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Abstract: In this paper, a three-level ZSI (impedance source inverter) based on transistor clamped
theory is proposed. It uses the least number of switch counts and associated gate circuitry among all
existing topologies of three-level ZSI without any performance degradation. The existing three-level
ZSI topologies require three power switches to be turned ON for upper-lower shoot-through (ULST),
and four power switches to be turned ON for full dc-link shoot-through (FST). However, with the
proposed configuration, upper–lower shoot-through (ULST) and full dc-link shoot-through (FST) is
inserted by turning ON only two power semiconductors. A comparison between diode clamped,
transistor clamped, and t-type is presented. The proposed topology can realize any of the existing
sine-triangle- or space vector-based PWM (pulse width modulation) schemes, and all existing
configurations of three-level ZSI can merge into the proposed inverter configuration.

Keywords: three-level inverters; Z-source inverters; pulse width modulation; transistor
clamped inverter

1. Introduction

The three most common multilevel configurations—diode clamped, capacitor clamped,
and cascaded multilevel—are extensively studied in the literature. Since each of these three have
their own merits and demerits, numerous branches of research areas emerged. Some of them found
their applications in renewable energy, drives, and hybrid vehicles. Some other implementations
are associated with control techniques like neutral point balance, reduced common-mode voltage,
and topological developments, such as symmetrical/asymmetrical hybrid topologies and PWM
technique developments like hybrid PWM techniques.

The main drawback of these three basic topologies is that only voltage buck operation is possible.
So, to insert a voltage buck-boost feature in an existing voltage source inverter, a new class of inverters,
namely Z-source inverters, is proposed in [1] with its two-level configurations. The other advantages
offered by these (ZSI) inverters are: (i) no need for the time delay between the switches of the same
leg, and (ii) better output voltage quality. Extensive research is present in the area of two-level
ZSI, with the main focus on its topological improvements, PWM techniques, and its suitability for
different applications.

However, the concept of ZSI in the area of multilevel inverters is less explored as compared to
two-level ZSI- and VSI based multilevel inverters.

The first attempt to extend the ZSI concept in a three-level neutral point clamped (NPC) inverter
was reported in [2], with a detailed explanation of the shoot-through addition procedure in the existing
continuous and discontinuous PWM techniques. The presented circuit configuration in [2] requires
two impedance networks for boosting output voltage, which increases the inverter complexity, control,
and cost.
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Two new three-level z source inverter topologies—NPC type and dc-link cascaded type—using
a single impedance network were proposed in [3] with the alternate phase opposition disposition
(APOD) PWM technique. However, output voltage quality degrades, as APOD does not use the nearest
three vector switching. An attempt to use two separate dc sources and two impedance networks is
reported [4]. To get a more theoretical insight of three-level ZSI, the effect of the modulation index
(M > 0.575 and M < 0.575) on the shoot-through insertion and concept of reduced common-mode
voltage is presented [5].

Another topological variation in the field of three-level ZSI is present in [6], named as “dual
z-source inverter.” It uses three single-phase transformers at its output terminal to supply the load,
and offers bidirectional power flow and electrical isolation with an output transformer. A comparison
between dual ZSI-based three-level and DC link cascaded type three-level ZSI is presented [7].
Advantages offered by dual ZSI—such as phase leg redundancy for equalizing switching losses among
power devices, and the applicability of different PWM techniques for its control—makes it superior
to the dc-link cascaded type topology. To achieve both, i.e., reduced element counts (one impedance
network) and the nearest three vectors switching (PD carrier PWM), three operating modes for the
adjustable drive system are presented [8]. However, for stable voltage boosting, a triple offset is
required to make the duration of E-active and E-null states equal in the case of phase disposition carrier.

Loh et al. [9] presented a three-level z source converter with reduced switching commutations
using carrier-based modulation techniques. Effah et al. [10] presented a three-level ZSI based on the
SVPWM technique. Some other configurations are an extension of two-level ZSI into three-level are:
trans and flipped trans ZSI type NPC [11], embedded Z source three-level and dc-link integrated Z
source NPC inverter [12], and quasi ZSI-based three-level NPC [13]. McGrath et al. [14] achieve the
same phase leg switching sequence using phase disposition and space vector modulation strategies
applied to diode clamped and hybrid multilevel inverters.

