is analyzed
for three specific cases which correspond to three different working conditions (Cases A, B, and C).
Each of the above cases refers to a set of possible mismatching conditions to which a PV system can
be subjected. The objective is to obtain results that are representative of the various combinations of
possible mismatching scenarios (Figure 6). Cases A and B represent, respectively, the best and the worst
cases whereas, as depicted in Figure 6, Case C is the relative complement of the various combinations
of possible mismatching scenarios with respect to the union of Case A and Case B. As a consequence,
for exhaustive analysis, it is necessary to analyze only the first two of the three envisaged cases. It is
important to clarify for the reasoning that follows, that no reference to atmospheric quantities (e.g.,
irradiance and temperature) is considered, and only the electrical quantities directly or indirectly
connected to them (such as ISC, IMPP, I0, and VMPP) are considered. This approach, which seems like a
limitation, is in fact quite realistic as it defines the electrical properties (in terms of voltage and current)
that must be satisfied by a string in order to improve the energy performance. Moreover, with the aim
of obtaining results with general validity, no reference to numerical values is made.
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Figure 6. Constellation of all possible mismatching scenarios.

3.1. Case A: Best Case

Case A refers to the I-V curves shown in Figure 7. This figure, in addition to showing the I-V
characteristics of each individual SCPVM, also highlights the respective optimal working current
ranges (RC BOR,i with I = 1, 2, 3, and 4). Moreover, the following condition is assumed:

IMPP,i > IMPP, j (i f i > j) (8)

The opposite occurs regarding the temperatures and the respective voltages at the MPP points.
Another condition to be verified, always with respect to what is shown in Figure 7, is the following:

I0,1 < IMPP,4 < IMPP,1 (9)

The above condition, as expected, represents the necessary and sufficient condition for not only
having an intersection between the optimal current ranges of all SCPVMs, but also that such an
intersection yields the optimal current range of the entire string (RCBOR string). Thus:

RC BOR string = RC BOR 1 ∩RC BOR 2 . . . . . .∩RC BOR 4 = ] I0, 1, IMPP, 4

]
(10)
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The particular link highlighted by Equation (10), which relates the optimal range of the working
current of the entire string to those of individual SCPVMs, clearly denotes its predisposition to assume,
under mismatching and not-stationary conditions, time-varying characteristics. Apart from this aspect
which, as explained above, does not provide any innovative contribution, Equation (10) highlights
the property according to which all SCPVMs contribute to the definition of the optimal current range
of the entire string. This result, from the energy point of view, implies that the optimal working
point at which the PV system can deliver the maximum available power, is a feasible point. This
statement implies, in all mismatching scenarios, given that Condition (9) is met, that the distributed
approach can show its true potential (best case). This becomes even more evident by analyzing the P-I
characteristic of the entire string (white curves) reported in Figure 8; this characteristic is obtained
by adding, for every value of the string current Istring, belonging to the range [0, ISC,1], the maximum
power values of individual SCPVMs, at the said value of current.

In particular, Figure 8 shows that the optimal working range defines a region where the P-I
characteristics of all SCPVMs show a flat shape. Figure 9, for completeness of reasoning, replots
the P-V characteristic of the entire system under test, in which the optimal operating voltage range
(RV BOR string) of the entire string is evidenced. As expected, the optimal voltage range of the entire
system can be expressed not only as a function of the overall available power, but also as a function of
the optimal current range. In particular:

RV BOR string =

∑4
i=1 PMPP, i

RC BOR string
=

∑4
i=1 PMPP, i

IMPP, 4
,

∑4
i=1 PMPP, i

I0, 1
[ (11)
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Finally, both the conditions expressed by Condition (9) and the optimal working time of the
current, Equation (10), at least in its extremes, depend indirectly on the atmospheric conditions affecting
the SCPVMs, with maximum (SCPVM1) and minimum (SCPVM4) sunshine, respectively. The above
result is easily extended to more complex systems, such as that represented by a string composed of
any number of SCPVMs. For this particular system, the optimal working ranges for both the current
and voltage can be expressed as follows:

RC BOR string = ∩Ns
i=1IC OPT i = ] I0, max, IMPP, min

]
(12)

RV BOR string =

∑Ns
i=1 PMPP, i

IC OPT string
=

∑Ns
i=1 PMPP, i

IMPP, min
,

∑Ns
i=1 PMPP, i

I0, max
[ (13)
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where the footboard min (max) identifies the SCPVM characterized by the minimum (maximum) level
of sunlight. As previously stated, Equations (12) and (13) are valid for a specific subset belonging to
the entire constellation of all possible mismatching scenarios that affect the tested PV system; a subset
that is defined by the occurrence of the following condition:

I0 max < IMPP min < IMPP max (14)

From the reconfiguration point of view, Equations (12) and (13) define the properties that a string
must possess for exhibiting good energy performance, regardless of the atmospheric conditions and
characteristics of the inverter in terms of the optimal working range (RV inverter). Specifically, Equation
(12) establishes that the maximum energy performance of the string can be obtained only when there
is an intersection between the optimal intervals in the currents of all the SCPVMs that constitute it.
The above condition is not sufficient: the optimal working voltage range of the entire string must also
exhibit an intersection with the optimal working range of the inverter. In particular, the following
condition applies:

RV BOR string ∩RV inverter , φ ⇒

∑Ns
i=1 PMPP, i

IMPP, min
,

∑Ns
i=1 PMPP, i

I0, max
[ ∩ [Vinverter min, Vinverter max] , φ (15)

where the symbol Vinverter min (Vinverter max) indicates the minimum (maximum) value of the input
inverter voltage and the symbol φ refers to the empty range. This last property, as will be evident later,
defines the minimal and maximal number of groups of SCPVMs that can compose a string and ensures
that the MPP belongs to the optimal range of the inverter, and therefore is a feasible point.
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3.2. Case B: Worst Case

Case B refers to the I-V curves shown in Figure 10, in which, for the sake of clarity, the optimal
current ranges of the individual SCPVMs (RCBOR_i with i = 1, 2, 3, and 4) are highlighted. As in Case
A, Condition (8) is met (IMPP,i > IMPP, j with i > j). The main differences between Case A and Case B
relate to the mismatching scenarios; in the present case the following general condition is fulfilled:

I0,i > IMPP, j(i = 1, 2, . . . , NS and j = i + 1, i + 2, . . . , NS) (16)



Energies 2020, 13, 1511 10 of 19
Energies 2020, 13, x FOR PEER REVIEW 10 of 19 

 

 

Figure 10. I-V characteristics of individual SCPVMs (Case B). 

The occurrence of this condition effectively excludes the possibility that there is an intersection 

between the optimal current intervals of all SCPVMs. As shown in Figure 11, this condition causes 

the coincidence between 𝑅𝐶𝐵𝑂𝑅 𝑠𝑡𝑟𝑖𝑛𝑔 and 𝑅𝐶𝐵𝑂𝑅 1. The same considerations can be extended with 

reference to the P-V characteristic plotted in Figure 12, in which it is evident that only SCPVM1 

contributes usefully in terms of efficiency to the entire system. Generalizing the above, for all 

mismatching scenarios that satisfy Condition (16), the optimal range, both in terms of the current and 

voltage of the entire string, coincides with that of the SCPVM characterized by the maximal level of 

sunlight (SCPVMmax). That is: 

RC BOR string = RC BOR max =]I0, max,IMPP, max]  (17) 

RV  BOR string = RV BOR max = [VMPP max,VDS max[ (18) 

 

 

Figure 11. P-I characteristic of the series connection of four SCPVMs. 

Figure 10. I-V characteristics of individual SCPVMs (Case B).

