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Abstract: The attenuating effects of clouds and aerosols on global horizontal irradiance (GHI) and
ultraviolet erythemal irradiance (UVER) were evaluated and compared using data from four sites
in South Korea (Gangneung, Pohang, Mokpo, and Gosan) for the period 2005–2016. It was found
that GHI and UVER are affected differently by various attenuating factors, resulting in an increase
in the ratio of UVER to GHI with a decrease in the clearness index of GHI. A comparative analysis
of the clearness indices of GHI and UVER identified an almost linear relationship between two
transmittances by applying UVER with fixed slant ozone (UVER300) and there was a latitudinal
difference in the relationship. Some nonlinearity remained in this relationship, which suggests
a contribution by other factors such as clouds and aerosols. Variations of the UVER300 ratio to GHI
with cloud cover and aerosol optical depth were analyzed. The ratio increased with cloud cover and
decreased with aerosol optical depth, indicating that clouds attenuate GHI more efficiently than UVER
and that the attenuation by aerosols is greater for UVER than for GHI. A multiple linear regression
analysis of the clearness indices of GHI and UVER300 quantitively demonstrates differences in the
radiation-reducing effects of clouds and aerosols, with some regional differences by site that can be
attributed to local climatic characteristics in South Korea.

Keywords: solar irradiance; ultraviolet erythemal irradiance; clearness index; attenuating factors;
individual contribution

1. Introduction

Energy from solar radiation sustains Earth’s ecosystems and climate. The total solar radiation
that reaches the Earth’s surface is defined as global horizontal irradiance (GHI; 290–2800 nm) and is
typically divided into ultraviolet, visible, and infrared radiation by wavelength. Ultraviolet radiation
(UV; 100–400 nm) can have damaging effects on the human body and ecosystems, and thus careful
monitoring of UV is needed. Ultraviolet radiation can be further divided into three sub-classes by
wavelength, with 280–320 nm corresponding to ultraviolet B radiation (UV-B; 280–320 nm) [1].

Although >90% of UV-B is absorbed by stratospheric ozone, enough radiation reaches the Earth’s
surface to cause erythema in human skin. MacKinlay and Diffey [2] developed an erythemal action
spectrum based on the biological risk of erythema by wavelength. UV erythemal irradiance (UVER)
is calculated by weighting this action spectrum to spectral UV-B irradiance, and can be used as
an indicator of erythemal risk. However, UV-B also positively affects human health by triggering
the synthesis of vitamin-D in human skin [3]. Considering both the negative and positive effects of
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UV radiation, monitoring and routinely informing the public of biologically effective UV irradiance
is critical.

However, monitoring UV irradiance requires more expensive equipment than does the monitoring
of GHI and also requires periodic quality checks. These limitations have led to fewer UV monitoring
stations compared with those for GHI. Thus, researchers often attempt to estimate UV based on global
solar radiation observations using a predetermined relationship between UV and GHI with attenuating
factors for UV [4–6], UV-B [7,8], and UVER [9–11]. That is, the characteristics of various attenuating
factors and their effect on ultraviolet and global solar radiation must be analyzed before estimating
UV irradiance. For example, Anton et al. [12] investigated differences in the effects of ozone, clouds,
and aerosols on GHI and UVER using the ratio of UVER to GHI in Spain, and they also developed
an empirical model for estimating the transmittance of UVER from GHI [9]. They reported that clouds
have a higher attenuation effect on GHI than on UVER and that aerosol load also behaves differently
in atmospheric transmission of GHI and UVER. Adam [13] investigated the relationship between
UV-B and GHI by comparing temporal variation and analyzing the response of the ratio of UV-B
and broadband solar radiation to ozone, aerosols and water vapor in Qena, Egypt, before developing
a UV-B estimating model in further study [8]. Also, Buntoung et al. [10] estimated UVER based on
a sensitivity analysis of UVER and GHI to meteorological factors (solar zenith angle, ozone, aerosols
and clearness index) in all- and cloudy-sky conditions in Thailand.

The relationship between UV and GHI is modulated by clouds, aerosols, ozone, and solar zenith
angle, which have wavelength-dependent effects on solar irradiance. Generally, the reduction of solar
irradiance by clouds is greater at longer wavelengths [14–18] and aerosol attenuation is greater at
shorter wavelengths [19,20]. Here, we analyze the relative difference in the effects of attenuating
factors (clouds and aerosols) on GHI and UVER using ground-based observational irradiance data for
the period 2005–2016 at four locations in South Korea to understand the characteristics of GHI and
UVER transmittance, and prepare for the development of an UVER model for this region. The effect of
clouds and aerosols were compared using two simple parameters: the clearness index, which indicates
the atmospheric transmittance of broadband solar radiation, and the ratio of UVER to GHI. Lee et
al. [21,22] investigated the spectral dependence of the effects of clouds, aerosols, and ozone on UVER,
total UV, and GHI in South Korea, but their investigation was limited to the capital city, Seoul.