The above configurations attempted to achieve better performance in terms of gain, small
shoot-through for more significant boost, inrush current suppression capability, continuous input
current, low total harmonic distortion of output voltage/current, and common ground for inverter and
source. Nabae et al. [15] presented a neutral-point clamped inverter. Schweizer et al. [16] discussed the
modified version of the neutral-point clamped T-Type inverter for low voltage application. In recent
years, more works on multilevel ZSI are found in the literature based on topological and PWM technique
developments. The common-mode voltage reduction, which is responsible for leakage current in the
photovoltaic application, is discussed [17]. A three-level quasi –boost T-Type inverter with reduced
inductor current ripple is presented in [18]. A switched-capacitor multilevel inverter with a single
DC source is proposed [19]. A five-level inverter with a reduced passive component is successfully
established [20]. It represented a single-stage quasi-cascaded H-bridge inverter. Roncero-Clemente et
al. [21] discussed a modified carrier, level-shifted based a control method for a three-phase, three-level
T-type quasi-impedance-source inverter. Here, a modulation method for a Z-source three-level T-type
inverter is developed. It combines the merits of the Z-source two-level inverter and the advantages
of the Z-source neutral-point-clamped inverter. Xing et al. [22], proposes an improved space vector
based PWM technique to balance the neutral point potential of three-level T-type ZSI. [23] attempted
to reduce the common-mode voltage by suitably placing the shoot-through states for the case of a
quasi-Z-source three-level T-type inverter.

Section 2 of this paper discusses the main drawback of the diode clamped three-level VSI, and the
main features of the transistor clamped VSI are presented in Section 3. The novelty of the paper is to
utilize the advantages offered by the transistor clamped VSI in the field of ZSIs, which is discussed in
Section 4. In transistor clamped topology, the number of switching components, and their associated
gate driver requirement, is less compared to existing multilevel inverters. The ULST (upper–lower
shoot-through) and FST (full shoot-through) schemes are analyzed, and the PWM technique for the
insertion of shoot-through in a TC-ZSI (ransistor clamped impedance source inverter) is presented.
This paper aims to achieve a three-level boosted output phase voltage employing transistor clamped
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topology for the case of ZSI. Finally, simulation and experimental results are presented in Section 5.
Section 6 concludes this paper.

2. Review of Existing Three-Level ZSI Configurations

The configuration of the existing three-level ZSI is shown in Figure 1, where one impedance
network is used for voltage boosting [12]. One impedance network indicates two inductors and
two capacitors.
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Figure 1. Existing three-level ZSI with one impedance network.

The two primary types of shoot-through techniques used for shoot-through insertion are full
dc-link shoot-through (FST) and upper–lower shoot-through (ULST). The switching combinations to
implement FST and ULST scheme in diode clamped configurations are as follows:

A. Full dc-link shoot-through (FST):

Sx1 = Sx2 = Sx3 = Sx4 = ON; DA1 = DA2 = OFF (where x = A, B, C)

B. Upper shoot-through:

Sx1 = Sx2 = Sx3 = ON; DA2 = ON, DA1 = OFF

C. Lower shoot-through:

Sx2 = Sx3 = Sx4 = ON; DA1 = ON, DA2 = OFF

D. Non-shoot-through state:

Sx1 , Sx3, Sx2 , Sx4; DA1 = DA2 = ON.

In the FST scheme, full shoot-through states and non-shoot-through states are present, while in
the ULST scheme, upper–lower shoot-through states and non-shoot-through states are present.

