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Abstract: To simulate aircraft thermal anti-icing systems and solve the conjugate heat transfer of
air-droplet flow and solid skin, the heat and mass transfer model of the runback water on the
anti-icing surface was combined with the heat conduction equation of the skin by loosely coupled
methods. According to the boundary conditions used for the runback water conservation equations,
two loose-coupling methods for the heat exchange between the runback water and the solid skin
were developed based on surface heat flow and surface temperature, respectively. The anti-icing and
ice accretion results of a NACA 0012 electro-thermal anti-icing system were obtained by the two
loose-coupling methods. The heat flow-based method directly solves the thermodynamic model
of the runback water without any extra assumptions, but the convergence rate is relatively slow.
On the other hand, the temperature-based method achieves higher calculation speed, but the freezing
point is extended to an artificial temperature range between water and ice phases. When the value
of the artificial temperature range is small, the results obtained by the temperature-based method
are consistent with those of the heat flow-based method, indicating that the effect of freezing point
extension can be ignored for thermal anti-icing simulation. Furthermore, the solutions of the two
methods are in acceptable and comparable agreement with the experimental and simulative results
in the literature, confirming their feasibility and effectiveness. In addition, it is found that the ice
thicknesses and ice shapes rise obviously near the runback water limits as a result of the transverse
heat conduction of the solid skin.

Keywords: aircraft ice accretion; thermal anti-icing system; heat and mass transfer; conjugate heat
transfer; loose-coupling method

1. Introduction

When an aircraft flies in the cloud under icing conditions, its windward surfaces collect
super-cooled water droplets, and ice accretion may occur [1]. Aircraft ice accretion has a significant
effect on aircraft performances. It can cause increased drag, a decrease in lift and stall angle [2], and
even lead to serious flight accidents [3]. Therefore, anti-icing or de-icing systems are usually equipped
in aircrafts to protect critical surfaces and ensure flight safety [4].

Many kinds of ice protection devices have been developed, in which thermal anti-icing systems
are traditional and the most prominent one used in modern aircrafts [5]. Currently, due to the low
energy consumption, more and more attention has been paid to ice-phobic or super-hydrophobic
coatings for aircraft ice protection. However, those coatings cannot prevent icing completely in practice,
and they should be combined with thermal anti-icing systems to prevent ice formation [6]. In a thermal
anti-icing system, the thermal energy provided by hot air [7] or electrical heaters [8] is conducted
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through aircraft skin to heat the protected surfaces and evaporate the impinging water droplets. When
heating power density is insufficient to evaporate all the water droplets impinged on the local skin
surface, a runback water film forms and flows backwards thanks to the aerodynamic forces [9]. The
anti-icing characteristics depend not only on the air-water droplet flow parameters but also on the
internal skin heat conductions. The anti-icing state can be divided into three categories according to
the amount of energy applied [10]: (1) evaporative anti-icing: the impinging water evaporates in the
heating area; (2) running wet anti-icing: the impinging water runs back behind the ice protected area,
and freezes into ice ridges; (3) icing: the impinging water freezes with the anti-icing system turned off.
To predict the temperature distribution on the anti-icing surface and analyze the system performances,
a coupling method is necessary for the conjugate heat transfer of the external air flow, the internal
skin heat conduction and the thermodynamics of the runback water on the aircraft surface. Unlike
traditional conjugate heat transfer problems, the heat exchange between fluid and solid domains is
affected by the runback water film when it flows backwards, evaporates, and freezes.

Since the effects of surface temperature and ice shape on external air flow and water droplet
impact can be neglected, the convective heat transfer coefficient is assumed unchanged during the
iteration process [11], and the anti-icing simulation is reduced to the coupled analysis of the runback
water thermodynamics and the internal heat conduction. The heat transfer in the solid skin is generally
determined by the thermal conduction differential equation, while the thermodynamic models of
the runback water consist of Messinger [12], Meyer [13], Shallow water [14], rivulets [15], and so
on. The coupling methods are critical for thermal anti-icing simulations to ensure the convergence
of both temperature and heat flow at the runback water film-solid interface. Nearly all the ice
accretion and anti-icing codes, such as LEWICE [16], FENSAP-ICE [17], ONERA [18], CANICE [19],
and ICECREMO [20], use loose-coupling methods to perform the conjugate heat transfer solution [21].
Considering the runback water thermodynamics as an extra calculation domain, the loose-coupling
method solves the control equations of the water film and solid domains individually to provide
interface parameters for each other [22]. Exchanging boundary parameters continuously and iteratively,
the solutions in both domains are carried out alternately until the temperature and heat flow in their
interface converge. According to the parameters offered to the runback water equations, there are two
loose-coupling methods: heat flow-based method and temperature-based one.