The data and methodology used in this study are introduced in Sections 2.1 and 2.2, respectively.
In Section 3.1, the relative difference in the changes of UVER and GHI is established by comparing
the monthly variation in GHI and UVER and the UVER/GHI response to the clearness index of GHI.
In Section 3.2, the relationship between clearness indices of GHI and UVER are analyzed, and in
Section 3.3 we provide a correlation analysis of clearness indices and attenuating factors and differences
in the UVER/GHI response to clouds and aerosols. Section 3.4 gives the results of multiple linear
regression analyses for clearness indices of GHI and UVER. Finally, Section 4 includes a discussion and
summary of this study.

2. Data and Methods

We compared attenuating effects of clouds and aerosols in GHI and UVER using various analyses:
(1) simple comparison of monthly mean GHI and UVER; (2) the relationship between clearness indices
of GHI and UVER; (3) UVER/GHI response to each attenuating factor and clearness indices; and (4)
multiple linear regression analysis. In particular, the radiative amplification factor (RAF) of ozone was
used for removing ozone attenuating effects. The data and methodology used in these analyses are
described in detail below.
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2.1. Data

2.1.1. Irradiance Data

The analysis was conducted for four sites in Korea: Gangneung (37◦45′ N, 128◦53′ E), Pohang
(36◦01′N, 129◦22′ E), Mokpo (34◦49′N, 126◦22′ E), and Gosan (33◦17′N, 126◦09′ E), where observational
data for both GHI and UVER are available for the 12 years from 2005 to 2016. Observational data are
from the Korean Meteorological Administration (KMA). Figure 1 shows the spatial distribution of the
analysis sites.
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Figure 1. Spatial distribution of analysis sites (Gangneung, Pohang, Mokpo, and Gosan) in South Korea.

Global solar radiation was measured using a pyranometer (CMP-21, Kipp & Zonen, Netherlands).
The CMP-21 pyranometer has non-linearity below 0.2% in the range of 100–1000 W m−2 and a directional
response below 10 W m−2 (up to 80◦ with a 1000 W m−2 beam). Spectral error is within 3% and
temperature dependence is below 1% (from −20 ◦C to 50 ◦C). Irradiance is measured as a 1-min
average value using a data logger (CR21X, Campbell Scientific, Logan, UT, USA) and is provided to
data users as temporally integrated values. Quality control of the GHI data was performed using
methods described by Jung et al. [23]. The measured GHI should be less than top of atmosphere
(TOA) irradiance at the same geographical location and larger than the minimum GHI value under
continuously overcast conditions.

Erythemal ultraviolet irradiance was observed using a UV-Biometer (Model 501, Solar Light
Co., Glenside, PA, USA). The UV-Biometer detects ultraviolet irradiance with a spectral response
for erythemal action spectrum with an accuracy of ±5% for the daily total irradiance. The spectral
response is similar to the CIE action spectrum, that is, it is normalized to 1 at below 297 nm, and the
logarithm of the normalized spectral response decreases linearly with wavelength being about 0.001 at
330 nm. Calibration of the instrument is initially carried out by the manufacturer to show the biological
effectiveness of the solar radiation in a condition of a clear sky, 30◦ solar zenith angle and 2.7 mm
ozone column thickness at sea level and a sensor temperature of 25 ◦C. The sensor is re-calibrated twice
per year by comparing it with a reference sensor. The UV-biometer provides integrated ultraviolet
radiation for 10-min periods in units of minimum erythemal dose (MED; 1 MED = 210 J/m2) [24].
Erythemal UV measurements that meet the following criteria are excluded from the analysis: (1) device
temperature , 25◦C, or (2) values >0 after sunset. Daily integrated GHI and UVER values were used
in the analysis only if all data are available for the whole day.