The occurrence of this condition effectively excludes the possibility that there is an intersection
between the optimal current intervals of all SCPVMs. As shown in Figure 11, this condition causes the
coincidence between RCBOR string and RCBOR 1. The same considerations can be extended with reference
to the P-V characteristic plotted in Figure 12, in which it is evident that only SCPVM1 contributes
usefully in terms of efficiency to the entire system. Generalizing the above, for all mismatching
scenarios that satisfy Condition (16), the optimal range, both in terms of the current and voltage of
the entire string, coincides with that of the SCPVM characterized by the maximal level of sunlight
(SCPVMmax). That is:

RC BOR string = RC BOR max = ] I0, max, IMPP, max

]
(17)

RV BOR string = RV BOR max = [VMPP max, VDS max[ (18)
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From Equation (17), the limitations of the distributed approach are explicitly evident, with reference
to the scenarios described in Case B. At best, the power extractable from the entire PV system coincides
with the maximum power delivered by the SCPVM with the highest level of sunlight. In addition to
this, if we consider that the pursuit of MPP has occurred at the expense of the reliability of the entire
system, it becomes evident that the energy that is produced during the entire useful life of the PV plant
is strongly impaired. Moreover, from the analysis of Figure 11, it is useful to point out that the string
current belonging to the optimal range (Istring OPT ∈ RC BOR string) fulfills the following condition:

Istring OPT > ISC,i(i = 2, 3, . . ., NS) (19)

As a consequence, given the inability of the boost converter to act as active bypass diode [35], it is
inevitable that for all those SCPVMs for which Condition (19) is verified, the respective PV modules
are reverse biased, and reliability is deeply compromised [37]. Finally, taking into account that the
optimal voltage range of the entire string almost certainly falls outside the optimal working range
of the inverter, it is evident that the scenarios highlighted by Equations (17) and (18) are not feasible,
resulting in a further reduction of efficiency. A solution for limiting these critical issues is to identify a
topology that represents the best compromise between efficiency and reliability. For example, a subset
of Case B can be considered, such that the following condition is satisfied:

I0 max <
∑Ns

i=j
IMPP,i ≤ IMPP max(j = 2, 3, . . . , NS) (20)

In this particular condition, the suitable topology is obtained by the series connection of SCPVMmax
with a group of (NS-j+1) SCPVMs connected in parallel. Moreover, if the possibility, offered by the
reconfiguration, of excluding from the entire system the j-2 SCPVMs that do not satisfy Condition (20)
is considered, it becomes evident that it is possible to improve the reliability of the entire PV plant
by avoiding the presence of PV modules that work in a reverse bias condition. In conclusion, from
the above example it is understood that the necessary condition for a string to exhibit good energy
performance, regardless the weather conditions, is that there is an intersection between the current
optimal ranges of all NC (Nc ≤ Ns) groups of SCPVMs that compose it.
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Moreover, it is also necessary to guarantee that Condition (15) is satisfied, because the optimal
working voltage range of the entire string must also exhibit an intersection with the optimal working
range of the inverter. It is necessary that NC meets the following property:

Vinverter min

VMPP
≤ Nc ≤

Vinverter max

VDS max
(21)

The latter property is valid if the following distinction is assumed to be valid:

VMPP

VDS max
≥

Vinverter min

Vinverter max
(22)

The minimum number of SCPVMs that belongs to a generic group is equal to one; this implies, in
the reasoning that follows, that each individual SCPVM represents a group. Meeting the condition
of Property (21) ensures that the optimal working point of the entire string is a feasible point, as it
belongs to the operating range of the inverter. Downstream of this brief discussion is a tangible impact
of the reconfiguration on the energy performance of PV systems that adopt the distributed approach.
The block scheme that jointly involves the distributed approach and the dynamic reconfiguration is
shown in Figure 13, in which the presence of the dynamic matrix of switches, located between the PV
field and the inverter, is evident. For this system, consisting of Ns SCPVMs distributed on a maximum
of Nstring strings, the number of switches required is equal to:

Nswitch = 4
∑Ns−1

i=1
(Ns − i) + 2(Ns − 1)∗Nstring (23)
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4. Identification of the Best String