The heat flow-based method directly solves the thermodynamic model of the runback water
under the condition that the heat flow at the water film-solid interface is known, and the calculation
results are used as the boundary condition for the solid heat conduction equation, so as to update
the heat flow of the interface to complete the conjugate heat transfer simulation. According to the
parameters transferred between the water film and solid domains, various approaches, with different
computational stabilities and convergences, have been established to implement the heat flow-based
method for thermal anti-icing simulations. FENSAP-ICE [22] extracts the temperature at the water
film-solid interface from solid heat conduction to calculate the surface heat flow with the help of
a reference temperature and a local heat transfer coefficient. Then, the temperature solved by the
thermodynamic model of the runback water is converted to a Robin boundary condition for the
temperature update in the solid domain. By adopting the “improved Schwarz method,” Chauvin [23]
took the same Fourier type boundary condition at the interface for both internal and external heat
transfer calculations, and the surface heat flux was updated by its relationship with the temperature
difference between the two adjacent domains. CANICE [19], Zhou [24] and Mu [25] directly used
the surface heat flow from the solid heat conduction to solve the runback water equations, and the
obtained temperature was taken as a Dirichlet boundary condition for the solid skin to update the
interface heat flow.

On the other hand, the temperature-based method generally obtained the anti-icing heat load
corresponding to the interface temperature by solving the conservation equations of the runback water
film. The heat load is used as a Neumann boundary condition [26] or converted to a Robin boundary
condition [27] for the solid skin to update its temperature field. However, when the surface temperature
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is at the freezing point, part of the runback water on the anti-icing surface freezes, but the ratio of ice to
water is impossible to be determined under this temperature condition. LEWICE [16] assumes that
water solidification occurs over a small artificial temperature range instead of at the freezing point, and
then defines a freezing coefficient related with the temperature range between water and ice phases to
calculate the heat load. Using the temperature-based method with this assumption, Domingos [28]
simulated a hot-air anti-icing system, and Shen [29] calculated the temperature variations of an
electro-thermal de-icing system. However, the influence of the freezing point extension on thermal
anti-icing simulations has not been analyzed, and the value of the artificial temperature range has not
been given in those articles, either.

At present, heat flow-based and temperature-based loose-coupling methods are widely used for
thermal anti-icing simulation, and various implementation approaches have been developed. However,
little attention has been paid to the comparisons and features of the two methods. With the same
thermodynamic model of runback water and solid heat conduction equation, two loose-coupling
methods are established based on anti-icing surface heat flow and surface temperature, respectively.
The two methods are then used for the simulations of an electro-thermal anti-icing system under an
evaporative anti-icing condition, a running wet anti-icing condition, and an icing condition to compare
their characteristics and analyze the effect of the freezing point extension.

2. Heat and Mass Transfer Model

The runback water film, formed on the anti-icing surface after the impact of the super-cooled
water droplets, is analyzed following the traditional Messinger [16] model. As shown in Figure 1, the
mass flows in a control volume (CV) on the outer skin surface include: impinging water flow

.
mimp,

evaporative water flow
.

mevap, and runback water flows entering
.

min and leaving
.

mout the current
CV. Correspondingly, the heat flows on the anti-icing surface consist of: heat flow brought by the
impinging water droplets Qimp, evaporative heat flow Qevap, heat flows carried by the runback water
inflow Qin and outflow Qout, convective heat flow of the external air Qc, and heat flow conducted from
the internal solid skin Qn. When the heating power density is small and the anti-icing capacity of the
thermal system is insufficient, ice accretion may occur on the outer skin surface, along with mass flow
of the frozen water

.
mice, and heat flow released by the frozen water Qice.
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Figure 1. Heat and mass flows of the runback water in a control volume. 

