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Abstract: In this paper, the idea of using a convolutional neural network (CNN) for the detection
and classification of induction motor stator winding faults is presented. The diagnosis inference
of the stator inter-turn short-circuits is based on raw stator current data. It offers the possibility of
using the diagnostic signal direct processing, which could replace well known analytical methods.
Tests were carried out for various levels of stator failures. In order to assess the sensitivity of the
applied CNN-based detector to motor operating conditions, the tests were carried out for variable
load torques and for different values of supply voltage frequency. Experimental tests were conducted
on a specially designed setup with the 3 kW induction motor of special construction, which allowed
for the physical modelling of inter-turn short-circuits in each of the three phases of the machine. The
on-line tests prove the possibility of using CNN in the real-time diagnostic system with the high
accuracy of incipient stator winding fault detection and classification. The impact of the developed
CNN structure and training method parameters on the fault diagnosis accuracy has also been tested.

Keywords: fault diagnosis; induction motor drive; inter-turn short circuits; convolutional neural
network; deep learning

1. Introduction

Nowadays, drive systems based on AC (alternative current) electric motors play a key role in
industrial applications. It is estimated that these machines account for approximately 29% of global and
69% of industrial electricity consumption. During the operation of electric motors in industrial drive
systems, various types of defects may occur, preventing further operation of the machine. According
to EPRI’s statistics, the most common defects of electrical machines include stator (37%), rotor (10%),
and rolling bearing (41%) damages. The conducted static tests show that, with the increase of the rated
power of electric motors, the role of mechanical damages in favor of electrical damages decreases [1].
This fact causes that many scientific centers are focusing on developing diagnostic methods, enabling a
partial reduction of the number of electrical damages or detecting the state of the machine (incipient
fault), in which it can still be repaired.

The basis for the operation of diagnostic systems is a thorough knowledge of the changes occurring
in the machine as a result of damage. Observation of changes occurring in AC machines is carried
out using signals available for measurement on the tested object. The most commonly used are
currents [2,3], voltages [4,5], vibrations [6,7] as well as flux [8,9] and temperature [10,11]. The idea of
analytical methods for assessing the technical condition of the machine is based on the extraction of
damage symptoms in measured diagnostic signals.
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The use of the analytical approach in the fault detection processes of electrical windings of the AC
motors is connected with the necessity to adjust the parameters of diagnostic signal measurement to the
method of fault symptom extraction. Currently used analytical methods of damage detection are based
on the observation of signal changes in the domain of time [12], frequency [13] or time-frequency [14].
Among them, the following methods deserve special attention: fast Fourier transform (FFT) [15,16],
extended park’s vector analysis (EPVA) [17], short-time Fourier transform (STFT) [14,18], Hilbert–Huang
transform (HHT) [19,20] as well as wavelet analysis in the form of continuous wavelet transform
(CWT) [21,22] or discrete wavelet transform (DWT) [23]. Of the methods presented, the most common
is the use of FFT analysis. The signal spectrum analysis provides both an effective assessment of
damage symptoms and does not constitute a significant burden on computing systems. However, like
most analytical methods, FFT requires a relatively long measurement time, which, especially in the
case of inter-turn short circuits of a stator winding, is an undoubted disadvantage of this method, due
to the dynamics of these faults. Moreover, it is in many cases not possible to ensure signal stationarity
over the required measurement period.

Recognition of changes in diagnostic signals and their assessment in systems based on analytical
methods is usually performed by a human being, which increases the time for detecting faults.
Moreover, such systems are often not fully automated, and the number of errors is often linked to the
experience of the human expert.

Currently, due to the dynamic development of artificial intelligence methods, diagnostic systems
based on analytical methods are gradually replaced by neuronal damage detectors. The undoubted
advantage of these systems is the limited role of the human expert in the process of assessing the
object’s technical condition, while ensuring the high efficiency of fault detection. The basis for the
operation of diagnostic systems based on neural networks (NNs), applied also for induction motor
(IM) fault detection and classification, are analytical methods. Therefore, the input information for
such systems is the result of extracting symptoms from chosen diagnostic signals using analytical
methods, for example: FFT [24,25], WT [26], HHT [27], etc.

Multilayer neural networks are the most popular structures used in diagnostic techniques, also in
the case of induction and synchronous motor fault detection. The use of a multilayer perceptron (MLP)
was discussed in detail in [28–30]. The MLP network acts as a training data approximator, mapping
the learning data with the lowest possible level of a cost function. In addition to data approximation
capabilities, a particularly important task of NN-based diagnostic systems is damage classification. The
main representative of classifiers used in fault detection processes of IMs is the Kohonen self-organizing
network (SOM) [31–33]. The advantage of SOM is its simple structure and the fact that there is no need
to ensure multiple learning samples. Due to their structure, SOM based diagnostic applications are
used, in particular to recognize the category of damages [34].

Artificial intelligence methods are increasingly associated with the issue of deep learning. The
basis of deep learning structures are classic neural networks. However, deep neural networks (DNN)
are characterized by features different from those of classical shallow networks, which results from the
abandonment of the universal approximation rule. The structures used so far, with a maximum of
two hidden layers, have allowed one to achieve satisfactory results [29,31]. Nevertheless, increasing
the structure made it possible to obtain NN features that were before unachievable in classical
shallow structures.

For a long time, DNNs were used mainly in information systems (e.g., image processing, speech
recognition). Over the past three years, there has been a growing interest in DNN-based electrical
machine damage detection systems noticed. For the most part, they are associated with the analysis
of mechanical damage to the IM [35,36] or mechanical system components [37,38]. A small number
of works related to electrical damage of IM mainly concern rotor damages [24,27]. Most DNN-based
systems use vibration measurements [39–41], less frequently stator currents [42–44] and voltages [45].
This fact results from clear changes occurring in the diagnostic signal, due to a mechanical damage and
the resulting simplicity of the signal analysis.
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Among the used deep learning network structures, the most commonly used ones are convolutional
neural networks (CNNs) [46–49] and autoencoders [50,51]. CNNs used in diagnostic applications are
characterized by a much higher level of effectiveness compared to MLP and RBF networks, which are
presented in [25,49]. In diagnostic processes, CNNs can act as a damage classification system [49], as
well as provide information about the degree of damage [24]. In [51], the possibility of using CNNs as
members of an autoencoder structure was presented. By comparing structures based on MLP, CNN
and LSTM (long short-term memory), the authors [51] showed that the use of an appropriate structure
of autoencoders significantly affects the effectiveness of the diagnostic system. An important aspect
in the use of DNN in diagnostic processes is the appropriate adjustment of the measured signal to
the structure and properties of the network. The input vector of DNNs can result from the signal
analysis [24,25] and the directly provided diagnostic signal [35,46]. Due to the principle of operation of
deep learning structures, in most cases the measured signal is converted into a 2D [25,48,52] or 3D [51]
matrix. The impact of the input matrix size on the damage detection efficiency is presented, among
others, in [48].

This article presents the possibility of using the CNNs in the detection process of inter-turns short
circuits in IM stator windings, especially incipient faults. The developed application is characterized
by the direct processing of a raw diagnostic signal. The authors presented the possibility of extracting
damage symptoms directly from the stator phase current signals, omitting well known analytical
pre-processing methods, such as the FFT, WT, and other higher-order transforms [53].

The idea of the CNN-based diagnostic system that performs the task of the fault detecting and
assessing the degree of damage of the IM stator windings is described. Unlike the methods presented
in [35,46] based on an easy to analyze vibration signal for the detection of mechanical damages, the
developed method consists of the direct processing of the phase current signals through a DNN, which
is a novelty in the detection systems of stator faults. It should be emphasized that the development of a
diagnostic system based on direct analysis of the stator current is associated with additional difficulties,
due to the fact that the increase in the number of shorted turns causes a similar effect as an increase in
the load torque, i.e., an increase in stator current amplitude. However, the diagnostic system should
detect the characteristics of the damage, i.e., distinguish between the effects of short circuits and the
impact of the drive operating conditions on the diagnostic signal being analyzed. Nevertheless, the
article shows the high efficiency of the developed technique for detecting incipient damage to the
stator winding of the converter-fed induction machine.

