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Abstract: As most of the lithostratigraphic reservoirs in China are thin interbeds, the study of seismic
responses in thin interbeds is an integral part of lithologic reservoir exploration. However, at present,
the research on seismic reflection coefficients of thin interbeds in exploration seismology is still
weak, which leads to the lack of theoretical basis for the subsequent interpretation of amplitude
variation with offset (AVO) related to thin interbed. To solve this problem, in this paper, we proposed
second-order approximate equations of the seismic reflection coefficients in thin-bed and thin-interbed
layers. Under the assumption of a small impedance contrast in layered media, we made a second-order
approximation with a more evident physical meaning to the reflection coefficient calculation method
proposed by Kennett. Then, based on the test of the single thin-layer theoretical model, it was
confirmed that the second-order approximation equation of the PP-wave (reflected compressional
wave) is accurate at incident angles less than 30◦, and that of the PS-wave (converted shear wave) is
accurate at wider incident angles. Finally, based on the single-thin-bed equations, the approximate
equations of seismic reflection coefficients in thin interbeds were established, the validity of which
was verified by the theoretical model. Our equations will be applicable to the calculation of PP- and
PS-wave reflection coefficients in thin interbeds where internal multiples are difficult to suppress and
transmission loss is hard to accurately compensate. This lays a theoretical foundation for improving
the seismic prediction accuracy of lithologic reservoirs.

Keywords: amplitude variation with incident angle (AVA); thin bed; thin interbed; second-order
approximation; reflection coefficient; seismic modeling

1. Introduction

The technology of amplitude versus offset (AVO) or amplitude versus incident angle (AVA)
has been used to predict rock properties and fluid in the subsurface reservoirs for decades [1–4].
Conventional AVO analysis is based on Zoeppritz equations or their approximations; however,
these equations are not suitable for thin-bed problems due to the mixing of the reflected waves,
converted waves, and internal multiples, which are hard to separate [5–7].

The problem of thin-bed layers has been studied for decades. Typically, a single layer with
a thickness of less than a quarter of a wavelength is defined as a thin layer in seismology [8,9].
Brekhovskikh [10,11] gave the displacement potential reflections and transmissions of plane waves
propagating in layered elastic media. Kennett [12] proposed the recursive algorithm for the calculation
of total reflection and transmission coefficients for a stack of layers, in which the unconditional stability
for all frequencies and slownesses was improved. The recursive algorithm solved the overflow
problems in the calculation of exponential functions for high frequencies and slownesses [13,14].
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Liu and Schmitt [15] proposed an exact analytical solution in the acoustic wave domain and simulated
the reflection amplitude and AVO responses of a single thin bed for arbitrary incident angles. Pan and
Innanen [6] simplified the elastic multi-layered medium equation based on Breshkovskikh’s equations
to analyze the relationship between the AVO effect and frequency in thin elastic media. Yang et al. [16]
derived thin-bed reflection and transmission coefficients defined in terms of displacements and
approximated them to be in a quasi-Zoeppritz matrix form under the assumption of a very thin
thickness for the thin bed. Yang et al. [17] proposed a low-order series approximation of thin bed for
PP-wave, and estimated the P-wave (compressional wave) impedance ratios and thickness. Lu et al. [18]
equated the set of thin interlayers with vertical transverse isotropic stratigraphy and used the reflection
coefficients of anisotropic media for AVO inversion study.

In general, the existing approximate equations of thin-bed reflection coefficients are based on
the assumption of small incident angle and weak impedance contrast. Additionally, these equations
are complicated and their physical meaning is not clear, so they do not easily provide theoretical
support for the subsequent AVO interpretation of single thin beds or thin interbeds. In this paper,
we performed a numerical simulation analysis on the single thin-bed model based on the Kennett
equation and found that the high-order multiples contribute less to the overall reflection coefficient of
the single thin bed. Thus, we deduced the second-order approximate equation with a more evident
physical meaning of the reflection coefficient in a single thin-bed, which is suitable for both PP- and
PS-waves. Further, we used a recursive algorithm [12] to extend the second-order approximation
equation of the thin-bed reflection coefficient to the thin-interbed model and verified its accuracy by
numerical simulation analysis.