Irradiance observations at analysis sites are operated and managed by KMA with periodical dome
surface cleaning and normal operation checks. All instruments including pyranometers and biometers
are installed in proper locations where there are no obstacles to cause shadows and highly reflective
objects around the device.
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2.1.2. Attenuating Factors

Clouds, aerosols, and ozone affect the transmittance of radiation to reach the Earth’s surface.
We used daily average of cloud cover (CC) data observed in units of tenth per hour from KMA weather
stations. As there are no readily available aerosol optical depth (AOD) and total ozone column (TOC)
measurements for the analysis sites, these two factors are based on reanalysis and remote sensing
data, respectively. For AOD, 3-hourly AOD data from the Modern-Era Retrospective analysis for
Research and Applications, version 2 (MERRA-2) were used to generate daily averages. For ozone,
TOC data were obtained from two remote sensors, the Ozone Monitoring Instrument (OMI) on Aura
and the Ozone Mapping and Profiler Suite (OMPS) on Suomi- National Polar-orbiting Partnership
(NPP). If a TOC is observed by more than one sensor on one day, the values were averaged before use
in the analysis. We converted TOC to slant column density (SCD) using the solar zenith angle (SZA, θ)
according to Equation (1), which describes the amount of ozone along the solar radiation optical path:

SCD =
TOC

cos(θ)
. (1)

Previous studies have also used SCD in analyses of the effects of ozone on UV radiation [12,25,26].
The spatial resolution of the AOD and SCD data are 0.5◦ × 0.625◦ and 1◦ × 1◦, respectively. The AOD
and SCD data were extracted from the grid point closest to the irradiance observations. Table 1
summarizes the annual mean values of the influencing factors at the analysis sites.

Table 1. Summary of geophysical information and annual average values for the attenuating factors
(cloud cover (CC), aerosol optical depth (AOD), total ozone column (TOC), and slant column density
(SCD)) during the analysis period.

Site Latitude/Longitude CC AOD TOC SCD

Gangneung 37◦45′ N, 128◦53′ E 5.08 (±0.3) 0.26 (±0.03) 325 (±6.4) 474 (±9.6)
Pohang 36◦01′ N, 129◦23′ E 4.90 (±0.2) 0.33 (±0.03) 319 (±6.2) 452 (±9.0)
Mokpo 34◦49′ N, 126◦22′ E 5.43 (±0.2) 0.39 (±0.04) 306 (±5.8) 418 (±8.3)
Gosan 33◦17′ N, 126◦10′ E 6.12 (±0.2) 0.38 (±0.03) 300 (±5.5) 399 (±7.7)

2.2. Methods

2.2.1. Clearness Index

The clearness index, the ratio of irradiance at the surface to TOA irradiance, is an indicator of
atmospheric transmittance and is calculated as

Clearness index =
I
I0

, (2)

where I and I0 are the daily cumulative radiation at the surface and the TOA, respectively. The I0 is
calculated according to Iqbal [1] as follows:

I0 =
24
π

IscE0

[(
π

180

)
ωs(sin δ sinφ) + (cos δ cosφ sinωs)

]
. (3)

In Equation (3), ISC is the solar constant, which is 4921 kJ/m2 for GHI and 37.08 kJ/m2 for UVER.
The solar constant for UVER is calculated by applying the erythemal weighting function to the solar
constant for each wavelength band given by Iqbal [1]. E0 is the eccentricity correction factor for the
Earth’s orbit, φ is the latitude of the observation site, δ is the solar declination, and ω is the solar
time angle.
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Using Equation (2), we calculated the clearness index for GHI and UVER, which are referred to
here as KT and KTUVER, respectively. KT can be used as an indicator of the general transmittance of the
atmosphere, as it accounts for the total solar radiation transmitted to the surface from the TOA.

2.2.2. Radiative Amplification Factor (RAF) for Ozone

Erythemal UV is strongly absorbed by ozone. Therefore, to compare the effects of meteorological
factors on KT and KTUVER, it is necessary to fix the effect of ozone on KTUVER. In this study, the radiative
amplification factor (RAF) for ozone, first designed by Madronich [27], was used to convert observational
UVER into values equivalent to slant ozone. The RAF for SCD is defined as the slope between the
natural logarithms of SCD and UVER:

ln[UVER] = RAF× ln[SCD] + Const. (4)

A 1% decrease of SCD leads to an RAF% change in UVER. In general, TOC is used to calculate
RAF of ozone [27], however, in this study SCD, which includes the effects of TOC and optical path was
used. Similarly, Serrano et al. [28] used the slant column density of ozone in the calculation of RAF to
figure out the sensitivity of UVER transmissivity to the total ozone column and actual optical path.