The article is divided into five main sections. The introduction is followed by the second section
presenting the theoretical basis of the developed CNN structure. In the third section, the discussion
on diagnostic signal processing method and the training process, as well as the parameters of the
developed CNN structure applied for the incipient stator fault detection of the IM is presented. The
laboratory set-up is also presented in the section. In the next section, the results of experimental
verification are presented, including the on-line detection of inter-turn short circuit faults in the one
phase and in three stator phases of the motor operating in different conditions. In the following fifth
part, the authors focused on the impact of CNN training process parameters and the proposed network
structure on the effectiveness of the developed diagnostic system. The conclusions and observations
resulting from the performed research are presented in the last section.

2. General Description of Convolutional Neural Network Used in the Research

2.1. Structure of the Convolutional Network

The basic function of CNN is to extract the features of higher orders from the analyzed signal
using convolutional operations. These networks do not have a preconceived architecture, parameter
selection methods or rules regarding the number of convolutional layers.

A CNN structure should be seen as the determination of features, which progress with each
additional convolutional layer. In the presented CNN application in the diagnostic process, the
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first layer can be understood as the filter of basic features, e.g., maximum or minimum values. The
subsequent execution of the convolutional operation allows us to detect higher order features, i.e., the
distances between minimum and maximum values. Therefore, the network structure will depend on
the type of information provided, as well as the function performed by CNN.

To detect complex features, structures composed of multiple sets of layers are used. The ability to
detect features is associated with the process of acquiring generalization skills by the network. Due to
the extensive structure of CNN, the methods which avoid over-matching are becoming very important.
The structure and method of CNN training will be described below on the example of the network
used in this paper, for the diagnosis of IM stator winding incipient damages.

The following Figure 1 presents an example of basic structure of the CNN consisting of a few sets
of convolutional layers and one set of layers responsible for determining class membership. The task
of the CNNs developed in the application described in this paper was to distinguish the degree of
damage to the IM stator windings on the basis of information derived directly from the raw phase
current signal (details will be given in the next section).
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The principle of the CNN’s individual layers was discussed in detail, among others, in [54–61].
The application of each of the presented layers enabled CNN to acquire the characteristic features of
the stator current data, which resulted in an increase in the efficiency of the IM faults neuronal detector.
The convolutional layer [54,55] performs the function of a feature detector using the convolutional
operation of combining two data sets. This convolutional operation is performed for multidimensional
input arrays. In the application of the CNN for stator fault detection presented in this paper, the
convolutional layer acts as a filter searching for fault symptoms in the phase current waveform.

To accelerate the training process and also to increase the stability of the NN training, the batch
normalization layer was used [56]. This layer normalizes the output of the previous layer, subtracting
the average value of the batch elements and dividing this received value by their standard deviation.
The impact of using this normalization method is thoroughly discussed in [56]. As in the case of classic
NN structures, the activation function plays a crucial role in DNN structures. The most commonly
used activation function is the rectified linear unit (ReLU) [54,57]. It is mainly used as a complement to
convolutional layers and allows us to capture interactions and representing nonlinearities.

Convolutional layers provide a very large amount of information (symptoms) observed in the
input matrix. In many cases, the use of so many object features is pointless. Pooling layers are used
in a similar way [54,58]. Their task is to choose only the information whose contribution to each cell
(window) is the largest. For this purpose, methods that search for maximum or average values from
cell elements are most often used. The advantage of pooling layers is that they reduce the spatial size
of data representation, thus preventing overmatching.

The significant number of CNN parameters causes some difficulties in giving the neurons special
characteristics, from the perspective of generalization property. The dropout layer [54,59,60] is used to
avoid a situation in which a single neuron strongly depends on the state of the others. This technique
allows one to teach each of the neurons a different useful feature of the analyzed input data. Due to the
rejection of a number of neural connections in each iteration, the training process is accelerated, and
overmatching is prevented.
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The last layer in the CNNs is usually the fully connected layer, which enables the assessment of the
share of individual classes that are the result of the network operation [54,55]. Fully connected layers
applied in CNNs mostly cooperate with softmax layers [61]. Their task is to determine the probability
of the input batch elements belonging to one of the categories. The softmax layers’ response takes the
form of a vector of probabilities and is used by the classification layer to determine the belonging of
the CNN input matrix to one of the specified categories. For this purpose, the cross entropy of losses
is calculated.

2.2. Training of the Convolutional Network

The CNN training process, in most cases, is carried out according to the algorithm of stochastic
gradient descent (SGD). The SGD training method allows one to determine the unloaded gradient
estimation, using, for this purpose, the average of sample gradients drawn from the mini data packet.
The most important parameter of the SGD algorithm is the learning speed. This value is most often
chosen in trial and error performed by analyzing learning curves. Unfortunately, this approach does
not allow for the optimization of the learning process, because if the value of this parameter is too high,
it will cause the rapid oscillation of the learning curve while the value results in extended training time
will be too low. An alternative to the fairly slow SGD algorithm is its extension with the momentum
parameter (SGDM). Unlike the SGD method, the SGDM algorithm has the largest step size when
multiple consecutive gradients point in the same direction [62]. The training process, according to the
SGDM algorithm, begins with determining the initial value of the learning rate η and the momentum
parameter α. Then, for the sample from the training mini packet {x1, . . . , xk}, the gradient p is estimated
according to the relationship:

p =
1
k
∇w

∑
i

L( f (xi, w), yi), (1)

where: xi—a randomly selected minibatch element size m, L( f (xi,w), yi)—calculated loss function
for the i-th sample.

For estimated gradient value p, momentum v and parameter w are updated in accordance with
the following relationships:

v(k) = α · v(k− 1) − η(k) · p(k),
w(k) = w(k− 1) + v(k),

(2)

where: α—hyperparameter determining how quickly the contributions of previous gradients
disappear exponentially.

The above algorithm is repeated until the stop condition is met, which is most often the number of
training periods or the value of the loss function. The SGDM method, thanks to the use of data packets
to approximate the gradient estimation, enables network training during experimental verification,
using the data from current measurements. This is an advantage of this method, especially in terms of
implementing CNNs in electric machine fault detection systems.

3. Description of the Experimental Implementation of the CNN-Based Detector of Inter-Turn
Short Circuits

3.1. Short Description of the Laboratory Set-Up

The experimental verification of the proposed CNN-based fault detector was carried out on a
specially designed setup with IM of 3 kW, presented in Figure 2. The construction of the used IM
allowed for the physical modelling of inter-turn short circuits in each of the three phases of IM in a
range of 0–5 stator turns (parameters and the nominal data of the IM, as well as the connection of the
stator winding for inter-turn short-circuit modelling are shown in the Appendices A and B). The tested
motor was fed from a frequency converter in the range fs = 10–50 Hz, operating in an open speed loop
under scalar control us/fs = const. The tests were carried out for various values of the load torque in the
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range TL = (0–1)TN. The loading machine was fed from an industrial frequency converter, operating in
a torque mode, with 10 kHz modulation frequency.

Energies 2020, 13, x FOR PEER REVIEW 6 of 19 

 

scalar control us/fs = const. The tests were carried out for various values of the load torque in the 
range TL = (0–1)TN. The loading machine was fed from an industrial frequency converter, operating 
in a torque mode, with 10 kHz modulation frequency. 

During the preparation of the CNN training data, the information about the actual values of 
stator currents was used. The measured diagnostic signals were provided by the data acquisition 
measurement card (DAQ) to the diagnostic application developed in the LabVIEW software, 
National Instruments (Austin, TX, USA). After measuring the diagnostic signal, the input data were 
preprocessed with the use of the Matlab software. It should be emphasized that the information on 
actual drive system speed and load torque, visible in Figure 2a, was not used in the CNN-based 
detector; these signals were measured for monitoring the proper training process only. 

  
(a) (b) 

Figure 2. Experimental set-up: (a) general scheme of the set-up; (b) components of the real 
experimental drive system. 