When upper and lower ST states use a single impedance network, the relation between M and ST
duty ratio (dsh) is written as:

dsh =
T0

T
(1)

where T0 is the shoot-through duration in a sample period T.
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With a single impedance network, dsh offered by the ULST scheme is half in comparison to the
FST scheme. This is written as:

(dsh)ULST =
1
2

.(dsh)FST (2)

The relation between boost factor B and dsh is:

B =
1

1− 2.dsh
(3)

For a particular value of modulation index ‘M’, the value of boost factor ‘B’ offered by the ULST
scheme is lower than the FST scheme. The value offered by the ULST scheme is lower than the FST
scheme of 3L-ZSI using a single impedance network. Figure 2 represents the relation between ‘B’ and
‘M’ for ULST and FST schemes.
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3. Operating Principal of the Three-Level Transistor Clamped Topology and Its Comparison with
Other Existing Topologies

The diode clamped three-level voltage source inverter is shown in Figure 3. The main problems
associated with these inverters are unequal device ratings of semiconductor switches, the need for
diodes for dc voltage clamping, a high number of component counts at high levels, and neutral point
potential unbalance. The above drawbacks limit their applications in real power conversion. Another
alternative is presented in Figure 4, named as transistor clamped three-level inverter in this paper.
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Figure 3. Topology of the diode clamped three-level inverter.
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Figure 4. Topology of the transistor clamped three-level voltage source inverter.

This three-level topology has the two main power switches and one auxiliary switch in each
leg. The auxiliary switch (a combination of one IGBT and four diodes to accomplish bidirectional
power flow) clamps each phase leg voltage to the zero or neutral potential. Table 1 indicates the
switch combination for each level of the output pole voltage. From Table 1, it can be seen that at each
instant, only one switch from each leg is ON, and the other two (auxiliary and power switches) are off,
to generate a three-level output voltage waveform.

Table 1. Transistor clamped three-level inverter voltage level and switching states

VYN (Pole Voltages) Switch States

SX1 SX0 SX2

Vdc/2 ON OFF OFF

0 OFF ON OFF

−Vdc/2 OFF OFF ON

Where X = (A, B, C) and Y = (a, b, c).

Main features of this topology are listed below:

• Total power switch count reduces to nine, as compared to twelve in the diode clamped, capacitor
clamped, and cascaded for the same three-phase output voltage level.

• No unequal device rating problem, as in the diode clamped configuration. No need for clamping
diodes/capacitors.

• Any conventional PWM techniques (sine-triangle/SVPWM) can be used with
suitable modifications.

• Single-phase five-level configurations can be realized using only six power switches via
appropriately modulating the two legs.

However, neutral point voltage unbalance and common-mode voltage elimination/reduction still
require attention, and these issues are not discussed here.

Comparison of the Transistor Clamped, Diode Clamped and T-Type Inverter

The two other main three-level inverter configurations are diode clamped and T-type inverter.
One phase leg of the diode clamped and T-type VSI is shown in Figure 5. The working principle of the
diode clamped and T-type voltage source inverter can be understood from Table 2.
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Table 2. Switching states of Diode clamped and T-Type VSI

Vao (Pole Voltage) Switching
State/Position

Diode Clamped T-Type

Gating Pulse ON
Switches/Diodes Gating Pulse ON

Switches/Diodes

Vdc
2 P SA1 and SA2

SA1 and SA2
Or

D1 and D2
SA1 and SA3 SA1 or D1

0 O SA2 and SA3
SA2 and D5

Or
SA3 and D6

SA2 and SA3
SA2 and D3

Or
SA3 and D2

−
Vdc
2 N SA3 and SA4

SA3 and SA4
Or

D3 and D4
SA2 and SA4 SA4 Or D4

There are four power switches in each phase leg of the diode clamped and T-type VSI. Therefore,
four gating pulses are required. Depending upon the direction of load current, various combinations of
the ON switch and the ON diodes have been listed in Table 2. The comparison of the average switching
frequency of each switch of the transistor clamped, diode clamped, and T-type VSI is presented in
Table 3.

Table 3. Average switching frequency of the transistor clamped, diode clamped and T-type VSI.

Avg. Switching
Frequency

Transistor Clamped VSI Diode Clamped VSI T-Type VSI

SX1 SX2 SX3 SX1 SX2 SX3 SX4 SX1 SX2 SX3 SX4

Fsw
1

4.Ts

1
2.Ts

1
4.Ts

1
4.Ts

1
4.Ts

X = A, B, C, Ts is the duration of one sample period.