Thermal anti-icing is a steady heat and mass transfer process, and all the non-frozen water flows 

outwards of the current CV according to the Messinger model. Based on mass and energy 

conservation laws, we obtain the following equation [16]: 

{
�̇�imp + �̇�𝑖𝑛 = �̇�evap + �̇�out + �̇�ice

𝑄imp + 𝑄in + 𝑄𝑛 + 𝑄ice = 𝑄evap + 𝑄out + 𝑄𝑐
 (1) 

Figure 1. Heat and mass flows of the runback water in a control volume.

Thermal anti-icing is a steady heat and mass transfer process, and all the non-frozen water flows
outwards of the current CV according to the Messinger model. Based on mass and energy conservation
laws, we obtain the following equation [16]:
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{ .
mimp +

.
min =

.
mevap +

.
mout +

.
mice

Qimp + Qin + Qn + Qice = Qevap + Qout + Qc
(1)

External air convective heat transfer is the only heat dissipating term when there is no water
in the CV, and the heat flow can be calculated by the convective heat transfer coefficient hs and the
temperature difference between skin surface and air [29]:

Qc = hs · (Ts − Tad) · ∆s (2)

where Ts is the surface temperature, Tad is the reference surface temperature calculated by the airflow
solver based on an adiabatic boundary condition, and ∆s is surface length of the CV.

The motions of the super-cooled water droplets can be calculated with the help of the Lagrangian
or Eulerian method, and the impinging water flow is obtained by:

.
mimp = β ·U∞ · LWC · ∆s (3)

where β is the local collection efficiency and LWC is the liquid water content.
With the assumption that the enthalpy of the liquid water at the freezing point is zero, the heat

flow brought by the impinging water droplets is obtained by:

Qimp =
.

mimp ·

[
U2
∞

2
+ cp,w·(T∞ − Tref)

]
(4)

where Tref is the freezing point temperature, 273.15 K.
When dry air flows through wet surface, diffusion process of water molecules occurs under the

concentration difference, and the evaporative water flow can be obtained by the Chilton-Colburn
analogy theory [23]:

.
mevap = ∆s ·

hs

cp,air
·

(Pr
Sc

) 2
3
·

Mv

Mair
·

[
pv,sat(Ts) − pv,e

pe − pv,e

]
(5)

where pv,sat(Ts) is the saturated evaporative pressure at the surface temperature Ts [21].
At the same time, the heat flow taken away by the evaporative water is: Qevap =

.
mevap ·

[
isv + cp,ice·(Ts − Tref) − ils

]
Ts < Tref

Qevap =
.

mevap ·
[
ilv + cp,w · (Ts − Tref)

]
Ts ≥ Tref

(6)

In addition, the heat flow released by the frozen water includes the latent heat and the sensible heat:

Qice =
.

mice ·
[
ils + cp,ice · (Tref − Ts)

]
(7)

Lastly, the sensible heat flows carried by the runback water can be written as:

Qin =
.

min · cp,w · (Tin − Tref) (8)

Qout =
.

mout · cp,w · (Ts − Tref) (9)

For the CV at the stagnation point, no runback water enters, and
.

min = 0. For other CVs, the
amount of the inflow water is equal to the vale leaving the upstream CV. Therefore, the solution of the
runback water is performed from the stagnation point backwards along either side so that

.
min is a

known quantity at each location [16]. However, there are four unknowns, Ts, Qn,
.

mout, and
.

mice, in the
two conservation equations for a CV on the anti-icing surface. Two additional conditions are needed
to close the heat and mass transfer model. One should be the parameter provided by the adjacent
solid skin domain, and the other is the constraint between the freezing point and the phase state of
runback water.
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3. Coupling Methods and Solution Procedures

As described in the Introduction, the calculations of the external air-droplet flow and the
air convective heat transfer coefficient were separated from the coupled analysis of the runback
water thermodynamics and the solid skin heat conduction. In this paper, the external air flow
and temperature fields were obtained by Reynolds-averaged Navier-Stokes equations (RANS) with
the Spalart-Allmaras (S-A) turbulence model. An ideal gas was defined for the external air. The
pressure-far-field boundary condition was used for the airflow inlet, while no slip wall was set for the
anti-icing surface. The maximum value of y+ in the anti-icing area was about 0.3, which satisfies the
S-A model requirement of y+ < 1 for boundary layer calculation. Moreover, the mesh independence
was satisfied for convective heat transfer coefficients, and the check procedure was the same as that in
the reference [30]. The air flow and water droplet motion were considered to be one-way coupled,
ignoring the influence of droplet on airflow field, and an Eulerian method [31] was used to get the
local water droplet collection efficiency.