3.2. Description of the Input Data Preprocessing for the Developed CNNs 

In a diagnostic system using CNN in the procedure of extracting fault symptoms, the measured 
input signals must be properly processed. The principle of CNN operation forces the appropriate 
adaptation of a network input matrix. The developed input batch should be a compromise between 
the size of the input matrix and the amount of information delivered to the network. If the size of the 
input matrix is too large, it will significantly increase network training time and, consequently, when 
it is too small, it will not ensure the proper division of the input data into classes. 

The following steps of the data preprocessing algorithm are illustrated in Figure 3. In the first 
step {1}, the phase currents of the IM were measured. The research assumed the possibility of fault 
detection after measuring only 2000 samples of the diagnostic signal, which constituted two full 
periods for the minimal frequency of the motor supply voltage equal to 10 Hz.  

 
Figure 3. Elaboration of the input layer of the convolutional neural network (CNN) used for electrical 
fault detection of the induction motor—schematic diagram; IMEAS—measurement value of stator 
currents, IN—nominal value of stator currents. 

Figure 2. Experimental set-up: (a) general scheme of the set-up; (b) components of the real experimental
drive system.

During the preparation of the CNN training data, the information about the actual values of
stator currents was used. The measured diagnostic signals were provided by the data acquisition
measurement card (DAQ) to the diagnostic application developed in the LabVIEW software, National
Instruments (Austin, TX, USA). After measuring the diagnostic signal, the input data were preprocessed
with the use of the Matlab software. It should be emphasized that the information on actual drive
system speed and load torque, visible in Figure 2a, was not used in the CNN-based detector; these
signals were measured for monitoring the proper training process only.

3.2. Description of the Input Data Preprocessing for the Developed CNNs

In a diagnostic system using CNN in the procedure of extracting fault symptoms, the measured
input signals must be properly processed. The principle of CNN operation forces the appropriate
adaptation of a network input matrix. The developed input batch should be a compromise between
the size of the input matrix and the amount of information delivered to the network. If the size of the
input matrix is too large, it will significantly increase network training time and, consequently, when it
is too small, it will not ensure the proper division of the input data into classes.

The following steps of the data preprocessing algorithm are illustrated in Figure 3. In the first step
{1}, the phase currents of the IM were measured. The research assumed the possibility of fault detection
after measuring only 2000 samples of the diagnostic signal, which constituted two full periods for the
minimal frequency of the motor supply voltage equal to 10 Hz.

Then, phase current vectors, with sizes 1 × 2000 each, were normalized to the rated current of the
tested motor {2}. In the third step, the conversion of each normalized vector (expressed in relative
units) to a 40 × 50 matrix was used. This operation was performed for each of the measured phase
currents {3}. The last step in this procedure consisted in the conversion of three matrices containing
standardized phase current samples to a three-dimensional matrix {4}. The presented method of
diagnostic signal preprocessing allowed one to generate 3200 input vectors for the neural network. It
should also be emphasized that the use of such a small number of samples, compared to those used in
the literature [48], allowed to limit the time of a single measurement to 0.2 s.
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3.3. Description of the Structure and Tasks of the Developed CNN-Base Fault Detectors

The experimental verification of the developed CNNs was based on 3200 vectors of stator currents
containing data on the state of the IM for 16 fault categories of the stator windings (1—for undamaged
motor, 15—for the motor with a different number of the inter-turn short circuits of the stator winding
(1–5 shorted turns in three stator phases). The experimental study was carried out in four stages:

• analysis of the assessment effectiveness of the degree of damage to a single stator phase of the
IM—CNN-1,

• analysis of the assessment effectiveness of the degree of damage in three phases of the stator the
IM—CNN-2,

• examination of the impact of CNNs’ learning process parameters on the effectiveness of the IM
damage assessment,

• analysis of the impact of CNNs’ structure on the effectiveness of the IM damage assessment.
• The analysis of the results is presented below and in the next section of the paper.

The NN training process was performed using the Matlab environment. The basic quantities
describing the developed structures and the parameters of the CNN training process are listed in
Table 1.

In the research, two structures of convolutional networks, CNN-1 and CNN-2, were used to
classify the degree of damage to the stator winding of the IM, based on the information about the phase
currents. The differences in the structures of the discussed networks result from the task assigned
to them (assessment of the number of categories). The extension of the CNN-1 structure with an
additional convolutional layer gave the network the ability to recognize in which phase of the stator
winding a damage occurred. A slight expansion of the structure allowed for a triple increase in the
number of the IM stator fault categories. As shown in Table 1, the developed networks are characterized
by a relatively small number of neurons compared to known convolutional structures [48]. This results
from the fact that to solve some problems, it is required to use many layers detecting features, not
necessarily having a large number of neurons.

After the training processes were both developed, CNNs were tested in on-line operation based on
raw data of the stator current, different from those used in the learning procedures. Result of operation
of the CNN-based detectors of inter-turn short circuits of the IM stator winding are demonstrated in
the next section.
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Table 1. Parameters of structures and training process of the developed CNNs.

Parameters of the Developed CNN Structures Parameters of the Training Process of CNNs

Name of parameter Value of parameter Name of parameter Value of parameter

CNN-1 CNN-2 CNN-1 CNN-2

Number of CONV
layers 3 4 Learning method SGDM

Numbers of filters in
particular layers 30-60-90 40-60-80-100 Momentum coefficient 0.9 0.5

Filters size (3 × 3) (6 × 6) Initial learning rate 0.001

Padding method
Stride

“same”
(2,2)

“same”
(4,4)

Number of training
epochs 900 700

Number of POOL
layers 3 4 Learning rate dropping

method “piecewise”

Pooling method Maximum Drop period 20

Pool size (3 × 3) (6 × 6) L2—regularization 0.0001

Padding
Stride

“same”
(2,2)

“same”
(4,4)

Gradient threshold
method L2—norm

Number of ReLU
layers 3 4 Training matrix size 40 × 50 × 3 × 600 40 × 50 × 3 × 1600

Number of BN layers 3 4 Testing matrix size 40 × 50 × 3 × 600 40 × 50 × 3 × 1600

Epsilon 0.001 0.001 Validation frequency 10

Number of DOUT
layers 1 1 Shuffle method “every-epoch”

Probability 0.5 0.5 Mini batch size 80 90

Number of FC layers 1 1 Number of categories 6 16
Number of FC

neurons 6 16

CONV—convolutional layer BN—batch normalization layer DOUT—dropout layer

POOL—pooling layer ReLU—rectified linear unit layer FC—fully connected layer

4. Analysis of Experimental Results of the CNN-Based Stator Winding Fault Detectors
Working On-Line

The experimental verification of the developed structures was performed on the basis of the
prepared test data of the following sizes: 600—for CNN-1, 1600—for CNN-2. They contained
information about the measured stator currents for various degrees of stator winding faults. The test
data were developed for various frequencies of the supply voltage and the load torque values of the
motor. Analyzing the responses of the developed CNN structures to the test data, a very high degree
of effectiveness in assessing the degree of stator winding damage can be observed.

Figure 4 presents an example of the on-line operation of the fault detector based on CNN-1.
Physical damage modeling consisted of temporary shorting of five turns of phase A. This approach
allowed the determination of the minimum detection time Td, as well as the damage classification time
Tc. Detection time should be understood as the time between the occurrence of a winding short-circuit
and the first CNN output information, indicating damage to the machine. However, the classification
time is measured from the moment the damage occurs until the system response is established, and
should not be longer than the measurement time of 2000 current samples. The test results presented in
Figure 4 were obtained during IM operation at various values of the supply voltage frequency and the
load torque.

The analysis of the obtained results allowed one to notice that the developed neural structure
allows for the correct detection of defects, even in the case of the measurement of the transient state of
the machine. In addition, the machine operating conditions do not affect the precision of the diagnostic
system. As can be seen in Figure 4a–d, as a result of completing the CNN input data buffer with
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subsequent samples characteristic of a faulty winding, the CNN network shows a gradual change
in the category of damage. The same occurrence was observed in Figure 4 during the clearance of
the damage. An analysis of transient states allowed one to notice that the assessment of the level
of damage is based on changes in the whole input matrix. On the other hand, damage detection is
based on the outliers’ samples, hence the detection time is much shorter than the classification time.
Nevertheless, the main task of the diagnostic system is damage detection, while grade assessment is a
secondary function.