2. Exact Reflection Coefficient Equation in Stratified Media

Our single thin-bed reflection coefficient equation is deduced based on the exact reflection
coefficient equation in stratified media proposed by Kennett [13,14]. For the stratified strata, as shown
in Figure 1, A and C are the top and bottom interfaces, respectively, and B is an interface inside the model.
The down-going wave (denoted by subscript ‘D’) propagates in area AC (the area between interfaces A
and C), generating reflected waves, converted waves, and internal multiples. These wavefields are
mixed together, and the up-going waves are denoted by subscript ‘U’. Kennett [13,14] derived the
following equation using the recursive algorithm to calculate the overall reflection and transmission
coefficient matrices of region AC:

RAC
D = rA

D+tA
UR̂BC

D [I− rA
UR̂BC

D ]
−1

tA
D, (1)

where rA
D and tA

D are the single-interface reflection coefficient and transmission coefficient matrices at
interface A, respectively:

rA
D =

[
rPP rPS

rSP rSS

]A

D
, (2)

tA
D =

[
tPP tPS

tSP tSS

]A

D
, (3)

where the superscripts ‘PP’, ‘PS’, ‘SS’, and ‘SP’ represent the four wave modes (P-wave reflected/

transmitted to P-wave, P-wave reflected/transmitted to shear wave, shear wave reflected/ transmitted to
shear wave, shear wave reflected/transmitted to P-wave,) of single interface reflections or transmissions,
which can be calculated by Zoeppritz equations [19]. R̂BC

D is obtained from the total reflection matrix
RBC

D of region BC by phase shift to the bottom of interface A:

R̂BC
D = ERBC

D E, (4)
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where E is the phase income for downward propagation through the layer. Furthermore,
the following exists:

E =

[
eiωqαh

eiωqβh

]
, (5)

where ω is the angular frequency; h indicates the thickness of region AB; qα and qβ are the vertical
slownesses for P- and S-waves (shear wave): qα =

√
1
α2 − p2,

qβ =
√

1
β2 − p2,

(6)

where α and β are the P- and S-wave velocities, respectively, and p is the horizontal slowness.
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3. Second-Order Approximate Reflection of Single Thin-Bed Media

3.1. Assumption of Small to Medium Impedance Contrast

We extracted a single thin bed model from the layered medium model shown in Figure 1. As shown
in Figure 2, Layers 1 and 3 are the adjacent overlying and underlying strata of the single thin bed Layer
2, respectively. According to Equation (1), the total reflection matrix at top interface 1 can be written as

R(1)
D = r(1)D +t(1)U R̂(2)

D

[
I− r(1)U R̂(2)

D

]−1
t(1)D , (7)

where R̂(2)
D is the phase-shifted reflection matrix relative to interface 2.

R̂(2)
D = E(2)r(2)D E(2), (8)

where E(2) is the phase income for downward propagation through the thin layer with the thickness h(2),

E(2) =

 eiωq
α(2)

h(2)

e
iωq

β(2)
h(2)

, (9)

the function of which is to move the reflection coefficient matrix r(2)D to the bottom of interface 1.
Using Taylor’s expansion approach, Equation 7 can be expanded as

R(1)
D = r(1)D +t(1)U R̂(2)

D

I + ∞∑
n=1

(
r(1)U R̂(2)

D

)nt(1)D , (10)
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where the total reflection matrix R(1)
D is in 2 × 2 form of

R(1)
D =

[
RPP RPS

RSP RSS

](1)
D

. (11)
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Figure 2. Schematic diagram of a single thin-bed model. r and t are the reflection and transmission
coefficient matrices, respectively. Superscripts ‘(1)’ and ‘(2)’ denote the top and bottom interface of the
single thin bed (Layer 2), respectively.

Since the current multi-component seismic exploration mainly uses reflected PP- and PS-waves,
in this paper, we will only study the reflection coefficients of the reflected PP- and PS-waves. According
to the different propagation paths, the PP- and PS-waves relating to R(1)

D can be divided into several
modes, as shown in Figures 3 and 4, respectively. The PP-waves in Figure 3 are divided into the
following modes based on the wave types in the propagation path: a. PP mode, b. PPPP mode, c. PSPP
mode, d. PPSP mode, e. PSSP mode, and f. internal multiples. Here, we take PPPPPP and PPPPPPPP
modes as examples. Similarly, according to the wave types in the propagation path, the PS-waves
in Figure 4 can be divided into the following modes: a. PS mode, b. PPPS mode, c. PSPS mode,
d. PPSS mode, e. PSSS mode, and f. internal multiples. Here, we take PSSSSS and PSSSSSSS modes
as examples.
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and dashed arrows, respectively.
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Figure 4. Reflected PS-wave modes in the thin-bed model. P- and S-wave paths are denoted by solid
and dashed arrows, respectively.