With the external air and water droplet results, the loose coupling method was adopted to perform
the conjugate heat transfer solution of thermal anti-icing system. The runback water thermodynamic
model was coupled with the heat transfer in the solid skin, and the heat conduction differential equation
in the skin can be written as:

ρcp
∂T
∂t

= ∇ · (λ∇T) + S (10)

To solve this equation, the boundary condition of the outer skin surface was needed, and could be
obtained by the thermodynamic model of the runback water. Due to the parameters offered to the
heat and mass transfer equations of the runback water, the two loose-coupling methods below were
developed with different solution procedures.

3.1. Heat Flow-Based Coupling Method

Since heating power is transferred to the outer skin surface for ice protection in a thermal anti-icing
system, the surface heat flow Qn can be obtained from the temperature field of the solid skin to solve
the runback water conservation equations; the surface temperature was taken as a Dirichlet boundary
condition of the heat conduction equation to update the skin temperature field and the surface heat
flow. In this heat flow-based coupling method, the constraint between the surface temperature and
solid-liquid phase state can be expressed as follows: (1) When Qn is large enough, the anti-icing surface
temperature is higher than the freezing point, and there is no ice layer accumulated (

.
mice = 0); (2) When

Qn is small, its temperature is lower than the freezing point, and the water is completely frozen with no
runback water flowing out (

.
mout = 0); (3) Otherwise, the surface temperature is at the exact freezing

point under moderate heat flow, and the mass flow of the frozen water can be determined by Qn. With
this constraint, the unknowns in the runback water equations are reduced to two, and the solution
is unique.

However, it can be seen that the mass and energy conservation equations are implicit functions
when surface temperature is solved by the heat flow-based coupling method. It is difficult to identify the
solid-liquid phase state during the iterative solution of the implicit functions. To avoid computational
divergence, the surface heat flow Qn is evaluated to predetermine the water phase state before the
runback water solution, as shown in Figure 2. With the surface temperature set to 273.15 K, the critical
heat flows under which all water freezes and all water remains liquid were calculated, respectively [24].
When all water freezes at 273.15 K, the corresponding heat flow Qn1 is the critical point that the ice
layer begins to melt, which can be obtained by:{ .

mice =
.

mimp +
.

min −
.

mevap

Qn1 = Qc + Qevap −Qimp −Qin −Qice
(11)

When all water remains liquid at 273.15 K, the corresponding heat flow Qn2 is the critical value
corresponding to when the liquid water begins to freeze, which can be calculated by:
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{ .
mout =

.
mimp +

.
min −

.
mevap

Qn2 = Qc + Qevap + Qout −Qimp −Qin
(12)

For a specific heat flow Qn transferred from the solid heat conduction, the water phase state can
be determined by comparing these two critical heat flows: If Qn > Qn2, the heat flow is large with no
water freezing, and Ts > 273.15 K; If Qn < Qn1, the heat flow is small and Ts < 273.15 K, leading all
the water to freeze; If Qn1 < Qn < Qn2, water and ice coexist on the surface, and Ts = 273.15 K. Then,
the thermodynamic model of the runback water is solved separately. During the iterations between
the runback water and the solid skin, the corresponding surface temperature is regarded to be the
final thermal anti-icing temperature when the deviation of the surface heat flow is small enough. The
solution procedure of this heat flow-based coupling method is presented in Figure 2.
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3.2. Temperature-Based Coupling Method

Assuming that the thermal anti-icing system meets the anti-icing temperature requirement, the
mass and energy conservation equations of the runback water can be solved according to the known
surface temperature, and the corresponding anti-icing heat load can be obtained according to this
surface temperature. Then, the heat load is taken as a Neumann boundary condition for the solid
skin, and the anti-icing surface temperature can be updated by solving the heat conduction differential
equation. Calculation converges when the temperature deviation between the iterations reaches a
very small value. This coupling method extracts the anti-icing surface temperature Ts to calculate the
runback water model, and is called the temperature-based coupling method.