In the next Figure 5 the accuracy of fault level assessment is demonstrated for both tested
CNN-based detectors. The fault category assessment accuracy was 99.3% for the inter-turn short
circuits in a single phase (Figure 5a—CNN-1) and 98.8% for the fault detection in three phases
(Figure 5b—CNN-2), respectively. Errors in the assessment of the winding condition most frequently
resulted from the impact of the load torque on the value of the measured current amplitudes. In
Figure 5b, the individual phases of the stator winding, in which the inter-turn short-circuits occurred,
were marked with different colors.
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The analysis of the results presented in this figure showed that CNN-2 provided a small number
of incorrect responses regarding the phase in which a failure occurred (approximately 0.43%). The
incorrect network responses occurred mainly at small values of the load torque. Nevertheless, both
developed structures maintained a very high degree of effectiveness, although no advanced signal
processing methods (FFT, DWT, HHT) were used in the diagnostic procedure. The fact that the raw
diagnostic signal (measured stator current in one or three phases) went directly to the input of the
CNN is, according to the authors’ knowledge, a novelty in the field of the diagnostics of inter-turn
short circuits of electrical machines. Additionally, the use of analytical diagnostic methods requires a
few seconds of signal measurement. In the presented CNN application, the input vector was based on
the current measurement in a time interval of maximum 0.2 s, however the detection and classification
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times are usually smaller, as can be seen in examples of Figure 4. The differences in damage detection
and classification times that can be seen in waveforms shown in Figure 4 are due to the fact that with
the variable operating conditions of the drive (frequency or load change), the NN needs more or less
samples to determine the damage class correctly. Therefore, the proposed CNN structures allow the
multiple shortening of the detection process, while maintaining a high efficiency level, which due to
the avalanche spreading nature of the analyzed damages, such as inter-turn short-circuits of the stator
winding, is an undoubted advantage.
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5. Impact of the CNN Structure and Training Method Parameters to the Fault Diagnosis

5.1. Impact of the Convolutional Network Training Parameters on the Effectiveness of IM Stator
Damage Assessment

The appropriate selection of the network structure for the analyzed task can ensure high CNN
precision only with the properly adjusted parameters of the training process. The research focused on
the simple gradient algorithm, which is the most popular method in the deep network training [62].
Detailed studies on the impact of training process parameters were carried out for the developed
CNN-1 and CNN-2 structures and the results are shown in Figure 6.

According to the SGDM algorithm, the right choice of the data packet size, momentum factor and
the frequency of parameter update (number of epochs, number of iterations in the epoch) is crucial.

As observed in Figure 6, the impact of the training parameters on the effectiveness of individual
structures is similar. The differences result from a larger number of layers in CNN-2, as well as from a
much broader learning data vector. The largest differences in the accuracy of the neural detector are
noticeable when the momentum factor changes. The CNN-1 structure, with a much smaller number
of classes required for recognition, is characterized by higher efficiency for much higher values of
the momentum coefficient (Figure 6c). The high value of this parameter during the training of the
CNN-1 network resulted in a rapid decrease in the value of the loss function, and at the same time an
increase in the number of learning epochs necessary to ensure maximum precision (Figure 6a). The
analysis of Figure 6b shows that the size of the data batch significantly affects the training process
of both developed structures. The research abandoned the standard approach to choosing the batch
size as a power of two. This approach results from the fact that memory operations are optimized for
processing 2n arrays, while the structures presented here did not require such accurate optimization of
the training process.

The selection of structures, as well as the parameters of the training process in accordance
with this principle, can be justified by much more complex CNN structures. The right number of
network parameter updates becomes much more important for the training process. This property
is directly related to the number of learning epochs and the size of the data batch. The number of
network parameter updates with a fixed number of epochs decreases as the batch packet size increases.
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Therefore, as the batch size increases, the number of learning epochs should be increased accordingly.
The number of parameter updates equal to the quotient of the training vector size and the data packet
size should always be constant. A very important technique used to improve the training process is
the shuffling of the validation and training data. As can be seen in Figure 6d, the structures in which
shuffling was used are characterized by a much higher level of efficiency. The shuffling method before
each training epoch allows you to achieve the highest level of effectiveness. When the size of the
training data batch does not contain an even number of samples from each category, some samples are
discarded. The use of data shuffling before each epoch prevents the situation in which certain data is
regularly discarded in each epoch.Energies 2020, 13, x FOR PEER REVIEW 12 of 19 
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5.2. Impact of the Convolutional Network Structure on the Effectiveness of IM Stator Damage Assessment

The task of assessing the technical condition of electrical machines operating in converter-fed
drives imposes the additional requirements for neural systems such as a high level of detection
efficiency, high accuracy in class evaluation, insensitivity to measurement disturbances, and the ability
to generalize. Meeting these requirements is possible only with the appropriate selection of the network
structure, learning methods, as well as the appropriate choice of the diagnostic information carrier.
As presented in the previous section, changes in the network structure affect changes in training
process parameters.

In order to optimize the process of selecting network parameters as much as possible, one should
simultaneously examine the impact of changes in the structure, as well as in the learning process. In
Table 2, a summary of various CNN-1 structure configurations is presented to identify the relationship
between the number of layers used and the network efficiency. This table has been divided into five
sections, due to different changes made in the network structure. The bold fonts used in this table
show what is changed in the CNN structure in the conducted experiments; e.g., Activation function
shows, that this finction has benn changed, while the rest of CNN’s parameters were the same in the
presented experiment. Also the best obtained accuracy has been marked with bold font.
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Table 2. The effect of the parameters of the neural structure on the effectiveness of the CNN-based damage detector.