From Table 3, it is clear that the switching frequency of the bidirectional switch (SX2) of the
transistor clamped VSI is twice that of the upper and lower switch of the same phase leg, and each switch
of the diode clamped and T-type VSI. Considering the case of low voltage application (<= 1200 V),
the transistor clamped configuration offers the following advantages:

• It provides reduced conduction and switching losses, as compared to the diode clamped VSI,
since only one switch per phase leg is conducting at any instant in the transistor clamped VSI. On
the other hand, in the diode clamped VSI, two switches per phase leg are in conduction during
power flow to load (Table 2).

• It reduces one IGBT per phase leg and its associated gate driver ICs/circuit elements, as compared
to the diode clamped and T-type VSI.
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• Only one gating pulse is being generated and fed to the particular IGBT at a time to turn it ON in
the transistor clamped VSI (Table 1). But there are always two gating pulses being generated in
the diode clamped and T-type VSI (Table 2).

However, the following points can be considered as the drawbacks of the transistor clamped
inverter configuration:

During the inverter operation in state ‘0’ shown in Table 1, there are two diodes and one IGBT
in the conduction path of the transistor clamped VSI. On the other hand, the diode clamped and
T-type VSI have one diode and one IGBT in the conduction during state ‘O’, which can be seen from
Table 2. Therefore, the power loss due to one extra diode in state ‘O’ can be seen as the drawback of
the transistor clamped VSI.

The schematic of the gating pulse for the three power switches in the TC-VSI and the conventional
VSI is shown in Figure 6. The gating signal of SA2 and SA3 of the existing three-level VSI are logically
transformed into one signal for switch SA0 of TC-VSI.
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4. Proposed Configurations of Transistor Clamped Three-Level ZSI

The concept of ZSI is implemented in the above-discussed transistor clamped VSI. Different
types of three-level ZSI configuration already presented in the literature [2–4,10–12] can extend to the
transistor clamped configuration.

The attractive feature of the TC-ZSI is that it requires only two switches to be turned ON for
shoot-through state insertion, whether it is upper, lower, or full dc-link shoot-through.

Figures 7 and 8 show the schematics of the three-level TC-ZSI using two impedance networks
and one impedance network, respectively. Here, one impedance network indicates two inductors and
two capacitors.

From Figure 8, it is clear that {‘SX1’, ‘SX0’} is turned ON for the upper shoot-through, as shown in
Figure 9a. {‘SX2’, ‘SX0’} is turned ON for the lower shoot-through shown in Figure 9b, and {‘SX1’, ‘SX2’}
is turned ON for the full dc-link shoot-through presented in Figure 9c. However, the diode clamped
NPC type ZSI requires three semiconductor switches and one diode for upper–lower shoot-through [2]
and four switches for full dc-link shoot-through [3].
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This paper considers the ULST scheme for the three-level transistor clamped ZSI proposed in
Figure 7. The ULST scheme offers better output waveform quality because of the nearest three vector
(NTV) switching. NTV switching is not possible using the FST scheme.

The expression for the capacitor voltage, input dc-link peak voltage v̂i and output peak phase
voltage v̂x of inverter for both schemes can be written as [12]:

Assuming L1 = L2 = L, C1 = C2 = C and Vdc_1 = Vdc_2 = Vdc

FST scheme:

Vc =
2Vdc(1− To/T)
(1− 2To/T)

v̂i =
2Vdc

(1− 2To/T)
= 2BVdc

v̂x =
Mv̂i

2
= MBVdc (4)

ULST scheme:

Vc =
2Vdc(1− T′o/2T)

(1− T′o/T)

v̂i =
2Vdc

(1− T′o/T)
= 2B′Vdc
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v̂x =
Mv̂i

2
= MB′Vdc (5)

where “T′o/T” is the sum of upper and lower shoot-through.Energies 2020, 11, x FOR PEER REVIEW  9 of 16 

 

 

(a) 

 

(b) 

 

(c) 

 

Figure 9. Description of shoot-through states: (a) upper shoot-through, (b) lower shoot-through, (c) 

full dc-link shoot-through. 

