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Abstract: A thin film aluminum-air battery has been constructed using a commercial grade Al-6061
plate as anode electrode, an air-breathing carbon cloth carrying an electrocatalyst as cathode electrode,
and a thin porous paper soaked with aqueous KOH as electrolyte. This type of battery demonstrates
a promising behavior under ambient conditions of 20 ◦C temperature and around 40% humidity.
It presents good electric characteristics when plain nanoparticulate carbon (carbon black) is used
as electrocatalyst but it is highly improved when MnO2 particles are mixed with carbon black.
Thus, the open-circuit voltage was 1.35 V, the short-circuit current density 50 mA cm−2, and the
maximum power density 20 mW cm−2 in the absence of MnO2 and increased to 1.45 V, 60 mA cm−2,
and 28 mW cm−2, respectively, in the presence of MnO2. The corresponding maximum energy yield
during battery discharge was 4.9 mWh cm−2 in the absence of MnO2 and increased to 5.5 mWh
cm−2 in the presence of MnO2. In the second case, battery discharge lasted longer under the same
discharge conditions. The superiority of the MnO2-containing electrocatalyst is justified by electrode
electrochemical characterization data demonstrating reduction reactions at higher potential and
charge transfer with much smaller resistance.

Keywords: Al-air battery; paper based thin film battery; MnO2

1. Introduction

Aluminum-air (Al-air) batteries constitute a highly promising technology for powering electric
vehicles and portable electronics. The principle of their operation can be described by the following
reactions applicable to alkaline electrolytes [1,2]:

Anodic half reaction Al + 3OH−→ Al(OH)3 + 3e− (potential at pH 14: −2.31 V vs. NHE) (R1)

Cathodic half reaction O2 + 2H2O + 4e−→ 4OH− (potential at pH 14: +0.40 V vs. NHE) (R2)

Overall reaction 4Al + 3O2 + 6H2O→ 4Al(OH)3 (standard open-circuit voltage: 2.71 V) (R3)

Al-air batteries are devices, which are very simple to construct and operate. In their most common
version, they are made of an aluminum anode and a carbon cathode electrode in contact with an
alkaline electrolyte. The dissolution of aluminum releases electrons which can flow in an external
circuit and arrive at the cathode where they are consumed in oxygen reduction reactions. Oxygen
may be provided by air, hence the Al-air functionality. An Al-air battery is in reality an Al-air fuel cell,
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where the “fuel” is aluminum itself, which is consumed during device operation. Al-air batteries are
very popular and this is justified by some important advantages: they offer relatively high open-circuit
voltage (VOC, cf. Reaction (3)); they are based on aluminum which is the third most abundant element
in the Earth crust and can be additionally recovered by electrolysis of Al(OH)3; and the theoretical
specific energy density of Al-air batteries is around 8.1 kWh kg−1, which is more than 10 times higher
than that of commercial Li batteries [3,4]. Al-air batteries have been studied for several decades [1–6]
and they may be considered a mature technology. However, they still attract a large research interest
which extends over the materials used to make electrodes, the choice of electrolyte and electrolyte
support, the electrocatalysts employed for oxygen reduction, the construction design, their stability etc.
One design, which may be of particular interest in portable and wearable electronics, is Al-air thin
film battery, for example, based on filter paper soaked with electrolyte [5,7–9]. This battery is very
easy to build. It suffices to sandwich a porous paper soaked with an alkaline electrolyte between an
aluminum sheet anode and a carbon cloth or carbon paper cathode to make a functional battery. These
devices offer the additional advantage of flexible geometry [4,10]. In the present work, we have built
such a battery using a simple design and have studied the conditions for improving its functionality.

The battery geometry is schematically represented by Figure 1 The two electrodes were pressed
together by using appropriate plastic fittings and were separated by laboratory filter paper soaked
with a solution of KOH. The anode was an aluminum plate and the cathode a carbon cloth carrying
carbon black as basic electrocatalyst. This system was functional and did not necessitate any noble
electrocatalyst to achieve its functionality. The characteristics of such a battery was then studied in
terms of efficiency, power production capacity, and stability. Carbon cloth is an air breathing electrode
and it obviously operates by oxygen reduction. Oxygen can be reduced either by Reaction (2), which is
a four-electron process, or by the following reaction, which is a two-electron process:

2H2O + O2 + 2e−→ H2O2 + 2OH− (potential at pH 14: −0.15 V vs. NHE) (R4)

Reaction (4) is easier to realize than Reaction (2) because it is a two-electron process and necessitates
a less efficient electrocatalyst, even though it corresponds to a smaller VOC. Subsequent reduction of
H2O2, for example, by the following reaction [11,12]

H2O2 + 2e−→ 2OH− (R5)

leads to the same effect as Reaction (2) but obviously by a slower process. A simple carbon cloth
electrode covered with carbon black (i.e., nanoparticulate carbon) may then suffice to make a functional
electrode and a functional device. This has been shown in previous works [1,2] and as it will be
discussed below, it has been presently verified by the construction of thin film batteries. Nevertheless,
the additional presence of a more efficient electrocatalyst does have beneficial effects on power
production capacity. With this in mind, in the present work we studied the addition of MnO2 as
non-noble-metal electrocatalyst to operate the thin film Al-air battery. MnO2 has been previously
successfully employed as oxygen reduction electrocatalyst in several types of fuel cell devices including
Al-air battery [13], Na-air battery [14], microbial fuel cells [15–18], and other types of fuel cells [19].
The present work will then also deal with the study of MnO2-loaded cathode electrodes which will be
applied to thin film Al-air batteries. Finally, it must be underlined at this point that the present work
studies a battery based on commercial low-cost aluminum, therefore, the proposed device may set the
basis for a future commercial product.
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Figure 1. Schematic representation of the thin film Al-air battery: (1) aluminum plate; (2) filter paper
soaked with electrolyte; (3) catalyst layer; and (4) carbon cloth electrode.

2. Materials and Methods

2.1. Materials

All materials were of reagent grade and were provided by Sigma-Aldrich unless otherwise
specified. Thus Al-6061 was a donation from Alcoa Corp. (Pittsburgh, PA, USA), carbon cloth (CC) was
purchased from Fuel Cell Earth (Wobum, MA, USA), and carbon black (CB) from Cabot Corporation
(Vulcan XC72, Billerica, MA, USA).

2.2. Preparation of the Anode Electrode

The anode electrode was an aluminum Al-6061 plate of 1 × 1 cm active dimensions. It was
mechanically polished before use in order to prepare a mirror-like surface, by employing a 4000 grit
(European P-grade) SiC waterproof metallography polishing paper and then with 3 µm followed by
250 nm diamond paste.

2.3. Construction of the CB/CC and the MnO2-CB/CC Cathode Electrode

Carbon cloth was cut into pieces with similar active dimensions as Al plates, i.e., 1 × 1 cm. It was
then covered (only one side) with carbon black. For this purpose, we prepared the following paste
based on carbon black Vulcan XC72: 1 g of carbon black was mixed with 30 mL of distilled water by
vigorous mixing in a laboratory mixer (more than 4000 r.p.m.) until it became a viscous paste. This
paste was further mixed with 0.4 mL polytetrafluorethylene (Teflon 60% wt. dispersion in water) and
then it was applied on the carbon cloth. This was achieved by first spreading the paste with a spatula,
preheating for a few minutes at 80 ◦C, and finally annealing for a few minutes in an oven at 340 ◦C.
The procedure was repeated once more to make sure that the carbon cloth was well covered with the
hydrophobic carbon layer. In order to introduce MnO2, the same as above procedure was followed
with the difference that further to the 1 g of CB, 0.5 g of a commercial MnO2 powder (>99% purity)
was also added after copiously grinding with a mortar (i.e., two parts of CB for one part of MnO2).
The choice of this ratio was made by optimization of the efficiency of the electrode and the stability of
the material on the carbon cloth.

2.4. Description of the Device

The device is schematically shown in Figure 1. A filter paper 0.16 mm thick (MN-615,
Macherey-Nagel, Duren, Germany) was cut in the appropriate dimensions, was soaked with 2 M
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aqueous KOH, and was sandwiched between the aluminum plate and the carbon cloth electrode.
Appropriate plastic supports were machined to hold the three items tight together. The active dimension
was 1 × 1 cm. The side of the carbon cloth that was covered with the catalyst was in contact with the
filter paper while the other side was exposed to the ambient air. All measurements were made under
ambient conditions of 20 ◦C and 40% humidity without sealing the device.