Number of Layers and Other Parameters

Convolutional
Layer

Activation
Function Pooling Layer Batch Normalization

Layer Dropout Layer Fully Connected
Layer Accuracy

4
30-60-90-120

4
ReLU

4
Pooling Max

4
Epsilon = 0.0001

1
Probability = 0.5

1
Output Size = 6 97.0%

3
30-60-90

3
ReLU

3
Pooling Max

3
Epsilon = 0.0001

1
Probability = 0.5

1
Output Size = 6 99.3%

2
30-60-90

2
ReLU

2
Pooling Max

2
Epsilon = 0.0001

1
Probability = 0.5

1
Output Size = 6 98.0%

1
30-60-90

1
ReLU

1
Pooling Max

1
Epsilon = 0.0001

1
Probability = 0.5

1
Output Size = 6 96.5%

Convolutional
Layer

Activation
Function Pooling Layer Batch Normalization

Layer Dropout Layer Fully Connected
Layer Accuracy

3
30-60-90

3
ReLU

3
Pooling Max

3
Epsilon = 0.0001

1
Probability = 0.5

1
Output Size = 6 99.3%

3
30-60-90

3
Hyperbolic

Tangent

3
Pooling Max

3
Epsilon = 0.0001

1
Probability = 0.5

1
Output Size = 6 96.8%

3
30-60-90

3
Leaky ReLU

3
Pooling Max

3
Epsilon = 0.0001

1
Probability = 0.5

1
Output Size = 6 97.5%

3
30-60-90

3
Clipped ReLU

3
Pooling Max

3
Epsilon = 0.0001

1
Probability = 0.5

1
Output Size = 6 98.2%

3
30-60-90

3
Exp. Linear

Unit

3
Pooling Max

3
Epsilon = 0.0001

1
Probability = 0.5

1
Output Size = 6 98.2%
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Table 2. Cont.

Number of Layers and Other Parameters

Convolutional
Layer

Activation
Function Pooling Layer Batch Normalization

Layer Dropout Layer Fully Connected
Layer Accuracy

3
30-60-90

3
ReLU

3
Pooling Max

3
Epsilon = 0.0001

1
Probability = 0.5

1
Output Size = 6 99.3%

3
30-60-90

3
ReLU

3
Pooling Average

3
Epsilon = 0.0001

1
Probability = 0.5

1
Output Size = 6 98.7%

3
30-60-90

3
ReLU

2
Pooling Max

3
Epsilon = 0.0001

1
Probability = 0.5

1
Output Size = 6 98.5%

3
30-60-90

3
ReLU

2
Pooling Average

3
Epsilon = 0.0001

1
Probability = 0.5

1
Output Size = 6 97.7%

3
30-60-90

3
ReLU

1
Pooling Max

3
Epsilon = 0.0001

1
Probability = 0.5

1
Output Size = 6 97.6%

3
30-60-90

3
ReLU

1
Pooling Average

3
Epsilon = 0.0001

1
Probability = 0.5

1
Output Size = 6 96.5%

Convolutional
Layer

Activation
Function Pooling Layer Batch Normalization

Layer Dropout Layer Fully Connected
Layer Accuracy

3
30-60-90

3
ReLU

3
Pooling Max

3
Epsilon = 0.0001

1
Probability = 0.5

1
Output Size = 6 99.3%

3
30-60-90

3
ReLU

3
Pooling Max

2
Epsilon = 0.0001

1
Probability = 0.5

1
Output Size = 6 97.7%

3
30-60-90

3
ReLU

3
Pooling Max

1
Epsilon = 0.0001

1
Probability = 0.5

1
Output Size = 6 97.8%
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Table 2. Cont.

Number of Layers and Other Parameters

Convolutional
Layer

Activation
Function Pooling Layer Batch Normalization

Layer Dropout Layer and Fully Connected Layer Accuracy

3
30-60-90

3
ReLU

3
Pooling Max

3
Epsilon = 0.0001

1
Probability = 0.5

1
Output Size = 6 99.3%

3
30-60-90

3
ReLU

3
Pooling Max

3
Epsilon = 0.0001

1
Probability = 0.5

2
Structure: 36-6 99.3%

3
30-60-90

3
ReLU

3
Pooling Max

3
Epsilon = 0.0001

1
Probability = 0.5

3
Structure: 72-36-6 99.3%

3
30-60-90

3
ReLU

3
Pooling Max

3
Epsilon = 0.0001

0
Probability = 0.5

1
Output Size = 6 94.8%

3
30-60-90

3
ReLU

3
Pooling Max

3
Epsilon = 0.0001

0
Probability = 0.5

2
Structure: 36-6 95.7%

3
30-60-90

3
ReLU

3
Pooling Max

3
Epsilon = 0.0001

0
Probability = 0.5

3
Structure: 72-36-6 94.7%

Used description of the convolutional layer 3
30-60-90

Number of convolutional layers
Number of filters in 1st, 2nd, 3th layer
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In the first step, the effect of the number of convolutional layers was analyzed. It was noted that
starting from the basic structure of CNN-1 with a fixed number of categories necessary to recognize,
placing an additional convolutional layer does not increase the network efficiency. However, an
additional layer significantly increased the number of network parameters, which made the training
process longer.

Subsequent changes in the CNN structure concerned the activation function. The undoubted
advantage of the ReLU (rectified linear unit layer) function used together with SGDM is a significant
increase in the dynamics of the training process, compared to the function of the hyperbolic tangent.
The analysis of the results presented in the second section of Table 2 shows the superiority of the ReLU
function over the other activation functions.

The use of pooling layers in the CNN structure makes the network more resistant to noise. This
fact results from the principle of operation of this layer which provides information about the maximum
or average values of a given window. The combination of convolutional and pooling layers results in a
significant increase in the network precision, which can be observed by analyzing the results from the
third section of Table 2. The advantage of the maximum search method over the calculation of the
average value of the window is also noticeable. A clear improvement in CNN performance is visible
when using packet normalization at the output of each of the convolutional layers (see the fourth
section of Table 2). Thanks to this approach, the mapping of features is independent of their spatial
location, which directly affects the network efficiency, especially with test data being significantly
different from training packages.

The use of the dropout layer results in an increase in training time and also allows one to obtain
more generalized models with higher precision, which can be seen in the fifth section of Table 2.

The research referred to one level of probability equal to 0.5, which results from the lack of
influence of this parameter on the network effectiveness. The dropout layer was applied only before
the application of fully connected layers, so as not to miss a part of the input data set. The analysis of
the fifth section of Table 2 also shows that the use of multiple fully connected layers to better determine
the impact of individual features does not have the intended effect. Therefore, it is enough to use such
a layer with the number of neurons equal to the number of recognized categories, in combination with
classifying layers.

6. Conclusions

The main goal of the research presented in this paper has been achieved. It has been proven by
experimental tests that the application of the CNN, with a relatively simple structure compared to
those used in the literature, for the detection and classification of the IM incipient stator winding faults,
offers interesting results. The proper detection of the incipient inter-turn short circuits of the IM stator
winding was achieved after measuring maximum 2000 samples of the diagnostic signal—stator current
transient. It should also be emphasized that the use of such a small number of samples, compared to
those used in the literature, allowed one to limit the maximum time of stator winding fault detection to
a maximum of 0.2 s, which is directly connected with the size of the input matrix. Nevertheless, the
on-line tests show that the high accuracy of fault detection is obtained, based on less than 200 samples
equivalent to 0.02 s of measurement. Moreover, the detection system responses are not dependent
on the motor operating conditions. The impact of changes in the structure of the analyzed CNNs,
as well as parameters of the learning process, have been analyzed in the presented research and the
detailed discussion was presented in the fourth section of this article. The two developed structures of
CNNs, one for the assessment of the degree of damage to a single stator phase and the other one for
assessing the degree of damage to all three phases, maintain a very high degree of effectiveness, based
on the direct processing of the raw measured stator current data, without the use of advanced signal
processing methods (FFT, DWT, HHT) in the diagnostic procedure. This is, according to the best of the
authors’ knowledge, a novelty in the fault diagnostic and classification of the stator winding faults
using NNs, not only shallow but also deep learning structures.
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The main advantages of the presented IM stator winding fault detectors based on CNN networks
and stator current measurement are:

• the use of raw measurement data as network input signals,
• no need to pre-process measurement data with analytical methods,
• high accuracy in detecting the localization of the failure (motor phase) and the fault level (number

of shorted turns),
• the ability to detect even individual shorted turns (incipient faults),
• a merger of symptom extraction and damage detection in one machine learning process.

It has been also shown, that after proper training, the developed CNNs can be used for on-line
fault detection and their level assessment using program cooperation between Matlab and LabVIEW
software. Future work of the authors will be focused on on-line implementation of CNN-based stator
winding incipient fault detectors using microcontroller systems and FPGA.
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Appendix A

Table A1. Rated parameters of the tested induction motor.

Name of the Parameter Symbol Units

Power PN 3000 [W]
Torque TN 19.83 [Nm]
Speed NN 1445 [r/min]
Stator phase voltage UsN 230 [V]
Stator current IsN 6.8 [A]
Frequency fsN 50 [Hz]
Pole pairs number pp 2 [–]
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Figure A1. Illustration of the physical modelling of stator fault: (a) connection of the stator winding 
for inter-turn short-circuit modelling; (b) tested induction motor—real view. 

References 

1. Stone, G.; Boutler, E.; Cubert, I.; Dhirani, H. Electrical Insulation for Rotating Machines- Design, Evaluation, 
Aging, Testing, and Repair, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014. 

2. Benbouzid, M.E.H.; Vieira, M.; Theys, C. Induction motors faults detection and localization using stator current 
advanced signal processing techniques. IEEE Trans. Power Electron. 1999, 14, 14–22, doi:10.1109/63.737588. 

3. Schoen, R.R.; Habetler, T.G.; Kamran, F.; Bartfield, R.G. Motor bearing damage detection using stator 
current monitoring. IEEE Trans. Ind. Appl. 1995, 31, 1274–1279, doi:10.1109/28.475697. 

4. Fang, J.; Sun, Y.; Wang, Y.; Wei, B.; Hang, J. Improved ZSVC-based fault detection technique for incipient 
stage inter-turn fault in PMSM. IET Electric Power Appl. 2019, 13, 2015–2026, doi:10.1049/iet-epa.2019.0016. 

5. Urresty, J.; Riba, J.; Romeral, L. A Back-emf Based Method to Detect Magnet Failures in PMSMs. IEEE 
Trans. Magn. 2013, 49, 591–598, doi:10.1109/TMAG.2012.2207731. 