Then, using the RAF for SCD, the UVER for various SCDs can be converted to a modified UVER
with a fixed ozone amount. The annual mean TOC values are 325 (±6.4), 319 (±6.2), 306 (±5.8), and 300
(±5.5) DU at Gangneung, Pohang, Mokpo, and Gosan, respectively (Table 1). In this study, the SCD
was set to 300 DU, corresponding to the minimum solar zenith angle (i.e., at noon) and lowest ozone
conditions in South Korea. The UVER with fixed SCD is referred to as UVER300. The conversion
formula for UVER using the RAF is

UVER300 = UVER
[
1 +

300− SCD
300

×RAF
]
. (5)

Using UVER300 which implicates the attenuating effect of other absorbers such as clouds and
aerosols except for SCD, a comparison of the influence of clouds and aerosols on UVER and GHI
becomes possible. In addition, a new clearness index, KTUVER300, can be defined for UVER300.

2.2.3. Multiple Linear Regression Analysis

A multiple linear regression (MLR) analysis was conducted to compare the individual contributions
of the influencing factors to GHI and UVER. The dependent variables used in the regression analysis
are KT, KTUVER, and KTUVER300, which are the clearness indices of each radiation dose (GHI, UVER,
and UVER300, respectively). The independent variables are CC, AOD, and SCD. The SCD is included
only if the dependent variable is KTUVER. Because ozone amount has a negligible influence on GHI,
KT does not take SCD as an input variable in MLR.

From the multiple regression analysis, individual contributions are calculated by multiplying
the partial correlation coefficient and the beta coefficient between the dependent variable and the
independent variables. The sum of these individual contributions is the determination coefficient (R2)
of the regression model [29].

3. Results

3.1. GHI and UVER Transmittance Differences

Figure 2 shows the monthly average values of daily cumulative GHI and UVER for the period
2005–2016 at the four sites in South Korea. There is a good correlation between GHI and UVER
at all sites. This correlation was the basis for many previous studies that estimated UV or UVER
from GHI [6,8,9,30–32]. However, as is evident in Figure 2, the maximum values of GHI and UVER
occur in different months: May for GHI and July–August for UVER. The maximum values of GHI
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at Gangneung, Pohang, Mokpo, and Gosan are 19.6, 19.5, 19.6, and 20.5 MJ m−2 day−1, respectively,
and they all occur in May. The maximum values for UVER are 2.7 (Gangneung) and 3.4 kJ m−2 day−1

(Mokpo) in August, and 3.3 (Pohang) and 3.6 kJ m−2 day−1 (Gosan) in July.Energies 2019, 12, x FOR PEER REVIEW 6 of 15 
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The Korean Peninsula experiences a strong rainy season, called the “Changma”, which is caused
by a humid southeast monsoon system in summer (June to August) that leads to cloudiness. Therefore,
although the highest sunlight occurs in summer, usually in June, the frequent shielding of solar
radiation due to cloud formation and precipitation associated with the rainy season causes the monthly
GHI in summer to be lower than that in May. In Gosan, located on Jeju Island, the monthly average
GHI is lower in June than in July, unlike the other sites (Figure 2d). This may be caused by more
frequent overcast skies and the occurrence of mist associated with southeasterly seasonal winds that
bring high humidity and sea salt concentrations in June [33]. Canada et al. [25] reported monthly
means of the daily cumulative GHI and UVER in Valencia (39.5◦ N), Spain. The highest monthly mean
values of GHI and UVER (25.1 Wm−2 and 0.0041 Wm−2, respectively) were observed in July. Because
Valencia is hot and dry in summer, it experiences the highest values of both types of radiation in July.
However, the Korean Peninsula, although it is a mid-latitude region like Valencia, experiences different
radiative trends due to differences in its climate.

The GHI values at the four sites decrease after they reach their maximum values in May. However,
the UVER values remain relatively constant during summer before decreasing rapidly after August.
Surface UVER is primarily attenuated by stratospheric ozone. In the mid-latitude Northern Hemisphere,
the maximum stratospheric ozone occurs in spring and decreases until it reaches a minimum in Autumn.
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High sunlight in summer and the decrease in stratospheric ozone cause UVER to remain high during
the summer in Korea.