Since the surface temperature is known in this method, the solid-liquid phase state can be
determined directly. When Ts > 273.15 K, there is no icing, and

.
mice = 0. Moreover, when Ts < 273.15 K,

the surface water is completely frozen; thus, there is no water flowing out of the CV, and
.

mout = 0.
In both conditions, two unknowns can be reduced for the conservation equations, and the heat and
mass transfer model of runback water can be solved to obtain the anti-icing heat load. In addition,
since heat load is an explicit function of temperature, the solution of the mass and energy conservation
equations is performed without iteration, resulting in little calculation time.

However, when Ts = 273.15 K, part of the runback water freezes, and there are still three unknowns,
Qn,

.
mout, and

.
mice, in the two equations. It can be explained that the ratio of ice to water in the CV is
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impossible to be determined at the surface temperature of 273.15 K, so that the anti-icing heat load
cannot be obtained. Under this circumstance, the phase transformation process of the runback water is
regarded to occur within an artificial temperature range ∆T, instead of at the exact freezing point [16].
With this assumption, the freezing point temperature is extended from 273.15 K to the water-ice mush
zone [273.15 K, 273.15 K+∆T].

The frozen water in the CV is defined as the freezing coefficient f, as expressed as:

f =
.

mice
.

min +
.

mimp −
.

mevap
(13)

Following the approaches of LEWICE [16] and Domingos [28], f is related to ∆T:

f = 1−
Ts − Tre f

∆T
(14)

Then, the equations to be solved for the mush zone become:
Qimp + Qin + Qn + Qice = Qevap + Qout + Qc

.
min +

.
mimp =

.
mevap +

.
mout +

.
mice

.
mice · ∆T =

( .
min +

.
mimp −

.
mevap

)(
Tre f − Ts + ∆T

) (15)

Consequently, the temperature range above the freezing point becomes Ts > 273.15 K + ∆T, and
the anti-icing heat load at any surface temperature can be obtained by the method of explicit functions.
The solution process of the runback water model and the specific procedure of the temperature-based
coupling method are presented in Figure 3.
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Since the surface temperature corresponds to the heat flow on a one-to-one basis without any
extra assumptions in the heat flow-based coupling method, its results fully satisfy the conversation
equations of runback water and the solid heat conduction equation, and its solution is considered to
be accurate. To study the effect of the freezing point extension, the results of the temperature-based
coupling method are compared with those of the temperature-based one. In addition, the parameter of
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the artificial temperature range ∆T between water and ice phases is analyzed in this work, and the
values of 0.01 K, 0.1 K, and 1 K are used for the simulations in the temperature-based method.

4. Geometry and Conditions

To focus on the anti-icing coupling methods, an electro-thermal anti-icing system of NACA 0012
airfoil is chosen for numerical simulations. The experimental results of the system can be found in the
reference [10], and these have been used to validate many anti-icing codes. Case 22A and Case 22B
were chosen for anti-icing calculations. Despite sharing the same external airflow and water droplet
conditions, Case 22A is an evaporative anti-icing condition under which the water droplet totally
evaporates in the ice protected area, while Case 22B is a running-wet anti-icing condition and the
runback water would turn into ice on the skin surface after flowing out of the heated zone. Spray time
was defined for Case 22B to obtain the runback ice shape. In addition, an icing condition with the
anti-icing system turned off was also analyzed, in which the chord length is different from that under
the anti-icing conditions. The external conditions of Run 401 were selected from the reference [32] for
the icing simulation. The specific parameters relating to external air flow and water droplet motion for
all three cases are listed in Table 1.

Table 1. External airflow and icing conditions.