6. Garcia-Perez, A.; Romero-Troncoso, R.J.; Cabal-Yepez, E.; Osornio-Rios, R.A. The Application of 
High-Resolution Spectral Analysis for Identifying Multiple Combined Faults in Induction Motors. IEEE 
Trans. Ind. Electron. 2011, 58, 2002–2010, doi:10.1109/TIE.2010.2051398. 

7. Harmouche, J.; Delpha, C.; Diallo, D. Improved fault diagnosis of ball bearings based on the global 
spectrum of vibration signals. IEEE Trans. Energy Convers. 2015, 30, 376–383, 
doi:10.1109/TEC.2014.2341620.  

8. Ewert, P. Use of axial flux in the detection of electrical faults in induction motors. In Proceedings of the 
2017 International Symposium on Electrical Machines (SME), Nałęczów, Poland, 18–21 June 2017, 
doi:10.1109/ISEM.2017.7993571. 

9. Skowron, M.; Wolkiewicz, M.; Orlowska-Kowalska, T.; Kowalski, C.T. Effectiveness of Selected Neural 
Network Structures Based on Axial Flux Analysis in Stator and Rotor Winding Incipient Fault Detection 
of Inverter-fed Induction Motors. Energies 2019, 12, 2392, doi:10.3390/en12122392. 

10. Picazo-Ródenas, M.J.; Antonino-Daviu, J.; Climente-Alarcon, V.; Royo-Pastor, R.; Mota-Villar, A. 
Combination of Noninvasive Approaches for General Assessment of Induction Motors. IEEE Trans. Ind. 
Appl. 2015, 51, 2172–2180, doi:10.1109/TIA.2014.2382880. 

11. Kumar, P.S.; Xie, L.; Halick, M.S.M.; Vaiyapuri, V. Online stator end winding thermography using 
infrared sensor array. In Proceedings of the 2018 IEEE Applied Power Electronics Conference and 
Exposition (APEC), San Antonio, TX, USA, 4–8 March 2018, doi:10.1109/APEC.2018.8341361. 

12. Nejjari, H.; Benbouzid, M.E.H. Monitoring and diagnosis of induction motors electrical faults using a 
current Park’s vector pattern learning approach. IEEE Trans. Ind. Appl. 2000, 36, 730–735, 
doi:10.1109/28.845047. 

13. Puche-Panadero, R.; Pineda-Sanchez, M.; Riera-Guasp, M.; Roger-Folch, J.; Hurtado-Perez E.; Perez-Cruz, 
J. Improved Resolution of the MCSA Method Via Hilbert Transform, Enabling the Diagnosis of Rotor 
Asymmetries at Very Low Slip. IEEE Trans. Energy Convers. 2009, 24, 52–59, doi:10.1109/TEC.2008.2003207. 

14. Arabaci, H.; Bilgin, O. The Detection of Rotor Faults By Using Short Time Fourier Transform. In 
Proceedings of the 2007 IEEE 15th Signal Processing and Communications Applications, Eskisehir, 
Turkey, 11–13 June 2007, doi:10.1109/SIU.2007.4298628. 

Figure A1. Illustration of the physical modelling of stator fault: (a) connection of the stator winding for
inter-turn short-circuit modelling; (b) tested induction motor—real view.



Energies 2020, 13, 1475 18 of 21

References

1. Stone, G.; Boutler, E.; Cubert, I.; Dhirani, H. Electrical Insulation for Rotating Machines- Design, Evaluation,
Aging, Testing, and Repair, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014.

2. Benbouzid, M.E.H.; Vieira, M.; Theys, C. Induction motors faults detection and localization using stator
current advanced signal processing techniques. IEEE Trans. Power Electron. 1999, 14, 14–22. [CrossRef]

3. Schoen, R.R.; Habetler, T.G.; Kamran, F.; Bartfield, R.G. Motor bearing damage detection using stator current
monitoring. IEEE Trans. Ind. Appl. 1995, 31, 1274–1279. [CrossRef]

4. Fang, J.; Sun, Y.; Wang, Y.; Wei, B.; Hang, J. Improved ZSVC-based fault detection technique for incipient
stage inter-turn fault in PMSM. IET Electric Power Appl. 2019, 13, 2015–2026. [CrossRef]

5. Urresty, J.; Riba, J.; Romeral, L. A Back-emf Based Method to Detect Magnet Failures in PMSMs. IEEE Trans.
Magn. 2013, 49, 591–598. [CrossRef]

6. Garcia-Perez, A.; Romero-Troncoso, R.J.; Cabal-Yepez, E.; Osornio-Rios, R.A. The Application of
High-Resolution Spectral Analysis for Identifying Multiple Combined Faults in Induction Motors. IEEE Trans.
Ind. Electron. 2011, 58, 2002–2010. [CrossRef]

7. Harmouche, J.; Delpha, C.; Diallo, D. Improved fault diagnosis of ball bearings based on the global spectrum
of vibration signals. IEEE Trans. Energy Convers. 2015, 30, 376–383. [CrossRef]

8. Ewert, P. Use of axial flux in the detection of electrical faults in induction motors. In Proceedings of the 2017
International Symposium on Electrical Machines (SME), Nałęczów, Poland, 18–21 June 2017. [CrossRef]

9. Skowron, M.; Wolkiewicz, M.; Orlowska-Kowalska, T.; Kowalski, C.T. Effectiveness of Selected Neural
Network Structures Based on Axial Flux Analysis in Stator and Rotor Winding Incipient Fault Detection of
Inverter-fed Induction Motors. Energies 2019, 12, 2392. [CrossRef]

10. Picazo-Ródenas, M.J.; Antonino-Daviu, J.; Climente-Alarcon, V.; Royo-Pastor, R.; Mota-Villar, A. Combination
of Noninvasive Approaches for General Assessment of Induction Motors. IEEE Trans. Ind. Appl. 2015, 51,
2172–2180. [CrossRef]

11. Kumar, P.S.; Xie, L.; Halick, M.S.M.; Vaiyapuri, V. Online stator end winding thermography using infrared
sensor array. In Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition (APEC),
San Antonio, TX, USA, 4–8 March 2018. [CrossRef]

12. Nejjari, H.; Benbouzid, M.E.H. Monitoring and diagnosis of induction motors electrical faults using a current
Park’s vector pattern learning approach. IEEE Trans. Ind. Appl. 2000, 36, 730–735. [CrossRef]

13. Puche-Panadero, R.; Pineda-Sanchez, M.; Riera-Guasp, M.; Roger-Folch, J.; Hurtado-Perez, E.; Perez-Cruz, J.
Improved Resolution of the MCSA Method Via Hilbert Transform, Enabling the Diagnosis of Rotor
Asymmetries at Very Low Slip. IEEE Trans. Energy Convers. 2009, 24, 52–59. [CrossRef]

14. Arabaci, H.; Bilgin, O. The Detection of Rotor Faults By Using Short Time Fourier Transform. In Proceedings
of the 2007 IEEE 15th Signal Processing and Communications Applications, Eskisehir, Turkey, 11–13 June 2007.
[CrossRef]

15. Jung, J.; Lee, J.; Kwon, B. Online Diagnosis of Induction Motors Using MCSA. IEEE Trans. Ind. Electron. 2006,
53, 1842–1852. [CrossRef]

16. Haddad, R.Z.; Strangas, E.G. On the Accuracy of Fault Detection and Separation in Permanent Magnet
Synchronous Machines Using MCSA/MVSA and LDA. IEEE Trans. Energy Convers. 2016, 31, 924–934.
[CrossRef]

17. Cruz, S.M.A.; Cardoso, A.J.M. Stator winding fault diagnosis in three-phase synchronous and asynchronous
motors, by the extended Park’s vector approach. IEEE Trans. Ind. Appl. 2016, 37, 1227–1233. [CrossRef]

18. Rosero, J.; Cusido, J.; Espinosa, A.G.; Ortega, J.A.; Romeral, L. Broken Bearings Fault Detection for a
Permanent Magnet Synchronous Motor under non-constant working conditions by means of a Joint Time
Frequency Analysis. In Proceedings of the 2007 IEEE International Symposium on Industrial Electronics,
Vigo, Spain, 4–7 June 2007. [CrossRef]