Differences in the monthly variation of GHI and UVER are due to the differing effects of attenuating
factors. It is also possible to diagnose differences in GHI and UVER attenuation by analyzing the
variability of the ratio UVER/GHI with the clearness index for GHI (KT); KT indicates the atmospheric
transmittance of total solar radiation. If the ratio UVER/GHI changes with KT, this means that GHI and
UVER are affected differently by atmospheric conditions during their transit through the atmosphere.
Figure 3 shows UVER/GHI as a function of KT. The UVER/GHI ratio tends to increase with decreasing
KT, indicating that the more turbid the atmosphere, the higher the ratio of UVER to GHI. Indeed,
both GHI and UVER decrease as the atmosphere is made more turbid by attenuating factors (clouds
and aerosols). As daily mean CC increases from 3 to 5, daily accumulated GHI and UVER decrease
from 26.1 MJ m−2 to 22.8 MJ m−2 and from 4.3 kJ m−2 to 3.9 kJ m−2, respectively, during the analysis
period on average at the four sites. Likewise, as the daily mean AOD increases by 0.5, GHI and UVER
decrease by 2.4 MJ m−2 and 0.9 kJ m−2 per day. Although both GHI and UVER decrease with increasing
clouds and aerosols, the fact that UVER/GHI is not constant to varying KT implies the existence of
clear, different effects of attenuating factors on GHI and UVER.
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The trend of UVER/GHI with KT is consistent with previous studies [10,12]. Anton et al. [12]
showed that UVER/GHI increases with decreasing KT in three regions of mid-western Spain: Badajoz
(38.99◦N), Caceres (39.48◦N), and Plasencia (40.06◦N). The UVB/GHI [34] and UV/GHI [30,35–39] ratios
have also been shown to increase with decreasing KT. Many of these studies, however, have attributed
this relationship to differences in the effects of clouds on GHI and UV, and have suggested that KT is
related to cloud cover in the study region. Clouds also make a larger contribution to KT than do other
factors in South Korea, according to the statistical analysis of Jung et al. [23]. However, KT is affected
by other atmospheric constituents, including aerosols. Thus, it is necessary to examine the individual
effects of multiple factors (clouds and aerosols in this study) on variations in GHI and UVER.

3.2. Comparison of Two Clearness Indices

In this section, results from a comparison of the clearness indices of GHI and UVER are presented.
Figure 4 shows scatter plots of daily KT and KTUVER at the four sites during the analysis period. As KT

increases, generally KTUVER also increases, but explanations of KT to KTUVER are insufficient with
a large dispersion of data points. A linear fit of KTUVER to KT yields determination coefficients (R2) of
0.26 (Gangneung), 0.30 (Pohang), 0.43 (Mokpo), and 0.62 (Gosan) at the four sites. KT and KTUVER

are most strongly correlated at Gosan, followed by Mokpo, Pohang, and Gangneung. These regional
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differences can be attributed to spatial variations in stratospheric ozone in the study area. Stratospheric
ozone at the analysis sites varied with latitude, with annual slant ozone amounts of 480 (Gangneung),
457 (Pohang), 434 (Mokpo), and 406 (Gosan) DU (Table 1). In addition, the annual variability in
stratospheric ozone differs by location. Park et al. [40] used the total ozone column observed by
remote-sensing during 1991–2009 to determine that the average annual variability in stratospheric
ozone increases with latitude throughout the Korean Peninsula. Latitudinal differences in stratospheric
ozone and its variability may be reflected in the correlation between KT and KTUVER.Energies 2019, 12, x FOR PEER REVIEW 8 of 15 
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To compare the transmittance of GHI and UVER without the effects of ozone and solar zenith
angle, we analyzed the relationship between KT and KTUVER300 with the slant ozone fixed at 300 DU.
As expected, and shown in Figure 5, KT and KTUVER are more strongly correlated than in Figure 4; i.e.,
the data points are more tightly clustered around the linear regression line. The R2 increases to 0.85,
0.84, 0.70, and 0.72 at Gangneung, Pohang, Mokpo, and Gosan, respectively, compared with the R2 in
Figure 4. However, a somewhat curved shape is noticeable in the scatter plot, with more data points
above the regression line at lower KT. The reason why KT is not perfectly linearly related to UVER,
despite the fixed slant ozone effect, is that atmospheric attenuating factors have different effects on the
various types of radiation. Wang et al. [38] suggested that for cloudy skies with low KT, UV radiation
is less attenuated than is global solar radiation, and they found that the relationship between the
transmittance of GHI and UV is better fitted by a third-order polynomial curve than by a straight line.
Their determination coefficient improved from 0.927 (linear) to 0.936 (third-order polynomial) when
making this substitution.
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The degree of increase in the correlation between KT and KTUVER300 that is obtained by fixing
the slant ozone effect is largest at the Gangneung site (0.26 to 0.85) and smallest at the Gosan site
(0.62 to 0.72). This demonstrates that the effect of ozone on KTUVER is greater at higher-latitude sites.
Moreover, the correlations shown in Figure 5 are highest in Gangneung followed by Pohang, Mokpo,
and Gosan, unlike the trend shown in Figure 4. This difference in correlation may be due to differing
regional characteristics of clouds and/or aerosols among the four sites. At Gangneung, which shows
the greatest increase in R2, the annual average CC is 5.1 (±1.4) and the AOD is 0.33 (±0.11), whereas
at Gosan, where the increase was smallest, the average CC and AOD are 6.1 (±0.8) and 0.38 (±0.09),
respectively. Therefore, even though the effects of ozone are fixed, the correlation of KTUVER300 with KT

at Gosan is lower than in other regions because of the greater effects of abundant clouds and aerosols.