In this section, starting from Ns SCPVMs, an algorithm, which determines the string that exhibits
the best energy performance is presented and discussed; energy performance here is understood as a
compromise between efficiency and reliability. This algorithm is not intended as a reconfiguration
algorithm, but rather as a tool for overcoming the belief that the distributed approach and reconfiguration
techniques represent alternative solutions to mitigate the effects of the occurrence of mismatching
operating conditions. In other words, the purpose of the following discussion is to develop innovative
reconfiguration techniques suitable for distributed applications. From the previous paragraph, the
necessary condition for a string to exhibit good energy performance, regardless the atmospheric
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conditions, is that there will be an intersection between the current optimal ranges of all NC groups of
SCPVMs that compose it. That is to say:

RC BOR i ∩RC BOR j , φ (i = 1, 2, . . . , Nc and j = i + 1, i + 2, . . . , Nc). (24)

According to Property (21), the minimum (Nc min) and maximum (Nc max) values of NC are
defined as follow:

Nc min =
Vinverter min

VMPP
(25)

Nc max =
Vinverter max

VSD max
(26)

With the aim of identifying, starting from a number of SCPVMs, the string that fulfills the
properties expressed in Equations (24), (25), and (26), the algorithm, object of this paragraph, bases its
principle of functioning on an iterative process. The starting point is the definition of the intersection
matrix (Imatrix), defined as follows:

Imatrix (i, j) =

1 if
(
RC BOR, i ∩RC BOR, j , φ

)
0 if

(
RC BOR, i ∩RC BOR, j = φ

) (27)

where i = 1, 2, . . . , Ns; and j = i + 1, i + 2, . . . , Ns.
Under the hypothesis that the level of sunlight decreases with increasing the footboard (IMPP,i >

IMPP,j (if i > j)), at each row of Imatrix it is possible to associate a cluster, which is called an optimal
cluster (OC), composed of all SCPVMs accomplishing ownership in Condition (24). Since Imatrix is
an [NS ×NS] matrix, the number of OCs that can be associated with Imatrix is NS (the number of rows
of Imatrix). For the sake of clarity, in the following, we indicate by OCi the optimal cluster associated
with the i-th row of Imatrix. In addition, we denote by NCi and RC OPT OCi, respectively, the number of
groups of SCPVMs belonging to the i-th cluster (OCi) and the optimal current interval, obtained by
connecting in series all the NCi SCPVMs belonging to OCi. According to the value assumed by NCi,
compared with the overall number of SCPVMs (NS) that make up the entire PV field, it is possible to
discriminate, for each single OC, three potential working conditions: (1) the best condition (NCi = NS),
(2) the worst condition (NCi = 1), and (3) the compromise condition (1 < NCi < NS). The best case can
be neglected because no reconfiguration is necessary; for the other two cases, it is possible to associate
with Imatrix additional NS clusters, each of which is composed of NS-NCi SCPVMs. In other words,
the i-th row of Imatrix, in addition to OCi, can be associated with an additional cluster composed of
all SCPVMs which, owing to their characteristics, cannot belong to the corresponding heading. This
additional cluster is denoted as the relative complement of i-th optimal cluster (RCOCi). The number
of items belonging to the i-th RCOC is:

NRCOC i = NS −NCi ≥ 0 (28)

On the basis of the above, it is clear that for reasons strictly related to reliability, RCOCi represents
the entire set of the SCPVMs to be excluded, potentially, from the entire PV plant, to avoid the presence
of one or more PV modules working in reverse bias conditions. ”Potentially” means that the NRCOCi

SCPVMs have to be excluded only if the following condition is not verified:∑NSCPVM j

k=1
RC BOR subset k ∩RC BOR OC i , φ(j = 1, 2, . . . , Nsubset i ) (29)
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where NSCPVM j indicates the number of SCPVMs belonging to the j-th subset of RCOCi and Nsubset i,
with the total number of possible subsets belonging to RCOCi equal to:

Nsubset i =
∑NRCOC i

k=2

NRCOCi!
k!(NRCOCi − k)!