19. Espinosa, A.G.; Rosero, J.A.; Cusidó, J.; Romeral, L.; Ortega, J.A. Fault Detection by Means of Hilbert–Huang
Transform of the Stator Current in a PMSM With Demagnetization. IEEE Trans. Energy Convers. 2010, 25,
312–318. [CrossRef]

http://dx.doi.org/10.1109/63.737588
http://dx.doi.org/10.1109/28.475697
http://dx.doi.org/10.1049/iet-epa.2019.0016
http://dx.doi.org/10.1109/TMAG.2012.2207731
http://dx.doi.org/10.1109/TIE.2010.2051398
http://dx.doi.org/10.1109/TEC.2014.2341620
http://dx.doi.org/10.1109/ISEM.2017.7993571
http://dx.doi.org/10.3390/en12122392
http://dx.doi.org/10.1109/TIA.2014.2382880
http://dx.doi.org/10.1109/APEC.2018.8341361
http://dx.doi.org/10.1109/28.845047
http://dx.doi.org/10.1109/TEC.2008.2003207
http://dx.doi.org/10.1109/SIU.2007.4298628
http://dx.doi.org/10.1109/TIE.2006.885131
http://dx.doi.org/10.1109/TEC.2016.2558183
http://dx.doi.org/10.1109/28.952496
http://dx.doi.org/10.1109/ISIE.2007.4375165
http://dx.doi.org/10.1109/TEC.2009.2037922


Energies 2020, 13, 1475 19 of 21

20. Rosero, J.; Garcia, A.; Cusido, J.; Romeral, L.; Ortega, J. Fault detection by means of Hilbert Huang Transform
of the stator current in a PMSM with demagnetization. In Proceedings of the 2007 IEEE International
Symposium on Intelligent Signal Processing, Alcala De Henares, Spain, 3–5 October 2007. [CrossRef]

21. Ruiz, J.R.; Rosero, J.A.; Espinosa, A.G.; Romeral, L. Detection of Demagnetization Faults in Permanent-Magnet
Synchronous Motors Under Nonstationary Conditions. IEEE Trans. Magn. 2009, 45, 2961–2969. [CrossRef]

22. Park, C.H.; Lee, J.; Ahn, G.; Youn, M.; Youn, B.D. Fault Detection of PMSM under Non-Stationary Conditions
Based on Wavelet Transformation Combined with Distance Approach. In Proceedings of the 2019 IEEE 12th
International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED),
Toulouse, France, 27–30 August 2019. [CrossRef]

23. Riera-Guasp, M.; Antonino-Daviu, J.A.; Pineda-Sanchez, M.; Puche-Panadero, R.; Perez-Cruz, J. A General
Approach for the Transient Detection of Slip-Dependent Fault Components Based on the Discrete Wavelet
Transform. IEEE Trans. Ind. Electron. 2008, 55, 4167–4180. [CrossRef]

24. Abdellatif, S.; Aissa, C.; Hamou, A.A.; Chawki, S.; Oussama, B.S. A Deep Learning Based on Sparse
Auto-Encoder with MCSA for Broken Rotor Bar Fault Detection and Diagnosis. In Proceedings of the 2018
International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), Alger, Algeria,
28–31 October 2018. [CrossRef]

25. Ince, T.; Kiranyaz, S.; Eren, L.; Askar, M.; Gabbouj, M. Real-Time Motor Fault Detection by 1-D Convolutional
Neural Networks. IEEE Trans. Ind. Electron. 2016, 63, 7067–7075. [CrossRef]

26. Junbo, T.; Weining, L.; Juneng, A.; Xueqian, W. Fault diagnosis method study in roller bearing based on
wavelet transform and stacked auto-encoder. In Proceedings of the 27th Chinese Control and Decision
Conference (2015 CCDC), Qingdao, China, 23–25 May2015. [CrossRef]

27. Lee, Y.O.; Jo, J.; Hwang, J. Application of deep neural network and generative adversarial network to
industrial maintenance: A case study of induction motor fault detection. In Proceedings of the 2017 IEEE
International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017. [CrossRef]

28. Hamdani, S.; Touhami, O.; Ibtiouen, R.; Fadel, M. Neural network technique for induction motor rotor faults
classification-dynamic eccentricity and broken bar faults. In Proceedings of the 8th IEEE Symposium on
Diagnostics for Electrical Machines, Power Electronics Drives, Bologna, Italy, 5–8 September 2011. [CrossRef]

29. Ghate, V.N.; Dudul, S.V. Optimal MLP neural network classifier for fault detection of three phase induction
motor. Expert Syst. Appl. 2010, 37, 3468–3481. [CrossRef]

30. Taïbi, Z.M.; Hasni, M.; Hamdani, S.; Rahmani, O.; Touhami, O.; Ibtiouen, R. Optimization of the feedforward
neural network for rotor cage fault diagnosis in three-phase induction motors. In Proceedings of the 2011
IEEE International Electric Machines Drives Conference (IEMDC), Niagara Falls, ON, Canada, 15–18 May
2011. [CrossRef]

31. Skowron, M.; Wolkiewicz, M.; Orlowska-Kowalska, T.; Kowalski, C.T. Application of Self-Organizing Neural
Networks to Electrical Fault Classification in Induction Motors. Appl. Sci. 2019, 9, 616. [CrossRef]

32. Kowalski, C.T.; Orlowska-Kowalska, T. Neural networks application for induction motor faults diagnosis.
Math. Comput. Simul. 2003, 63, 435–448. [CrossRef]

33. Khalfaoui, N.; Salhi, M.S.; Amiri, H. The SOM tool in mechanical fault detection over an electric asynchronous
drive. In Proceedings of the 2016 4th International Conference on Control Engineering Information Technology
(CEIT), Hammamet, Tunisia, 16–18 December 2016. [CrossRef]

34. Sid, O.; Menaa, M.; Hamdani, S.; Touhami, O.; Ibtiouen, R. Self-organizing map approach for classification
of electricals rotor faults in induction motors. In Proceedings of the 2011 2nd International Conference
on Electric Power and Energy Conversion Systems (EPECS), Niagara Falls, ON, Canada, 15–18 May 2011.
[CrossRef]

35. Afrasiabi, S.; Afrasiabi, M.; Parang, B.; Mohammadi, M. Real-Time Bearing Fault Diagnosis of Induction
Motors with Accelerated Deep Learning Approach. In Proceedings of the 2019 10th International Power
Electronics, Drive Systems and Technologies Conference (PEDSTC), Shiraz, Iran, 12–14 February 2019.
[CrossRef]

36. Shao, S.; Yan, R.; Lu, Y.; Wang, P.; Gao, R. DCNN-based Multi-signal Induction Motor Fault Diagnosis.
IEEE Trans. Instrum. Meas. 2019. [CrossRef]

http://dx.doi.org/10.1109/WISP.2007.4447631
http://dx.doi.org/10.1109/TMAG.2009.2015942
http://dx.doi.org/10.1109/DEMPED.2019.8864842
http://dx.doi.org/10.1109/TIE.2008.2004378
http://dx.doi.org/10.1109/CISTEM.2018.8613538
http://dx.doi.org/10.1109/TIE.2016.2582729
http://dx.doi.org/10.1109/CCDC.2015.7162738
http://dx.doi.org/10.1109/BigData.2017.8258307
http://dx.doi.org/10.1109/DEMPED.2011.6063689
http://dx.doi.org/10.1016/j.eswa.2009.10.041
http://dx.doi.org/10.1109/IEMDC.2011.5994843
http://dx.doi.org/10.3390/app9040616
http://dx.doi.org/10.1016/S0378-4754(03)00087-9
http://dx.doi.org/10.1109/CEIT.2016.7929086
http://dx.doi.org/10.1109/EPECS.2011.6126845
http://dx.doi.org/10.1109/PEDSTC.2019.8697244
http://dx.doi.org/10.1109/TIM.2019.2925247