We grade the energy of the internal multiples and retain the multiples that contribute most to the
single thin-bed reflection.

Let the absolute amplitude of the incident wave be A0, and the absolute amplitudes of the
first-order multiples and second-order multiples in the single thin layer ( Layer 2 ) be A1 and A2,
respectively. According to the definition of reflection and transmission coefficients [20], the relationships
between A1, A2, and A0 are as follows:

A1= A0 · t
(1)
D · t

(1)
U · r

(2)
D ·

(
r(1)U · r

(2)
D

)
, (12)

A2= A0 · t
(1)
D · t

(1)
U · r

(2)
D ·

(
r(1)U · r

(2)
D

)2
. (13)

Similarly, the absolute amplitude An of the nth-order multiples is

An= A0 · t
(1)
D · t

(1)
U · r

(2)
D · δ

n. (14)

where
δ = r(1)U · r

(2)
D . (15)

If n = 0, Equation (14) represents the absolute amplitude of the primary reflected wave.
Because the seismic wave energy E is proportional to the square of amplitude and to the primary

wave energy EP, we obtain

EP ∝

(
A0 · t

(1)
D · t

(1)
U · r

(2)
D

)2
. (16)

Thus, for the energy of all internal multiples EM, we obtain

EM ∝ (A2
1 + A2

2 + · · ·+ A2
n + · · · ). (17)

Because the range of the reflection coefficients r(1)U and r(2)D is (−1, 1), δ < 1. If n approaches infinity,
Equation (17) is simplified to

EM ∝

(
A0 · t

(1)
D · t

(1)
U · r

(2)
D

)2 δ2

1− δ2 . (18)
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Then, the ratio between the energy of all internal multiples EM and the energy of the primary
wave EP is

EM/EP =

(
A0 · t

(1)
D · t

(1)
U · r

(2)
D

)2
δ2

1−δ2(
A0 · t

(1)
D · t

(1)
U · r

(2)
D

)2 =
δ2

1− δ2 . (19)

The ratio between the energy of first-order multiples EM1 and the energy of all multiples EM is

EM1/EM =

(
A0 · t

(1)
D · t

(1)
U · r

(2)
D

)2
· δ2(

A0 · t
(1)
D · t

(1)
U · r

(2)
D

)2
δ2

1−δ2

= 1− δ2. (20)

The ratio of the sum energy of the first-order and second-order multiples to the energy of all
multiples EM is

EM2/EM =

(
A0 · t

(1)
D · t

(1)
U · r

(2)
D

)2
· (δ2 + δ4)(

A0 · t
(1)
D · t

(1)
U · r

(2)
D

)2
δ2

1−δ2

= 1− δ4. (21)

Furthermore, the ratio of the sum energy of the first-order, second-order, and third-order multiples
to the energy of all multiples EM is

EM3/EM =

(
A0 · t

(1)
D · t

(1)
U · r

(2)
D

)2
· (δ2 + δ4 + δ6)(

A0 · t
(1)
D · t

(1)
U · r

(2)
D

)2
δ2

1−δ2

= 1− δ6. (22)

In the derivation of Equations (12)–(22), wave types are not distinguished, so they are applicable
to both PP- and PS-waves. Let the reflection coefficient be in the range of (−1, 1); the calculated energy
ratios are shown in Figure 5, from which we can conclude the following.

(1) The smaller the absolute value of the reflection coefficient, the smaller the ratio of EM/EP.
Figure 5a shows that, as the reflection coefficient decreases, EM/EP also decreases. When the absolute
value of the reflection coefficient is less than 0.3, the ratio of EM/EP will be less than 0.1, and the energy
ratio corresponds to the blue color in Figure 5a.

(2) The sum of the first- and second-order multiple energies occupies the major part of the internal
multiples energy. Figure 5b shows that when the absolute value of the reflection coefficient is less
than about 0.3, the energy of the first-order multiples occupies more than 95% of the multiple energy.
Besides, it can be seen from Figure 5c that when the absolute value of the reflection coefficient is less
than about 0.6, the sum energy of the first- and second-order multiples occupy more than 95% of the
multiple energy. In addition, Figure 5d shows that when the absolute values of the reflection coefficients
are less than about 0.75, the sum of the energy of the first-, second-, and third-order multiples occupies
more than 95% of the multiple energy. In actual seismic data, the absolute values of the reflection
coefficients of most strata are less than 0.6. Therefore, for most single thin layers, the contribution
of multiple waves in the overall reflection coefficient only needs to take the first- and second-order
multiples into account.