3.3. Differing Effects of Clouds and Aerosols on GHI and UVER

A correlation analysis between the clearness indices (KT, KTUVER, KTUVER300) and attenuating
factors (CC, AOD, and SCD) was carried out to evaluate the effects of the latter. For KT and KTUVER300,
which are considered to be unaffected by slant ozone variations, only the correlations with CC and
AOD were analyzed, whereas for KTUVER the correlation with SCD was also included. The correlation
coefficients are summarized in Table 2. All variables at the four sites have negative correlations with
the clearness indices. KT has a high negative correlation with CC, with a four-site average correlation
coefficient of −0.84. The AOD has an average correlation coefficient of −0.30 with KT. Jung et al. [23]
analyzed the correlation between KT and CC, AOD, and relative humidity, and reported significant
negative coefficients of −0.72 and −0.37 for CC and AOD, respectively, on average in Korea during the
period 2000–2015.
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Table 2. Correlation coefficients between clearness indices and atmospheric attenuating factors (CC,
AOD, and SCD) at each site.

Site CC AOD SCD

KT

Gangneung −0.85 −0.34
Pohang −0.84 −0.28
Mokpo −0.84 −0.25
Gosan −0.84 −0.33

AVERAGE −0.84 −0.30

KTUVER

Gangneung −0.37 −0.20 −0.44
Pohang −0.36 −0.16 −0.47
Mokpo −0.53 −0.21 −0.50
Gosan −0.59 −0.34 −0.48

AVERAGE −0.46 −0.23 −0.47

KTUVER300

Gangneung −0.83 −0.42
Pohang −0.81 −0.36
Mokpo −0.77 −0.38
Gosan −0.79 −0.46

AVERAGE −0.80 −0.41

As the KTUVER has a large negative correlation with SCD, it is necessary to analyze the relationship
between KTUVER300 and the attenuating factors for comparison with KT. The KTUVER300 has higher
correlation coefficients with clouds and aerosols than does KTUVER. The average correlation coefficient
of CC with UVER transmittance increased from −0.46 (with KTUVER) to −0.80 (with KTUVER300).
For AOD, the negative correlation also increased from −0.23 (with KTUVER) to −0.41 (with KTUVER300).

A correlation analysis confirmed that in general, the greater the attenuating factor, the lower
the clearness index. However, there is a difference in the correlation coefficient between each factor
and clearness index. The CC has a stronger correlation with KT than with KTUVER300 and the AOD
has a stronger correlation with KTUVER300 than with KT. To identify the individual effects of the
attenuating factors, the dependence of three parameters (KT, KTUVER300, and UVER300/GHI) on clouds
and aerosols was investigated.

Figure 6a shows the relationships of UVER300/GHI, KTUVER300, and KT with CC. The two
clearness indices decrease with increasing CC, whereas UVER300/GHI increases with increasing CC.
The UVER300/GHI trend clearly shows that clouds more efficiently attenuate GHI than UVER. Buntoung
et al. [10] analyzed changes in UVER/GHI with KT in Thailand under conditions of fixed solar zenith
angle (30◦), ozone (300 DU), precipitable water (2 cm), and aerosol concentrations (regional climatology),
and found a higher transmittance for UVER than for GHI under cloudy conditions (low KT). However,
unlike our analysis, they assumed KT to be solely related to cloud cover. The UVER300/GHI ratio also
noticeably increases with cloudiness (>5 octas), indicating that the wavelength dependence of solar
radiation attenuation is reinforced with increasing cloudiness. Under cloudy skies, incoming solar
radiation is reflected by clouds and undergoes Rayleigh scattering by atmospheric constituents. Because
the Rayleigh scattering coefficient is greater at shorter wavelengths, backscattered light contributes to
a larger increase in short-wave irradiance than in long-wave radiation [14,17]. After passing through
clouds, Rayleigh backscattering of sunlight beneath the cloud and reflection from the cloud bottom
toward the ground also contribute to a larger decrease in GHI than in UVER [15].