(30)

In particular, the occurrence of Condition (29) implies the existence of groups of SCPVMs, whose
connection in parallel is such as to exhibit an equivalent optimal current interval (RC BOR subset k) that
satisfies Condition (24). Excluding the above groups from RCOCi and inserting them in OCi creates
the following two new clusters: BCi (best cluster) and CEi (cluster of excluded). BCi represents the
extension of OCi obtained by including groups of SCPVMs, placed in parallel, that satisfy Condition
(24). As far as CEi is concerned, it is clear that, being composed of SCPVMs that do not individually
or in groups meet Conditions (24) and (29), it represents the entire set of SCPVMs to be excluded for
safeguarding the reliability of the entire plant. Thus, it is concluded that the information contained in
BCi and CEi identifies the string that satisfies Condition (24). Once the aforementioned clusters are
defined, the iterative process on which the algorithm is based ends identifying, between the possible
NS strings, the one which not only meets the Conditions (25) and (26) but is also characterized by the
maximum extracted power. This string represents, as can be expected, the best compromise between
efficiency and reliability.

In the following, as an example, the results obtained using the above algorithm are considered
with reference to two different mismatching scenarios, i.e., Case I and Case II. In both cases, the tested
PV system is characterized by the presence of NS = 4 SCPVMs, whose electrical characteristics are listed
in Table 1, which indicates the clear reference to commercial PV panels (SW 225 of Solar World) [38].
As far as the inverter is concerned, it is assumed that it is characterized by an operating range whose
input values are shown in Table 2.

Table 1. Electrical characteristics of the SCPVMs.

Open Circuit Voltage (Standard Test Conditions) VOC_STC = 37.3 V

Short Circuit Current (Standard Test Conditions) ISC_STC = 8.13 A

Maximum Power Point Voltage (Standard Test Conditions) VMPP_STC = 29.7 V

Maximum Power Point Current (Standard Test Conditions) IMPP_STC = 7.59 A

Maximum Allowed Voltage (Standard Test Conditions) VDS MAX = 60 V

Table 2. Input inverter range.

Minimum Inverter Voltage 60 V

Maximum Inverter Voltage 240 V

Replacing the values in Tables 1 and 2 by Equations (25) and (26), the minimal and maximal
number of groups of SCPVMs for ensuring that the optimal voltage range of the entire range is
contained in the optimal operating range of the inverter is equal to:

Ncmin =
Vinverter min

VMPP_STC
� 2 (31)

Ncmax =
Vinverter max

VDS max
� 4 (32)

4.1. CASE I

Case I refers to the following set of values: IMPP vector IMPP_V = [3.78 1.13 0.75 0.37] A, I0 vector
I0_V = [1.87 0.56 0.37 0.18] A. Figure 14 shows the optimal current ranges of all SCPVMs.
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With reference to Case 1, the matrix of intersections, obtained by applying the conditions expressed
in Equation (27), is as follows:

Imatrix =


1 0 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 (33)

Row 1: From the intersection matrix it is evident that the first line has only one non-zero element in
the Imatrix position (1,1). This implies that the intersection of the optimal current range of the SCPVM1

with all the remaining SCPVMs is empty. Therefore, the set OC1 consists of a single group made up
of SCPVM1 (NC1 = 1) while SCPVMs 2, 3, and 4 belong to RCOC1 (NRCOC1 = 3) by exclusion. The
presence of NRCOC1 = 3 SCPVMs inside RCOC1 implies the existence of four possible subsets, each
consisting of the parallel of a minimum of two up to a maximum of three SCPVMs. Table 3 shows
the compositions of each single group together with their optimal current range. For simplicity “i//j”
denotes the group constituted by the parallel connection of i-th SCPVM with j-th SCPVM. A comparison
of the intervals represented in Table 2 with the optimal range associated with OC1 which coincides
with that of SCPVM1, shows that only Subsets 1 and 4 satisfy Equation (29). Of the above subsets,
Subset 4 is more suitable as it is associated with a greater extractable power being constituted by the
parallel connection of three SCPVMs. On the basis of the above, it is clear that cluster CE1, associated
with the first row of Imatrix, is empty, while cluster BC1 consists of two groups composed, respectively,
of SCPVM1 and the parallel connection of SCPVM 2, 3, and 4 (SCPVM 2//3//4).