According to the energy ratio analysis, if the wave impedance contrast is very small—that is,
the reflection coefficient is also extremely small—the energy of internal multiples will be very weak.
In this case, internal multiples may not be considered, and then Equation (10) can be approximated as

R(1)
D = r(1)D +t(1)U R̂(2)

D t(1)D . (23)
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Under the condition of moderate impedance contrast (i.e., the absolute value of reflection coefficient
is less than 0.6), according to the energy ratio analysis, let n = 2 in Equation (10), and the second-order
approximation equation of the total reflection coefficient of the single thin-bed is

R(1)
D = r(1)D +t(1)U R̂(2)

D

[
I + r(1)U R̂(2)

D +
(
r(1)U R̂(2)

D

)2
]
t(1)D , (24)

the expansion of which is

R(1)
D = r(1)D +t(1)U R̂(2)

D t(1)D + t(1)U R̂(2)
D r(1)U R̂(2)

D t(1)D + t(1)U R̂(2)
D r(1)U R̂(2)

D r(1)U R̂(2)
D t(1)D . (25)
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As shown in Figure 6, in Equation (25), each item has a clear physical meaning. The details are
as follows:

(1) r(1)D : the reflection coefficient at the top interface (Interface 1) of the thin bed.

(2) t(1)U R̂(2)
D t(1)D : the primary reflection coefficient at the bottom interface (Interface 2) of the thin bed,

in which the down-going and up-going wave transmission losses (t(1)U and t(1)D ) at Interface 1
are considered;

(3) t(1)U R̂(2)
D r(1)U R̂(2)

D t(1)D : the first-order multiple reflection coefficient of the thin-bed. An additional
interaction in the thin-bed is introduced based on the primary reflection.

(4) t(1)U R̂(2)
D r(1)U R̂(2)

D r(1)U R̂(2)
D t(1)D : the second-order multiple reflection coefficient of the thin-bed.

An additional interaction in the thin-bed is added based on the first-order multiple reflections.
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It should be noted that the reflection coefficient calculated by Equation (24) is in the
slowness-frequency domain, and can be written as

R(1)
D (p,ω) = r(1)D (p)+t(1)U (p)R̂(2)

D (p,ω)
[
I + r(1)U (p)R̂(2)

D (p,ω) +
(
r(1)U (p)R̂(2)

D (p,ω)
)2

]
t(1)D (p). (26)

However, the reflection coefficient used in seismic inversion is mainly in the angle–time domain,
and thus a domain conversion is necessary. The entire domain transformation process can be divided
into the following two steps.

(1) Slowness to incident angle

According to Snell’s law, there is

p =
sinθ
α

, (27)

where θ is the incident angle. Given the incident angle and the P-wave velocity of the overlying
formation of the thin layer, the corresponding horizontal slowness can be calculated according to
Equation (27), and R(1)

D (ω,θ) is further obtained according to Equation (26).

(2) Frequency domain to time domain

Using an inverse Fourier transform, we can get the reflection coefficient in the intercept time and
angle (τ-θ) domain [14,21]:

R(1)
D (τ,θ) =

1
2π

∫
∞

−∞

R(1)
D (ω,θ)eiωtdω. (28)

Then, the AVA synthetic seismogram can be obtained by the convolution of the reflection
coefficients and wavelets:

Φ(τ,θ) = W ∗R(1)
D (τ,θ), (29)

where W denotes the wavelets.

3.2. Accuracy Analysis of Second-Order Approximation

We used a theoretical model to test the accuracy of our second-order approximate equation
(Equation (24)) of the single thin-bed reflection coefficient. In the model, the elastic parameters of
the first and third layers are fixed and those in the middle layer change with varying impedance
contrast. The parameters of the first and third layers are set as α1 = 3.094 km/s, β1 = 1.515 km/s,
ρ1 = 2.4 g/cm3, h1 = 150 m. The thickness of the thin bed is 8 m, and its elastic parameters are shown
in Table 1 with different P-wave impedance differences between the thin-bed layer and the top layer.
Besides, the S-wave velocities and densities of the thin-bed layer are converted from the P-wave
velocity according to Castagna equation [22] and Gardner equation [23], respectively. In the numerical
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simulation, the Ricker wavelets with a dominant frequency of 40 Hz and 30 Hz are used for PP- and
PS-waves, respectively [24].