Energies 2020, 13, 1475 20 of 21

37. Shao, S.; McAleer, S.; Yan, R.; Baldi, P. Highly Accurate Machine Fault Diagnosis Using Deep Transfer
Learning. IEEE Trans. Ind. Inform. 2019, 15, 2446–2455. [CrossRef]

38. Chen, Z.; Gryllias, K.; Li, W. Mechanical fault diagnosis using Convolutional Neural Networks and Extreme
Learning Machine. Mech. Syst. Signal Process. 2019, 133, 106272. [CrossRef]

39. Lee, J.-H.; Pack, J.-H.; Lee, I.-S. Fault Diagnosis of Induction Motor Using Convolutional Neural Network.
Appl. Sci. 2019, 9, 2950. [CrossRef]

40. Li, X.; Zhang, W.; Ding, Q.; Sun, J.-Q. Multi-Layer domain adaptation method for rolling bearing fault
diagnosis. Signal Process. 2019, 157, 180–197. [CrossRef]

41. Sun, W.; Zhao, R.; Yan, R.; Shao, S.; Chen, X. Convolutional Discriminative Feature Learning for Induction
Motor Fault Diagnosis. IEEE Trans. Ind. Inform. 2017, 13, 1350–1359. [CrossRef]

42. Kao, I.; Wang, W.; Lai, Y.; Perng, J. Analysis of Permanent Magnet Synchronous Motor Fault Diagnosis Based
on Learning. IEEE Trans. Instrum. Meas. 2019, 68, 310–324. [CrossRef]

43. Khan, T.; Alekhya, P.; Seshadrinath, J. Incipient Inter-turn Fault Diagnosis in Induction motors using CNN
and LSTM based Methods. In Proceedings of the 2018 IEEE Industry Applications Society Annual Meeting
(IAS), Portland, OR, USA, 23–27 September 2018. [CrossRef]

44. Hoang, D.T.; Kang, H.J. A Motor Current Signal Based Bearing Fault Diagnosis Using Deep Learning And
Information Fusion. IEEE Trans. Instrum. Meas. 2019. [CrossRef]

45. Pandarakone, S.E.; Masuko, M.; Mizuno, Y.; Nakamura, H. Deep Neural Network Based Bearing Fault
Diagnosis of Induction Motor Using Fast Fourier Transform Analysis. In Proceedings of the 2018 IEEE
Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 23–27 September 2018. [CrossRef]

46. Xu, G.; Liu, M.; Jiang, Z.; Shen, W.; Huang, C. Online Fault Diagnosis Method Based on Transfer Convolutional
Neural Networks. IEEE Trans. Instrum. Meas. 2020, 69, 509–520. [CrossRef]

47. Xu, G.; Liu, M.; Jiang, Z.; Söffker, D.; Shen, W. Bearing Fault Diagnosis Method Based on Deep Convolutional
Neural Network and Random Forest Ensemble Learning. Sensors 2019, 19, 1088. [CrossRef]

48. Wen, L.; Li, X.; Gao, L.; Zhang, Y. A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis
Method. IEEE Trans. Ind. Electron. 2018, 65, 5990–5998. [CrossRef]

49. Chattopadhyay, P.; Saha, N.; Delpha, C.; Sil, J. Deep Learning in Fault Diagnosis of Induction Motor Drives.
In Proceedings of the 2018 Prognostics and System Health Management Conference (PHM-Chongqing),
Chongqing, China, 26–28 October 2018. [CrossRef]

50. Li, C.; Zhang, W.; Peng, G.; Liu, S. Bearing Fault Diagnosis Using Fully-Connected Winner-Take-All
Autoencoder. IEEE Access 2018, 6, 6103–6115. [CrossRef]

51. Principi, E.; Rossetti, D.; Squartini, S.; Piazza, F. Unsupervised electric motor fault detection by using deep
autoencoders. IEEE/CAA J. Autom. Sin. 2019, 6, 441–451. [CrossRef]

52. Ding, X.; He, Q. Energy-Fluctuated Multiscale Feature Learning With Deep ConvNet for Intelligent Spindle
Bearing Fault Diagnosis. IEEE Trans. Instrum. Meas. 2017, 66, 1926–1935. [CrossRef]

53. Gardel, P.; Morinigo-Sotelo, D.; Duque-Perez, O.; Perez-Alonso, M.; Garcia-Escudero, L.A. Neural network
broken bar detection using time domain and current spectrum data. In Proceedings of the 2012 XXth
International Conference on Electrical Machines, Marseille, France, 2–5 September 2012. [CrossRef]

54. Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet classification with deep convolutional neural networks.
Adv. Neural Inf. Process. Syst. 2012, 25, 1106–1114. [CrossRef]

55. Kalchbrenner, N.; Grefenstette, E.; Blunsom, P. A convolutional neural network for modelling sentences.
In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Baltimore,
MD, USA, 23–25 June 2014.

56. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate
shift. arXiv 2015, arXiv:1502.03167.

57. Nair, V.; Hinton, G.E. Rectified linear units improve restricted Boltzmann machines. In Proceedings of the
27th International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010.

58. Graham, B. Fractional max-pooling. arXiv 2014, arXiv:1412.6071.
59. Wang, S.; Manning, C. Fast dropout training. In Proceedings of the International Conference on Machine

Learning, Atlanta, GA, USA, 16–21 June 2013. [CrossRef]
60. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent

Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [CrossRef]

http://dx.doi.org/10.1109/TII.2018.2864759
http://dx.doi.org/10.1016/j.ymssp.2019.106272
http://dx.doi.org/10.3390/app9152950
http://dx.doi.org/10.1016/j.sigpro.2018.12.005
http://dx.doi.org/10.1109/TII.2017.2672988
http://dx.doi.org/10.1109/TIM.2018.2847800
http://dx.doi.org/10.1109/IAS.2018.8544707
http://dx.doi.org/10.1109/TIM.2019.2933119
http://dx.doi.org/10.1109/ECCE.2018.8557651
http://dx.doi.org/10.1109/TIM.2019.2902003
http://dx.doi.org/10.3390/s19051088
http://dx.doi.org/10.1109/TIE.2017.2774777
http://dx.doi.org/10.1109/PHM-Chongqing.2018.00189
http://dx.doi.org/10.1109/ACCESS.2017.2717492
http://dx.doi.org/10.1109/JAS.2019.1911393
http://dx.doi.org/10.1109/TIM.2017.2674738
http://dx.doi.org/10.1109/ICElMach.2012.6350234
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.5555/3042817.3042907
http://dx.doi.org/10.5555/2627435.2670313


Energies 2020, 13, 1475 21 of 21

61. Yuan, B. Efficient hardware architecture of softmax layer in deep neural network. In Proceedings of the 29th
IEEE International System-on-Chip Conference (SOCC), Seattle, WA, USA, 6–9 September 2016; pp. 323–326.
[CrossRef]

62. Dogo, E.M.; Afolabi, O.J.; Nwulu, N.I.; Twala, B.; Aigbavboa, C.O. A Comparative Analysis of Gradient
Descent-Based Optimization Algorithms on Convolutional Neural Networks. In Proceedings of the 2018 Int.
Conference on Computational Techniques, Electronics and Mechanical Systems (CTEMS), Belgaum, India,
21–22 December 2018; pp. 92–99. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/SOCC.2016.7905501
http://dx.doi.org/10.1109/CTEMS.2018.8769211
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	General Description of Convolutional Neural Network Used in the Research 
	Structure of the Convolutional Network 
	Training of the Convolutional Network 

	Description of the Experimental Implementation of the CNN-Based Detector of Inter-Turn Short Circuits 
	Short Description of the Laboratory Set-Up 
	Description of the Input Data Preprocessing for the Developed CNNs 
	Description of the Structure and Tasks of the Developed CNN-Base Fault Detectors 

	Analysis of Experimental Results of the CNN-Based Stator Winding Fault Detectors Working On-Line 
	Impact of the CNN Structure and Training Method Parameters to the Fault Diagnosis 
	Impact of the Convolutional Network Training Parameters on the Effectiveness of IM Stator Damage Assessment 
	Impact of the Convolutional Network Structure on the Effectiveness of IM Stator Damage Assessment 

	Conclusions 
	
	
	References