This paper considers the ULST scheme for the three-level transistor clamped ZSI proposed in 

Figure 7. The ULST scheme offers better output waveform quality because of the nearest three vector 

(NTV) switching. NTV switching is not possible using the FST scheme. 

The expression for the capacitor voltage, input dc-link peak voltage 𝑣�̂� and output peak phase 

voltage  𝑣�̂� of inverter for both schemes can be written as [12]: 

Assuming L1 = L2 = L, C1 = C2 = C 𝑎𝑛𝑑 and Vdc_1 = Vdc_2 =Vdc 
FST scheme: 

Vc =
2Vdc(1 − To T⁄ )

(1 − 2To T⁄ )
 

𝑣�̂� =
2Vdc

(1 − 2To T⁄ )
= 2BVdc 

 vx̂ =
Mvî
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4.1. PWM Techniques

The most commonly used sine triangle-based PWM techniques for multilevel inverters are:

• In phase disposition carrier (PD) PWM.
• Alternate phase opposition disposition (APOD) PWM.

The above-mentioned techniques have been used in the literature for the insertion of shoot-through
in the three-level ZSI. As per the shoot-through insertion process, these techniques are further classified
into continuous edge insertion PWM and modified reference PWM, which differs only in the number
of switching transitions. With the addition of an appropriate offset signal in the sinusoidal reference
signal, the advantages offered by the central space vector PWM can be realized. The offset signal for
three-level ZSI based SVPWM and other discontinuous PWM schemes is reported in [14].

The primary considerations required for insertion of shoot-through in the PWM control technique
of three-level NPC-type ZSI or TC-ZSI are summarized below:

• Minimum device commutation per half switching cycle.
• Equal shoot-through time for both impedance network, if two impedance networks are used.
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• Shoot-through should always be inserted in the state transition, i.e., null to active, active to active,
and active to null with a single switch transition.

Continuous edge insertion using POD/APOD carrier with added offset to increase the modulation
index range (<= 1.15) has been used in this paper, as shown in Figure 10. Continuous edge insertion
offers a balanced and symmetrical voltage boost per switching cycle, thereby reducing the current ripple.
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4.2. Conduction and Switching Losses

The conduction and switching losses are the two main contributors to total power losses in the
inverter. For a pulsed output voltage and current, the average conduction losses per sub-cycle in IGBT
and diode can be calculated as:

Pcond.IGBT = Vce
(
T j, Ic

)
× Ic ×D

Pcond.Diode = V f
(
T j, I f

)
× I f ×D

(6)

The switching losses are further classified into turn-on and turn-off energy losses. The total
switching losses in the case of IGBT is defined as:

Psw.IGBT =
(
Eon + Eo f f

)
.Fsw (7)

Only turn-off losses (reverse recovery losses) have been considered in the case of diodes. These
are written as:

Prec.diode = Erec. × Fsw (8)

The parameters mentioned in the above equations have been taken from the datasheets to find the
efficiency and switching losses of the converter.

4.3. Impedance Network Design

The impedance network inductor and capacitor are designed based on the high-frequency ripple
components of the inductor current and capacitor voltage, respectively.
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The high-frequency component of the inductor ripple current is written as:

∆iL =
VC
L

(
dsh.T

2

)
(9)

where VC is the average voltage across the capacitors of impedance network. It is written as:

VC = Vdc

(
1− dsh

1− 2.dsh

)
(10)

The permissible value of inductor current ripple is defined as:

∆iL = rL.IL (11)

where rL is the permissible percentage of the average inductor current ripple. IL is the average inductor
current and is expressed as:

IL =
P

Vdc
(12)

where ‘P’ denotes the total output power of the inverter. Substituting (1), (10), and (11) into (9),
the expression for ‘L’ is written as:

L =
(1− dsh).Vdc.(1−M).T

4.(1− 2.dsh).rL.IL
(13)

Similarly, the high-frequency ripple component of the capacitor voltage is written as:

∆VC =
IL

C

(
dsh.T

2

)
(14)

The permissible value of capacitor voltage ripple is defined as:

∆VC = rC.VC (15)

where rC is the permissible ripple percentage in the average capacitor voltage.
Using (1), (9), (14), and (15), the expression for ‘C’ can be written as:

C =
IL(1− 2.dsh).(1−M).T
4.rC.VC.(1− dsh).Vdc

(16)

5. Simulation Results

The proposed topologies are simulated in a MATLAB/SIMULINK environment. A prototype is
developed in the laboratory, and the results are presented. The input voltage for the simulation is set
to 200 V (100 of each source), RL load (R = 10 ohm and L = 10 mH), and the switching frequency is set
to 5.5 kHz. The impedance network inductor and capacitor values are calculated using Equations (13)
and (14) as 2 mH and 330 uF. The output waveforms of transistor clamped three-level VSI are shown in
Figure 11. It can be seen from Figure 11 that the PD carrier PWM follows the nearest three vectors for
synthetization of the output voltage. Figure 12 shows the waveform of the proposed three-level ZSI,
based on transistor clamped topology. The configuration shown in Figure 7 is used with the in-phase
disposition carrier PWM technique (PD) with modulation index M = 1*1.15 and To/T = 0 (without
shoot-through). Then, the upper and lower shoot-through states are inserted, and waveforms are
shown in Figure 13 with M = 0.7*1.15 and To/T = 0.3. With upper and lower shoot-through added,
the expressions for the gain of the inverter are given in Equation (5) [12]. Where T′o/T; represents the
sum of upper and lower shoot-through whose sum is equal to the 2To/T. By putting the values of M
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(=1.15*0.7) and To′/T (=0.3) in the above equation, the output ac phase leg voltage of the inverter comes
out to be 250 V, and peak line voltage is 500 V, which is clearly shown in Figure 13. Volt-sec error
and minimum device commutation are kept in mind while adding shoot-through states. The same
shoot-through time is used for both upper and lower shoot-through, in order to avoid unbalance in
output voltage.

Figure 14 shows the TC-ZSI configuration with a single impedance network, as shown in Figure 8.
Similar results can be found with the same value of M and B as the above case. APOD PWM technique
is used for this configuration to add full dc-link shoot-through, as APOD uses {0 0 0} state, even at
a high modulation index. This technique does not follow the nearest three vectors to synthesize the
output voltage waveform, which can be seen in the first waveform of Figure 14. The output power
quality is poor, and contains higher harmonic distortion, as compared to the phase carrier PWM, if the
APOD PWM technique is used; however, it saves one impedance network.
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Figure 14. Output waveforms of the TC-ZSI with a single impedance network using the APOD PWM
technique (configuration Figure 8).

Figure 15 shows a photograph of the prototype developed in the lab. Figure 16 shows the
experimental waveforms of line voltage and pole voltage. Texas Instruments-based DSP TMS320F28335
was used for the generation of switching pulses. Figure 17 shows the waveform of the generated
switching pulses. The experimental waveforms have a good agreement with the simulated waveforms.
The explanation of the experimental results is same as that of the simulation results.



Energies 2020, 13, 1469 14 of 16

Energies 2020, 11, x FOR PEER REVIEW  14 of 16 

 

 

Figure 14. Output waveforms of the TC-ZSI with a single impedance network using the APOD PWM 

technique (configuration Figure 8). 

Figure 15 shows a photograph of the prototype developed in the lab. Figure 16 shows the 

experimental waveforms of line voltage and pole voltage. Texas Instruments-based DSP 

TMS320F28335 was used for the generation of switching pulses. Figure 17 shows the waveform of 

the generated switching pulses. The experimental waveforms have a good agreement with the 

simulated waveforms. The explanation of the experimental results is same as that of the simulation 

results. 

 

Figure 15. Experimental setup. Figure 15. Experimental setup.
Energies 2020, 11, x FOR PEER REVIEW  15 of 16 

 

 

Figure 16. Experimental waveforms at M=1 and input voltage Vdc_1 = Vdc_2= 50 volt. line voltage 

(𝑉𝑎𝑏) and pole voltage (𝑉𝑎𝑜 = 𝑉𝑎𝑁). 

 

Figure 17. Switching pulses generated from TMS320F28335. 