Table 1. Parameters of the thin-bed model, where ∆I is the impedance contrast between the thin bed
and its upper layer.

∆I (km/s·g/cm3) α2 (km/s) β2 (km/s) ρ2 (g/cm3)

5 4.817 2.981 2.579

4.5 4.662 2.846 2.558

4 4.505 2.711 2.536

3.5 4.346 2.574 2.514

3 4.186 2.437 2.490

2.5 4.025 2.298 2.466

2 3.862 2.157 2.441

1.5 3.697 2.015 2.414

1 3.531 1.871 2.386

0.5 3.362 1.726 2.357

−0.5 3.018 1.430 2.295

−1 2.842 1.371 2.261

−1.5 2.664 1.286 2.224

−2 2.483 1.198 2.185

−2.5 2.298 1.109 2.144

−3 2.109 1.019 2.098

−3.5 1.916 0.926 2.048

−4 1.719 0.831 1.993

Taking ∆I = −1.5 as an example, Figures 7 and 8 display the angle gathers of PP- and PS-waves,
respectively. It can be seen from Figures 7e and 8e that the difference between the angle gather
including all the reverberations and the second-order approximation is very small. Besides, Figures 7d
and 8d show that the second-order approximate angle gather contains multiples, which are aliased
together with the primary waves. It is difficult for the existing technology to eliminate these internal
multiples without affecting the energy of primary reflections.

To further quantify the accuracy of the second-order approximation equation, we extract the
amplitude along with the top interface of the thin bed, where the amplitude of the second-order
approximation is A2, and the amplitude of the data containing all reverberations is Aall. We define the
amplitude change ratio Ara as

Ara =
Aall −A2

Aall
. (30)

Figure 9 shows the change of Ara with the incident angles of PP- and PS-wave corresponding to
the thin-bed model shown in Table 1, from which we can obtain the following rules:

(1) With the increase of impedance contrasts, Ara also tends to increase.
(2) If the incident angle exceeds 30◦, the error will rapidly increase when using the second-order

approximation equation to calculate the PP-wave reflection coefficient. For the PP-wave, initially,
Ara is small and increases very slowly with the increasing angle, but after the angle exceeds 30◦,
Ara increases rapidly.

(3) The Ara of the PS-wave decreases as the incident angle increases, which shows that the second-order
approximation equation is suitable for calculating PS reflections at large angles. However, if the PP-
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and PS-wave are jointly used for seismic inversion, the applicable angle range of the second-order
approximate equation needs to take the intersection of PP- and PS-waves.
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In order to test the influence of frequency on the second-order approximate equation, we used
waves with different wavelengths (frequencies) to test the single thin-bed model. As shown in
Figures 10 and 11, taking ∆I = –1.5 as an example, we calculated the modulus and phase angles of
the second-order approximate reflection coefficients of PP- and PS-waves in the frequency domain
based on Equations 26 and 27, and compared them with the exact reflection coefficients calculated by
the Kennett equation (Equation 7). The wavelengths of the incident waves are set as λ = h, λ = 2h,
λ = 4h, λ = 8h, λ = 10h, λ = 20h, λ = 30h, λ = 40h. For the PP-wave, the corresponding frequencies
are 333.01 Hz, 166.50 Hz, 83.25 Hz, 41.63 Hz, 33.30 Hz, 16.65 Hz, 11.10 Hz, and 8.33 Hz respectively;
for the PS-wave, the corresponding frequencies are 216.78 Hz, 108.39 Hz, 54.19 Hz, 27.10 Hz, 21.68 Hz,
10.84 Hz, 7.23 Hz, and 5.42 Hz, respectively.