Case 22A Case 22B Run 401

Chord length, m 0.9144 0.9144 0.5334
U∞, m/s 44.7 44.7 102.8
T∞, ◦C −7.6 −7.6 −7.78

LWC, g/m3 0.78 0.78 0.55
Diameter, µm 20 20 20

Angle of attack, ◦ 0 0 3.5
Spray time, s / 420 420

The thermal anti-icing system was attached to the leading edge to protect the windward surface,
since the water droplets usually impact there. Seven heating elements were arranged along the chord
direction inside the skin, as shown in Figure 4. The heating power of each element can be controlled
individually. Table 2 lists the specific position and heat flux for each electrical heating element, where
the dimensionless surface distance s/c is measured from the leading edge of the airfoil. The value of s/c
is negative on the lower surface and positive on the upper one.
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Table 2. Position and heat flux of the heating element.

Heating Element Start_s/c End_s/c Heat Flux, kW/m2

Case 22A Case 22B Run 401

F −0.1024 −0.0607 9.92 2.635

0

D −0.0607 −0.0329 10.23 2.945
B −0.0329 −0.0051 32.5 4.03
A −0.0051 0.0157 46.5 4.805
C 0.0157 0.0435 18.6 2.945
E 0.0435 0.0713 6.98 3.41
G 0.0713 0.1129 10.24 2.325

As can be seen from Figure 4, the solid skin is composed of six layers, and the material properties
of the multi-layered structure are listed in Table 3. The thickness of each layer presented in the table is
the value when the chord length is 0.9144 m, and it changes proportionally for Run 401. The thickness
and thermal resistance of the outer skin are small, while those of the inner skin are large. Therefore,
most of the electrical energy is conducted outwards for anti-icing, and the inner surface of the solid
skin can be set to be adiabatic.

Table 3. Material properties of the multilayer skin [10].

Material λ, W/m/K ρ, kg/m3 cp, J/kg/K Thickness, mm

Heating Element (alloy 90) 41.018 8906.26 385.112 0.0127
Erosion Shield (SS 301 HH) 16.269 8025.25 502.32 0.2032

Elastomer (COX 4300) 0.256 1383.99 1255.8 0.2794
Fiberglass/Epoxy Composite 0.294 1794.07 1569.75 0.889

Silicone Foam Insulation 0.121 648.75 1130.22 3.429

5. Result and Discussion

5.1. Results of Case 22A

Local water droplet collection efficiency β of the NACA 0012 airfoil obtained by the Eulerian
method is presented in Figure 5 for Case 22A. It can be seen that the β value used in this paper agrees
well with those of ANTICE [10] and Silva [8]. Overall, the collection efficiency gradually decreased
as the distance to the leading edge increased, with a maximum value of about 0.56 located at the
stagnation point. The positions of the impingement limits were around s/c = ±0.32, which means the
droplet impingement range was within the ice-protected area.
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The runback water flow on the external skin surface and the surface temperature distribution
for Case 22A are presented in Figures 6 and 7, respectively. Since the temperatures of runback water
were all above the freezing point under this evaporative anti-icing condition, the results at ∆T = 0.01 K,
0.1 K and 1 K are the same in the temperature-based coupling method, and only one curve is shown
in the figure. It can be seen from Figure 6 that the runback water flow was low at the stagnation
point, and the value gradually increased, peaking at s/c of around 0.022 and −0.015 on the upper
and lower surfaces, respectively. The runback water flow finally declined to zero when all the water
in the CV evaporated. In addition, the control volumes bearing the runback water were all within
the water droplet impingement region, which indicates that Case 22A was a totally evaporative
anti-icing condition. Figure 7 shows that, due to the heat flow taken away by the water evaporation,
the temperature near the stagnation point was low in spite of the large electric heat flux. When there is
no water in the CV, the surface temperature rose rapidly, and remained at a high value until the edges
of the heated area.
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Furthermore, the results of the runback water flow and surface temperature solved by the heat
flow-based coupling method were almost identical to those obtained by the temperature-based one,
since the two methods solve the same water flow equations without the effect of the freezing point
extension in this case. The curves of both methods match well with the data in literatures as evidence
for the feasibility and accuracy of the two coupling methods for evaporative anti-icing conditions.