2.5. Measurements and Characterizations

Polishing of the aluminum surface was monitored by a high-resolution optical microscope Reichert
MeF 2 carrying an objective Plan Oel 125/1.35 by using Canada balsam immersion oil with a refractive
index of n = 1. Current-voltage curves and potentiometric or amperometric measurements were
made with an Autolab potentiostat PGSTAT128N and FESEM images with a Zeiss SUPRA 35 VP
143 microscope.

3. Results and Discussion

3.1. Material Characterization

The aluminum Al-6061 anode electrode was a plate cut from a bigger sample and was machined
to obtain appropriate size so that its active dimensions were 1 cm2, as already said. Before use, the plate
was polished, as detailed in Section 2. The same material was employed and characterized in a previous
publication [2].

The counter electrode was made of a carbon cloth on which carbon black was deposited as
detailed in Section 2.3 (CB/CC). Figure 2A shows its image revealing the carbon black nanostructure.
When carbon black was mixed with ground MnO2 particles (MnO2-CB/CC), the obtained blend gave
the image of Figure 2B where the two phases are easily distinguished. MnO2 came into the blend
as elongated particles with the longer dimension larger than 1 µm. These particles were obviously
produced by grinding and then vigorously mixing larger particles, which seem to be composed of
MnO2 flakes, as revealed by the image of Figure 2C.

Finally, the structure of the filter paper is also demonstrated in Figure 2D showing the inter-weaving
of cellulose filaments.

3.2. Electric Characteristics of the Thin Film Al-Air Battery

The electric characteristics of the above described battery can be seen in Figure 3. The battery
reached a VOC of around 1.4 V while the short circuit current density JSC was 50 mA cm−2 in the
absence and a little more than 60 mA cm−2 in the presence of MnO2. The presence of the metal oxide
had then a substantial effect on device performance. This difference was more pronounced in the case
of power density, the maximum of which increased by 40% in the presence of the metal oxide particles.
Indeed, it was approximately 20 mW cm−2 in the absence and increased to 28 mW cm−2 in the presence
of MnO2. A plain CB/CC electrode then makes a battery with satisfactory performance, but it enjoys
an even better performance when manganese oxide is mixed with carbon black. This result justifies the
employment of MnO2 as oxygen reduction electrocatalyst both in the present case as well as in other
fuel cell applications, as already discussed [13–19]. The appearance of the polarization curve, more
specifically, the fact that current density continuously increased with voltage decrease and did not
demonstrate an extremum is a rough index of the state of the electrolyte in the device. Thus, it shows
that the electrolyte remains in a quasi-liquid state within the pores of the filter paper and it does not
create hard constraints to ionic conductivity. In the opposite case, that is for a quasi-solid electrolyte,
the ionic conductivity is limited, and the polarization curve demonstrates an extremum [5–7] while the
observed current density is smaller. Obviously, the present case practically deals with a thin film liquid
electrolyte. The question then is how steady and for how long such a battery will function without
sealing under ambient conditions. This has been studied by performing battery discharge tests by
choosing several steady current density conditions as detailed in the next paragraph.
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Figure 2. FE-SEM images of carbon black nanoparticles (A); carbon black mixed with ground MnO2

particles (B); MnO2 particles (C); and the structure of the paper before soaking with electrolyte (D).
The scale bar is 200 nm in (A–C) and 20 µm in (D).
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Figure 3. Polarization curves (1, 3) and power density curves (2, 4) for the presently studied Al-air
battery. Curves (1) and (2) correspond to a carbon black/carbon cloth (CB/CC) cathode and curves (3)
and (4) to a MnO2-CB/CC cathode electrode.

Figure 4 shows battery discharge in the absence of MnO2. The open-circuit voltage (at current
zero) was stable for several hours. However, the battery was discharged in about 1.5 h when running
at 1 mA cm−2. As expected, discharging was faster at higher current densities. The total energy yield
can be calculated by measuring the area under each curve and it was 1.8, 4.9, and 2.1 mWh cm−2, when
discharging was monitored at 1, 5, and 20 mA cm−2, respectively.
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Figure 4. Potentiometry curves at various current densities for the Al-air thin film battery employing a
plain CB/CC cathode without MnO2.