Due to the low impedance contrast of the model, the results calculated by the second-order
approximate equation and the Kennett equation are very close. The relative percentage errors are
shown in Figure 10c,d and Figure 11c,d. The critical angle of the model is about 59.4◦. It can be seen
that the error is relatively small when the incident angle is within the critical angle. Especially when
the thickness is less than half a wavelength, the relative error is almost zero. If the angle of incidence is
greater than the critical angle, the error of the second-order approximation equation is relatively large.
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Figure 11. Accuracy analysis of the second-order approximate reflection coefficient of the PS-wave in
the frequency domain: the modulus (a) and phase angle (b) of the second-order approximate reflection
coefficient, the relative modulus error (c), and the relative phase error (d).
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4. Second-Order Approximate Reflection of Thin-Interbed Media

4.1. Assumption of Small to Medium Impedance Contrast

Since thin-interbed layers are widespread in the Earth, such as interbeds formed by thin sand and
thin mud, it is necessary to expand the approximate equation from the thin bed to thin interbed signal.
If several thin layers with small impedance contrasts are superposed together, a set of thin interbeds
can be formed. We chose a recursive algorithm [12–14] to generate the response of a thin-interbed
medium recursively by adding one layer at a time (Figure 12). Since there is no reflection under
the bottom interface, the total reflection coefficient of the bottom R(n+1)

D is the same as the reflection

coefficient of the single interface r(n+1)
D :

R(n+1)
D = r(n+1)

D =

[
rPP rPS

rSP rSS

](n+1)

D
. (31)

According to Equation (24), the second-order approximate total reflection coefficient at the top of
the nth layer is

R(n)
D = r(n)D +t(n)U R̂(n+1)

D

[
I + r(n)U R̂(n+1)

D +
(
r(n)U R̂(n+1)

D

)2
]
t(n)D , (32)

where R̂(n+1)
D = E(n)R(n+1)

D E(n).
The second-order approximate total reflection coefficient at any interface K in the thin interbed

can be derived by the recursive algorithm:

R(k)
D = r(k)D +t(k)U R̂(k+1)

D

[
I + r(k)U R̂(k+1)

D +
(
r(k)U R̂(k+1)

D

)2
]
t(k)D , k ∈ [1, n], (33)
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4.2. Accuracy Analysis of Second-Order Approximation

Compared with the single thin-bed model, the thin-interbed model will produce more complex
internal multiples, which cannot be discriminated by the reflection coefficient curve. Therefore, we will
directly use the angle gather to analyze the accuracy of the second-order approximate equation of
the thin-interbed model. The thickness of a single thin bed in the thin-interbed model is set as 6 m,
and the elastic parameters of the thin-interbed model are shown in Table 2. In the numerical simulation,
we used the Ricker wavelet with dominant frequencies of 40 Hz and 30 Hz for PP- and PS-waves,
respectively. The angle gathers of the PP- and PS-waves of the thin-interbed model are shown in
Figures 13 and 14. In order to avoid wide-angle reflection, the incident angle range is set to 0◦–65◦.
Figures 13 and 14 reveal that:

(1) The simulated angle gather of the second-order approximate equation is very similar to the angle
gather including all reverberations (Figures 13e and 14e).

(2) The second-order approximation equation effectively calculates the internal multiples (Figures 13d
and 14d), and these multiples are aliased together with the primary wave. It is difficult for existing
technology to eliminate these internal multiples without affecting the energy of primary reflections.

(3) As can be seen from Figures 13d and 14d, for PP-waves, the internal multiples have a more
significant effect on the reflection coefficient at small to medium angles, and the effect decreases
as the incident angle increases. For PS-waves, the internal multiples have a large effect on the
reflection coefficient at medium to large angles, and the effect becomes more significant as the
incident angle increases.
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Figure 14. PS-wave angle gathers of the thin-interbed model: (a) primary wave angle gather, 
(b) angle gather including first- and second-order multiples, (c) angle gather including all 
reverberations, (d) difference between b and a, (e) difference between c and d. The red curve 
donates the S-wave velocity. 
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Table 2. Elastic parameters of the thin-interbed model.

α (km/s) β (km/s) ρ (g/cm3) h (m)

3.094 1.515 2.400 150

3.048 1.595 2.230 6

3.146 1.554 2.410 6

3.048 1.595 2.230 6

3.146 1.554 2.410 6

3.048 1.595 2.230 6

3.146 1.554 2.410 6

3.048 1.595 2.230 6

3.146 1.554 2.410 6

3.094 1.515 2.400 150

4.3. Comparison With Field Multicomponent Data

In order to verify the validity of the second-order approximate equation, we simulated the angle
gather of field multicomponent data in the Sichuan Basin, West China [24]. Figures 15a and 16a are
the angle gather of field data at the well location for PP-wave and PS-wave, respectively. Besides,
in order to compare the simulation accuracy, we simulated the angle gathers using exact Zoeppritz
equations and second-order approximate equation. The seismic wavelets used for simulation are
statistical wavelets extracted from the corresponding filed data [24]. Moreover, the simulation angle
gathers are shown in Figures 15 and 16. In summary, the comparison with field data reveals that:

(1) The simulated angle gathers based on the second-order approximate equation will be more
similar to the field data. For example, the field angle gather in the green box in Figure 15a has a
phase inversion phenomenon, but this phenomenon only appears in the simulated angle gather
based on the second-order approximate equation.
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(2) For thin interbeds, the simulation results of the second-order approximate equation contain richer
information. As shown in Figure 16, the strata in the green box is thin interbeds. Moreover,
the simulation results based on the second-order approximate equation contain internal multiples
and are more similar to the field data.
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incident angle (AVA) data, (b) synthetic PP AVA data based on Zoepprotz equations, (c) synthetic
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5. Discussion

The reflection coefficient equations of the thin-bed and thin-interbed media discussed in this
paper are approximated based on the Kennett equation. Our second-order approximate equations
have no layer thickness limitation since there is no layer thickness limitation in the Kennett equation.
For thick layers, multiples can be suppressed by the predictive deconvolution method. However,
for thin-bed and thin-interbed layers, internal multiples are aliased together with primary waves, and it
is difficult for the existing technologies to eliminate these internal multiples without affecting the energy
of primary reflections. Therefore, for the inversion of a single thin bed and thin interbed, internal
multiples must be considered, since this has a significant impact on the overall reflection coefficient.

During the analysis of the single thin-bed model, we found that if the impedance contrast is too
large, the error of the approximate equation will increase. Therefore, the approximate equation of the
thin-interbed is not suitable for strata with a large impedance contrast. Besides, although there are
only two sets of interbed elements in thin-interbed model testing, the approximate equation can be
applied to multiple sets of interbed elements.

We did not consider the influence of the incident angle during the derivation of the approximate
equation. However, we found that the approximate equation of the PP-wave will have higher accuracy
in the range of small and medium angles in the model tests. On the contrary, the approximate equation
of the PS-wave can be applied to a broader range of incident angles. However, in order to cooperate
with the PP-wave, we limited the application scope of the PS-wave approximation equation to the
range of the PP-wave approximation equation. Most of the actual seismic data are acquired within
a medium incident angle, because a large incidence angle tends to produce wide-angle reflections.
In addition, the distortion caused by normal moveout correction is severe at large incident angles.
Thus, reflections at large angles are often removed during data processing. Therefore, the second-order
approximate equation is suitable for most seismic data.

The single thin-bed models and thin-interbed models can be divided into multiple types according
to the strata parameters and thicknesses. The conclusions and phenomena we discussed above are
only for the models involved in this paper. Therefore, there may be different phenomena in other
models, which we will test in the future work.

Forward modeling using our equation is implemented in the frequency domain, and then the
seismic record can be obtained by the conversion to the time domain. Thus, we should consider the
time-frequency conversion when using our equations for AVO inversion, and the time consumption of
this process is relatively large. In the next study, we will focus on designing a fast algorithm for our
equation to improve the efficiency of AVO inversion.

In the numerical simulation analysis of the thin-interbed model, the thickness of each thin bed
is set to a constant, and the elastic parameters of thin beds with the same lithology are also set to be
consistent. Therefore, this model is idealized by us, but it does not affect the accuracy analysis of the
second-order approximate reflection coefficient equations. The thickness of each thin bed in the actual
thin-interbed strata is different, and the elastic parameters of thin beds with the same lithology may
vary significantly. The anomalous seismic responses caused by the changes of physical properties of a
thin bed in thin interbeds will be further studied in the future.

6. Conclusions

We analyzed the relationship between the energy of internal multiples and primary waves based
on the single thin-bed model. Then, we proposed the second-order approximate reflection coefficient
equations with a clear physical meaning for the single thin-bed model. For PP-waves, the approximate
equation has a high accuracy at small to medium angles (≤30◦), while for PS-waves, the equation can
be applied to a larger range of angles. Under the assumption of weak impedance contrast, we extended
the second-order approximate equation of the single thin-bed model to the thin-interbed model and
tested its accuracy through numerical simulation analysis. At present, it is challenging to remove
internal multiples in thin interbeds without affecting primary waves. In this case, the second-order
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approximate reflection coefficient equations can be used to calculate the total reflection coefficients
of thin interbeds more conveniently and efficiently, which is conducive to improving the accuracy of
seismic inversion.
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