To examine the effects of AOD, which has a lower correlation with the clearness indices than do
CC and SCD (Table 2), an AOD analysis was performed for clear sky conditions (CC < 3). This analysis
included fixing the effects of clouds and slant ozone, and evaluating the variations of UVER300/GHI,
KTUVER300, and KT with AOD (Figure 6b). Unlike the results for CC, all parameters show a decreasing
trend with increasing AOD. UVER300/GHI decreases from 0.0195% (±0.0027%) when AOD is at
a minimum (0.05–0.15) to 0.0195% (±0.0028%) when AOD is at a maximum (0.95–1.05), suggesting
that AOD reduces UVER more effectively than GHI. A decrease in the ratio of UVER to GHI with
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increasing AOD is also evident in results from previous studies [10,12,41]. Anton et al. [12] found that
the UVER/GHI ratio increases from 0.0195% to 0.0231% as AOD increases when the ozone is fixed in the
range 320–340 DU and explained that the higher attenuation of UVER is partially caused by absorption
by aerosols itself, tropospheric ozone, and other anthropogenic gases, due to the increase in the optical
path caused by scattering, which is consistent with previous studies [42–44]. Erlick and Frederick [19]
modeled UV and visible transmittance by various types of aerosols. They found that the transmittance
of spectral solar irradiance is smaller at shorter wavelengths because of a combination of attenuation
by ozone below ~320 nm and a sharp increase in the absorption coefficient of water-soluble aerosols
below ~340 in an increased light path by multiple scattering. Although absorption by aerosols varies
with aerosol type, this study focuses on the difference in the overall attenuating effects of aerosols on
GHI and UVER over the Korean Peninsula.
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3.4. Analysis of Individual Contributions of Attenuating Factors Using MLR

In Section 3.3, the dependence of GHI and UVER transmittance on CC and AOD were shown
to differ. To examine this difference quantitatively, the contribution of each variable to changes in
the clearness indices was determined by multiple regression analysis. As in the correlation analysis,
the regression analyses for KT and KTUVER300 use CC and AOD as the independent variables, and the
KTUVER regression analysis includes SCD in addition to these two variables. Multiple linear regression
results for the three dependent variables are summarized in Table 3. For KT, the determination
coefficient is 0.71, averaged over the four sites. This means that ~71% of KT can be explained by CC
and AOD in South Korea. Of the two independent variables, CC makes the dominant contribution
(69%) with small regional deviations (<3%). The contribution of AOD was small (~2%) compared with
that of CC.
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In the KTUVER model, CC and SCD make the largest contributions to UVER transmittance, whereas
the contribution of AOD is insignificant (2.1%–3.9%) compared with those of CC and SCD, except for
in Gosan (8.1%). The regression analysis of KTUVER300 with CC and AOD results in a determination
coefficient of 0.68, with contributions of 60% for CC and 8% for AOD, on average for the four sites.

Table 3. Determination coefficients (R2) and individual contributions (%) of each attenuating factor
determined by multiple linear regression (MLR) analysis at each site.

Site R2 CC AOD SCD

KT

Gangneung 0.72 70.5 1.2
Pohang 0.71 69.9 1.1
Mokpo 0.71 68.9 1.8
Gosan 0.71 67.7 3.5

AVERAGE 0.71 69.2 1.9

KTUVER

Gangneung 0.62 25.1 2.6 34.2
Pohang 0.62. 23.5 2.1 36.5
Mokpo 0.65 30.8 3.9 30.4
Gosan 0.68 33.3 8.1 27.0

AVERAGE 0.65 28.2 4.2 32.0

KTUVER300

Gangneung 0.71 64.8 5.7
Pohang 0.68 62.6 5.8
Mokpo 0.65 55.7 8.9
Gosan 0.68 56.3 11.5

AVERAGE 0.68 59.8 8.0

Comparing the contributions of each independent variable in the models of KT and KTUVER300,
the contribution of CC in KTUVER300 (59.6%) is ~10% lower than in KT (69.2%). This agrees with the
attenuation of solar radiation by CC being greater for GHI than for UVER, as discussed in Section 3.3.
In South Korea, on average, clouds contribute ~10% more to GHI than to UVER, with regional
differences of 5.7%, 7.2%, 14.3%, and 11.4% in Gangneung, Pohang, Mokpo, and Gosan, respectively.

However, the contribution of aerosols from the KTUVER300 regression (8.1%) with a fixed slant
ozone effect is larger than that of KT (1.9%), indicating again that the attenuation of UVER by aerosols
is less than that of GHI. The differences in aerosol effects are greater in Mokpo (7.4%) and Gosan (8.0%)
than in Gangneung (4.5%) and Pohang (4.8%).