Table 3. Subsets associated with relative complement of i-th optimal cluster (RCOC1).

Description Group Optimal Current Range

Subset 1 SCPVM2//3 [0.93, 1.88] A

Subset 2 SCPVM2//4 [0.74, 1.5] A

Subset 3 SCPVM3//4 [0.55, 1.12] A

Subset 4 SCPVM2//3//4 [1.11, 2.25] A

Rows 2, 3, 4: Repeating the process also for Rows 2, 3 and 4 it is possible to obtain the results
shown in Table 4.
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Table 4. Best clusters (BCs) and clusters of excluded (CEs) (Case I).

Row BC CE Pav

1 SCPVM1;
SCPVM2//3//4

φ 176.5 W

2 SCPVM2;
SCPVM3

SCPVM1;
SCPVM4

56.25 W

3 SCPVM3;
SCPVM4

SCPVM1;
SCPVM2

33.75 W

4 SCPVM4

SCPVM1;
SCPVM2;
SCPVM3

11.25 W

From the analysis of Table 4, it is easy to identify the string that most of all represents the best
compromise between efficiency and reliability, which in the case under consideration is obtained
by connecting in series the groups belonging to BC1. This statement is reflected in the fact that
groups belonging to BC1 not only meet Condition (21) but are capable, once connected in series, to
display a greater (Pav = 176.5 W) available power than the strings obtained by connecting in series
the groups belonging to other BCi (with i = 2, 3, and 4). To further highlight the results obtained
using this algorithm, Figure 15 shows the comparison of the P-V characteristics of the string just
identified (continuous line) with that obtained by connecting in series all the four SCPVMs (dotted
line). From Figure 15, we perceive an evident increase of the extractable power inside the operating
range of the inverter, estimated as ~85%. The increased extractable power is not the only advantage of
using an appropriate reconfiguration of SCPVMs, which in the present case is obtained through the
series connection of groups belonging to BC1. In particular, unlike the string obtained from the series
connection of the four SCPVMs, the presence of SCPVMs working under reverse bias conditions has
been avoided, at least in the optimal working range, with clear advantages in terms of the reliability of
the entire system.
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4.2. CASE II

Case II refers to the following set of values: IMPP vector IMPP_V = [3.03 2.65 1.13 0.75] A, I0 vector
I0_V = [1.5 1.31 0.56 0.37] A.

Imatrix =


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 (34)

Repeating the reasoning made previously with reference to the case under examination, the
obtained results are shown in Table 5. The presence of two strings that are equivalent from the point of
view of the energy performance can be deduced. Again, as shown in Figure 16, the increase in the
energy performance with respect to the string, obtained from the series connection of all SCPVMs, is
clearly visible and it is estimated as ~32%.

Table 5. BCs and CEs (Case II).

Row BC CE Pav

1
SCPVM1;
SCPVM2;

SCPVM3//4

φ 218 W

2 SCPVM2;
SCPVM1//3//4

φ 218 W

3 SCPVM3;
SCPVM4

SCPVM1;
SCPVM2

56.25 W

4 SCPVM4

SCPVM1;
SCPVM2;
SCPVM3

22.5 W
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5. Conclusions

This work highlighted the main advantages of a joint action of DMPPT and reconfiguration
approaches. Combining the two approaches not only positively affects the energy efficiency, but also
increases the reliability of the mismatched PV system. These results suggest that the DMPPT and
reconfiguration approaches, which until now have been considered as alternative approaches, are
completely complementary.
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