Figure 5 shows corresponding battery discharge data in the presence of MnO2. Again, VOC was
stable for several hours. It now took a longer time to discharge the battery for the same current density
values than in the absence of MnO2. The corresponding total energy yield was 2.5, 5.5, and 2.7 mWh
cm−2, when discharging was monitored at 1, 5, and 20 mA cm−2, respectively. Once more the beneficial
presence of manganese oxide is clearly demonstrated by these data. The total energy yield should be
approximately the same no matter how much the current density is. It is interesting to find out that in
both battery cases, i.e., both in the presence and in the absence of MnO2, discharging at 5 mA cm−2

yielded much higher energy than discharging at 1 or 20 mA cm−2. The most plausible explanation for
this behavior is based on the data of [20]. In Al-air batteries generation of electrons by oxidation of Al
is always in competition with corrosion, which is described by the following reaction:

2Al + 6H2O→ 2Al(OH)3 + 3H2 (R6)
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Competition means that when the current produced by Reaction (1) is high, corrosion becomes
less important. The opposite is true when the current is low. However, when the current is high, the
voltage is low, as seen in Figures 4 and 5. These opposing trends create a maximum in the total energy
yield of the battery as a function of current, hence the maximum observed in the present case, i.e.,
when the discharge current density was 5 mA cm−2.

The electrochemical factors that make the presence of MnO2 enhance battery performance are
discussed in the next subsection.

3.3. Electrochemical Characterization of the MnO2-CB/CC vs. CB/CC Electrode

The above results show that the CB/CC and the MnO2-CB/CC electrodes have different capacities
in carrying out reduction reactions, in particular, oxygen reduction. A direct comparison between them
can be qualitatively obtained by the polarization curves of Figure 6. Comparison is additionally made
with a plain carbon cloth electrode under the same conditions. The three electrodes were tested as
working electrodes, with a Pt foil as counter and an Ag/AgCl as reference electrode, using an alkaline
electrolyte. The data were plotted vs. reversible hydrogen electrode (RHE) by taking into account the
pH value of the electrolyte and the potential of the Ag/AgCl electrode (0.2 V). The importance of the
presence of carbon black (CB) and, furthermore, that of the MnO2 particles is obvious from these data
since the onset of cathodic currents appears at more positive potentials in going from plain carbon
cloth to CB/CC and then to MnO2-CB/CC. Even though, these data are approximate and cannot safely
determine the potential of the reduction reaction in each case, they do show that the presence of MnO2

particles better approaches oxygen reduction by Reaction (2) than plain CB/CC or even better than
plain CC.
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Figure 6. Polarization curves obtained by using one of the following three different electrodes as
working electrode, a Pt foil as counter electrode and an Ag/AgCl as reference electrode: (1) plain carbon
cloth; (2) CB/CC; and (3) MnO2-CB/CC. The electrolyte was 0.5 M KOH.

The superiority of the MnO2-CB electrocatalyst was also demonstrated by electrochemical
impedance measurements, the results of which are shown in Figure 7. Symmetric devices were
employed using only CC/CB or MnO2-CB/CC electrodes in contact with aqueous KOH electrolyte,
at zero bias and by changing frequency between 100 kHz and 0.1 Hz. A simple circuit R-RC fitted
well the experimental data in a Nyquist plot providing an electron transfer resistance which was 13.7
kohm in the case of CB/CC and decreased to 1.3 kohm in the presence of MnO2. This trend was also
observed with intermediate MnO2 loads, i.e., the charge transfer resistance decreased with the quantity
of added MnO2. It is then more than obvious that transfer of electrons in solution is greatly facilitated
in the presence of the metal oxide, therefore, MnO2-CB/CC makes a better cathode electrode for the
present application.
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Figure 7. Experimental data for impedance measurements (A) and corresponding Nyquist plots (B) for
symmetric cells using (1) CB/CC and (2) MnO2-CB/CC electrodes. The electrolyte was 0.5 M KOH.

4. Conclusions

A thin film Al-air battery based on porous paper soaked with aqueous KOH electrolyte and
sandwiched between a technical grade commercial Al-6061 anode and a carbon cloth cathode
carrying various electrocatalysts makes a functional device with satisfactory power yield records.
The performance of the battery substantially increased when a mixture of MnO2 with nanoparticulate
carbon was employed as oxygen reduction electrocatalyst. These results are in accordance with
electrochemical characterization data of CB/CC and MnO2-CB/CC electrodes which demonstrated the
beneficial effects of the presence of MnO2 particles.
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