5.2. Results of Case 22B

Figure 8, Figure 9, and Figure 10 present the runback water flow, the temperature distribution,
and the ice accretion rate on the anti-icing surface for Case 22B, respectively. The runback water film
flows backwards along the upper and lower surfaces from the stagnation point, and the liquid water
exists in the whole ice protected area since it is a running-wet anti-icing condition. Due to the electric
power loaded around the leading edge, the temperature is relatively high and fluctuates with the heat
fluxes of the heaters in the heated area. When the surface temperature drops to the freezing point
outside this region, part of the runback water begins to freeze, and the runback water flow drops
quickly. The surface temperature remains stable at the freezing point or in the range from 273.15 K to
273.15 K + ∆T as it moves backwards, and it drops when the water is totally frozen. This type of icing
is caused by the runback water and refers to the glaze ice ridge. Around the water film end positions,
the calculated ice accretion rate increased sharply to form two obvious rises, which was due to the heat
removed through the conduction of solid skin.

When ∆T = 0.01 K in the temperature-based coupling method, the runback water flow, surface
temperature, and ice accretion rate outside the heated area are in good agreement with those of the
heat flow-based coupling method, indicating that the effects of the freezing point extension can be
neglected with low ∆T. Additionally, the anti-icing results obtained by the two coupling methods show
satisfactory numerical accuracy on comparison with the literature data, verifying the feasibility and
accuracy of both methods for running-wet anti-icing conditions. As the value of ∆T increases in the
temperature-based method, the deviations go up as a result of higher phase changing point, and the
errors are significant at ∆T = 1 K.
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Figure 10. Ice accretion rate for Case22B.

Following the approach of Ref. [2], the ice shape can be obtained based on the ice accretion rate.
Figure 11 show the ice shape of Case 22B, along with the contour of the skin temperature obtained by
the heat flow-based method. There was no ice accreted on the heated area, and the skin temperature
varied with the heat fluxes of the heaters. The temperature decreased to the freezing point around the
ends of the protected area, and an ice layer began to form on the surface. The differences of the ice
shapes obtained by the two methods were small, except when ∆T = 1 K. Near the ends of the icing
area, the ice thicknesses were relatively large with a high ice accretion rate, which was also found by
Morency [33]. As shown in Figure 11, the temperature differences in the transverse direction were
quite large near the ends of the icing area, so that extra heat flow was taken away to the downstream
region by the heat conduction of the solid skin, and more water froze there to form peaks.
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5.3. Results of Run 401

The runback water flow results of Run 401 are presented in Figure 12, along with the local water
droplet collection efficiency. Because the stagnation point was located on the lower airfoil surface
due to positive angle of attack, a larger droplet impingement range existed on the lower surface. The
runback water distributed around the stagnation point, and the ice accreted in this area was glaze ice.
The runback water flow declined to zero when it moved backwards, and the droplet impingement
range was larger than the runback water range. In the droplet impingement range, no runback water
on the icing surface means that the water droplets froze instantaneously when impinging; this is the
rime ice area. Therefore, the icing type of Run 401 was mixed ice, since glaze ice and rime ice coexisted
on the skin surface. As shown in Figure 13, the surface temperature in the glaze ice area keeps at
the freezing point or in the range of 273.15 K ~ 273.15 K + ∆T, and when it changed to rime ice, the
temperature dropped rapidly below that. When the temperature-based coupling method was applied,
the phase change temperature at ∆T = 1 K was relatively high, leading to noticeable deviations in terms
of runback water flow and surface temperature. The calculated results, however, match well with each
other when ∆T was 0.01 K and 0.1 K. Moreover, there were no noticeable differences observed between
the heat flow-based coupling method and the temperature-based one with a low value of ∆T.
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The ice thickness distribution and ice shape for Run 401 are presented in Figures 14 and 15,
respectively. The ice thickness was initially small at the stagnation point on the lower airfoil surface,
and then grew to form ice horns as the distance to the stagnation point increased. In the rime ice
area, it decreased smoothly, and reached zero at the droplet impingement limits. When the ice type
transitioned from glaze ice to rime ice, the ice thickness has obvious rises with the peaks in ice shape
curves near the end positions of the runback water, which is the same as the situation in Case 22B
but different from the result obtained by the traditional method of LEWICE [32]. LEWICE did not
consider the heat conduction in solid skin. As can be seen from the temperature distribution obtained
by the heat flow-based method in Figure 15, the latent heat flow released by water freezing keeps
the skin temperature above the ambient value. Since surface temperature in the glaze ice area was
near the freezing point, the skin temperature was relatively high near the stagnation point. As the
amount of freezing water flow decreased, the latent heat released can be taken away immediately
by the airflow convection, resulting in the skin temperature dropping rapidly in the rime ice area.
Therefore, a large temperature difference in the transverse direction lies between the glaze ice and rime
ice areas, and extra latent heat released by water freezing can be removed through solid skin easily,
resulting in a peak of ice thickness there. Furthermore, the icing results obtained by the heat flow-based
and temperature-based coupling methods were in comparable agreement with the experimental and
simulative data in the literature as evidence of the applicability for icing conditions.
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5.4. Comparison of Computational Time