6. Conclusions 

This paper presented a new configuration of three-level ZSI derived from a neutral point 

clamped and conventional ZSI, which uses less component counts and associated gate circuitry as 

compared to the existing topologies. The proposed converter offers a low-cost alternative to 

applications that need to ride through frequent input voltage sags. A comparison between diode 

clamped, transistor clamped, and t-type is presented. It has been revealed that upper–lower shoot-

through and full dc-link shoot-through can be easily incorporated by turning ON two power 

semiconductor switches. The proposed inverter topology can be modulated by any of the existing 

PWM techniques, and all current three-level ZSI configurations can be merged into this configuration 

by changing only the inverter switches. It is verified that the ULST scheme PD method offers better 

output voltage waveform, as it follows the nearest three vector approach, which is not possible in the 

FST scheme with the APOD carrier waveform. 

Conflicts of Interest: Declare conflicts of interest or state. 

References 

1. Peng,F. Z. Z-Source inverter. IEEE Trans. Ind. Appl. 2003, 39, 504–510. 

2. Loh, P.C.; Blaabjerg, F.; Feng, S.Y.; Soon, K.N. Pulse-Width modulated Z-source neutral-point-clamped 

inverter. Proc. IEEE APEC 2006, 431–437, doi:10.1109/APEC.2006.1620574. 

Figure 16. Experimental waveforms at M = 1 and input voltage Vdc_1 = Vdc_2 = 50 volt. line voltage
(Vab) and pole voltage (Vao = VaN).

Energies 2020, 11, x FOR PEER REVIEW  15 of 16 

 

 

Figure 16. Experimental waveforms at M=1 and input voltage Vdc_1 = Vdc_2= 50 volt. line voltage 

(𝑉𝑎𝑏) and pole voltage (𝑉𝑎𝑜 = 𝑉𝑎𝑁). 

 

Figure 17. Switching pulses generated from TMS320F28335. 

6. Conclusions 

This paper presented a new configuration of three-level ZSI derived from a neutral point 

clamped and conventional ZSI, which uses less component counts and associated gate circuitry as 

compared to the existing topologies. The proposed converter offers a low-cost alternative to 

applications that need to ride through frequent input voltage sags. A comparison between diode 

clamped, transistor clamped, and t-type is presented. It has been revealed that upper–lower shoot-

through and full dc-link shoot-through can be easily incorporated by turning ON two power 

semiconductor switches. The proposed inverter topology can be modulated by any of the existing 

PWM techniques, and all current three-level ZSI configurations can be merged into this configuration 

by changing only the inverter switches. It is verified that the ULST scheme PD method offers better 

output voltage waveform, as it follows the nearest three vector approach, which is not possible in the 

FST scheme with the APOD carrier waveform. 

Conflicts of Interest: Declare conflicts of interest or state. 

References 

1. Peng,F. Z. Z-Source inverter. IEEE Trans. Ind. Appl. 2003, 39, 504–510. 

2. Loh, P.C.; Blaabjerg, F.; Feng, S.Y.; Soon, K.N. Pulse-Width modulated Z-source neutral-point-clamped 

inverter. Proc. IEEE APEC 2006, 431–437, doi:10.1109/APEC.2006.1620574. 

Figure 17. Switching pulses generated from TMS320F28335.

6. Conclusions

This paper presented a new configuration of three-level ZSI derived from a neutral point clamped
and conventional ZSI, which uses less component counts and associated gate circuitry as compared
to the existing topologies. The proposed converter offers a low-cost alternative to applications that
need to ride through frequent input voltage sags. A comparison between diode clamped, transistor
clamped, and t-type is presented. It has been revealed that upper–lower shoot-through and full
dc-link shoot-through can be easily incorporated by turning ON two power semiconductor switches.
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The proposed inverter topology can be modulated by any of the existing PWM techniques, and all
current three-level ZSI configurations can be merged into this configuration by changing only the
inverter switches. It is verified that the ULST scheme PD method offers better output voltage waveform,
as it follows the nearest three vector approach, which is not possible in the FST scheme with the APOD
carrier waveform.
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