Differences in the relative contributions of clouds and aerosols to GHI and UVER variations may
be caused by differences in the distribution of attenuating factors. Even though our analysis area
(South Korea) is small, this region is affected by prevailing seasonal monsoon and is surrounded by
water on three sides. This creates regional differences in cloudiness with season.

In addition, as South Korea is located on the eastern coast of Asia, the transport of inland
pollutants and yellow dust causes regional differences in aerosol loading and type. Emissions from
local sources such as industrial complexes and factories also have a significant impact on regional
differences in aerosols in South Korea. For example, Lee et al. [45] categorized regional aerosol type
by using a number of known aerosol classification methods for five sites in Korea, based on aerosol
optical property data obtained from AERONET sun photometer measurements during the Megacity
Air Pollution Studies–Seoul (MAPS–Seoul). They found that the inland mid-western region (sites in
metropolitan areas) and the eastern coast are affected by local pollutants from urban or suburban areas
where highly absorbing aerosols form a large portion of the total aerosols, whereas Gosan, located
on Jeju Island in the south, is affected by non-absorbing fine-mode aerosols from southern ocean
regions. They also found that coarse mode aerosols are dominant on an island off the western coast
(Anmyon), and are likely caused by transport from eastern China and sea salt from the Yellow Sea.
Hence, South Korea has regionally diverse aerosol characteristics due to the effects of local pollution,
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airflow, and geographic location, which induce regional differences in the contribution of aerosols to
GHI and UVER.

4. Summary and Discussion

This study evaluated and compared the effects of clouds and aerosols on GHI and UVER using
data from four sites in South Korea—Gangneung, Pohang, Mokpo, and Gosan—during the period
2005–2016. The UVER/GHI ratios increase with decreasing KT, suggesting that UVER and GHI
are affected differently by various attenuating factors. The relationship between KT and KTUVER

was evaluated at each site, with determination coefficients of 0.26 (Gangneung), 0.30 (Pohang),
0.43 (Mokpo), and 0.62 (Gosan) at the four sites. By fixing the slant ozone to 300 DU, the correlation
of the clearness index of UVER (KTUVER300) with KT increased at all sites to 0.85 (Gangneung),
0.84 (Pohang), 0.70 (Mokpo), and 0.72 (Gosan). However, KT is not perfectly linearly correlated with
KTUVER300 because of the differing effects of clouds and aerosols on GHI and UVER. Interestingly,
regional differences in the improvement of the correlation were found, with the greatest increase at
Gangneung (59%), followed by Pohang (54%), Mokpo (37%), and Gosan (10%), in latitudinal order.

To compare the individual effects of clouds and aerosols on GHI and UVER, variations in
UVER300/GHI with clouds and aerosols were analyzed. The UVER300/GHI ratio increased with cloud
cover, indicating that clouds attenuate GHI more efficiently than UVER. In cloudy sky conditions,
the incoming solar radiation is reflected by clouds and the light undergoes Rayleigh scattering by
atmospheric constituents on an increased optical path. The scattered lights contribute to the increase
of UVER more efficiently than GHI by wavelength dependence of the Rayleigh scattering coefficient.
In the case of AOD, under clear sky conditions, UVER300/GHI decreased with increasing aerosol
optical depth. This means the UVER attenuating effects of aerosols are greater than those of clouds.
In an extended optical path by scattering, significant absorption by ozone, soluble aerosols, and other
gases below 340 nm is one of the reasons that the attenuating effect of aerosols is more efficient on
UVER than GHI.

To quantitatively confirm the differing effects of clouds and aerosols, multiple regression models
of KT, KTUVER, and KTUVER300 were constructed using attenuating factors (clouds, aerosols, and ozone)
as independent variables. On average, in South Korea, clouds contribute to ~69% (71%, 70%, 69%,
and 68% at Gangneung, Pohang, Mokpo and Gosan) of the KT variations. For the KTUVER300 model,
clouds make relatively small contributions of 65%, 63%, 56%, and 56% to the KTUVER300 variation at
the four sites with an average contribution of 60%. However, aerosol optical depth showed a relatively
small contribution of 2% (1.2%, 1.1%, 1.8%, and 3.5% at the four sites) and a relatively large contribution
of 8% (5.7%, 5.8%, 8.9%, 11.5% at the four sites) to the variations in KT and KTUVER300, respectively.

We further evaluated the differing contributions of clouds and aerosols to GHI and UVER,
and found differences by analysis sites that can be attributed to regional differences in climatic and
geographical characteristics on the Korean Peninsula. The differing effects of clouds and aerosols to
GHI and UVER found here, and the regional bias of these relationships in South Korea, can be used to
guide model development for estimations of UVER using GHI in future studies.
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