In order to guarantee the convergence and stability in solving the complex conjugate heat transfer
problem, the relaxation coefficient was used for both loose-coupling methods. Since the numerical
instability and the under-relaxation scheme were not studied in detail in this work, the comparison of
computational time was qualitatively analyzed for the two methods. It was found that the relaxation
coefficient can be relatively large, and the convergence rate was fast for the temperature-based method.
Even in the case of the runback water freezing in which a small relaxation coefficient was used due
to small value of ∆T, its calculation converged more quickly (about 20 min) than that of the heat
flow-based one (about 1 h). This might be attributed to two reasons, as follows.

Firstly, the heat flow-based method needs an iterative process to solve the implicit functions of
the heat and mass transfer conservation equations of the runback water, while the solution of the
temperature-based method can be obtained directly from the explicit functions.

Secondly, there was an effect of the interface boundary condition on the convergence speed of
solid heat conduction. When the Dirichlet boundary condition was used, the boundary temperature
updated during coupling iteration would lead to the redistributions of heat flow and temperature
in the whole solid region. If the temperature changes dramatically, divergence occurred. Therefore,
a very small relaxation coefficient was required and the convergence was slow for the method based
on surface heat flow. On the other hand, when Neumann boundary condition was applied for the
solid heat conduction, the effect of the heat flow change on the anti-icing surface could be limited in a
small range by the transverse heat conduction. Thus, a larger relaxation coefficient can be taken to
accelerate the convergence speed in the temperature-based coupling method.

6. Conclusions

Two loose-coupling methods, heat flow-based and temperature-based, were established to
simulate aircraft thermal anti-icing systems. Numerical calculations are performed for a NACA 0012
electro-thermal anti-icing system under the conditions of evaporative anti-icing (Case 22A), running
wet anti-icing (Case 22B) and icing (Run 401). The main conclusions are as follows:

(1) When the artificial temperature range between water and ice phases is small (∆T ≤ 0.1 K), the
results obtained by the temperature-based method are consistent with those of the heat flow-based
one, indicating that the effect of freezing point extension can be ignored.
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(2) The anti-icing and icing results obtained by both coupling methods are in acceptable and
comparable agreement with the experimental and simulative results in the literature, verifying the
feasibility and effectiveness of the methods.

(3) Due to the transverse heat conduction of the aircraft skin, there are obvious rises of ice accretion
rate and ice shape around the ends of the runback water range.

(4) Compared to the heat flow-based coupling method, the temperature-based one has faster
computational speed, and its solution can converge with higher relaxation coefficient.
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Nomenclature

cp specific heat, J/(kgK)
f freezing coefficient
hs convective heat transfer coefficient, W/(m2K)
i latent heat, J/kg
M molecular weight
.

m mass flow rate, kg/s
t time, s
T temperature, K
Tref freezing point temperature, 273.15 K
Ts anti-icing surface temperature, also the temperature of CV, K
p pressure, Pa
Pr Prandtl number
Q heat flow, W
S heat source term
Sc Schmidt number
U velocity, m/s
β local collection efficiency
ρ density, kg/m3

λ thermal conductivity, W/(mK)
∆s surface length of control volume
∆T artificial temperature range between water and ice phases

Subscripts

air air
e external edge of boundary layer
evap evaporation
ice ice
imp impinging droplet
in flowing in
lv water vaporization
ls water solidification
out flowing out
sv water sublimation
v water vapor
w water
∞ far field
e external edge of boundary layer
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