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Abstract: We introduce the problem of load nowcasting to the energy forecasting literature. The recent
load of the objective area is predicted based on limited available metering data within this area. Thus,
slightly different from load forecasting, we are predicting the recent past using limited available
metering data from the supply side of the system. Next, to an industry benchmark model, we
introduce multiple high-dimensional models for providing more accurate predictions. They evaluate
metered interconnector and generation unit data of different types like wind and solar power,
storages, and nuclear and fossil power plants. Additionally, we augment the model by seasonal and
autoregressive components to improve the nowcasting performance. We consider multiple estimation
techniques based on the lassoand ridge and study the impact of the choice of the training/calibration
period. The methodology is applied to a European TSO dataset from 2014 to 2019. The overall results
show that in comparison to the industry benchmark, an accuracy improvement in terms of MAE
and RMSE of about 60% is achieved. The best model is based on the ridge estimator and uses a
specific non-standard shrinkage target. Due to the linear model structure, we can easily interpret the
model output.

Keywords: load forecasting; electricity consumption; lasso; Tikhonov regularization; load metering;
preliminary load

1. Introduction and Motivation

In electricity system management, there is a wide range of load forecasting literature [1]. On a
high hierarchy level, usually, the transmission system operator (TSO) and sometimes the distribution
system operator (DSO) are responsible for the metering and publishing of the load in the corresponding
electricity system. When it comes to the details, there exists a wide range of definitions for electrical
load; see, e.g., [2,3]. In many countries, there exist accounting rules for the system operator, which
define the metering process for billing and management purposes. Thus, from the economic point
of view, these load values are very important for the generation and consumption side such as the
system operator. However, in many countries, these values are finally published with a large delay
with respect to delivery. For instance, PJM published the final metered load values with a delay of up
to 90 day. Similarly, in Germany, the TSO published those final metered values in accordance with the
accounting rules with a similar delay of up to three months.

In practice, the system operators also publish electrical load real-time data just after delivery
with a very small time lag, usually less than an hour. Those load values are often referred to as
preliminary/actual/instantaneous/estimated load, depending on the considered market. Of course,
these preliminary load values should be as close as possible to the final metered load values that
are computed with respect to the accounting rules for the electricity system. Still, there are usually
deviations, which might deviate substantially in magnitude. For the computation of the preliminary
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load, the system operator usually only has limited metering data available to deduce the load values
for the overall electricity system.

In this paper, we address the problem of providing more accurate preliminary load values just after
delivery when there is only limited metering information in the system available. Those preliminary
load values should be as close as possible to the metered load, which is derived with respect to the
accounting and metering rules. The academic literature on this topic available is very limited; see [4].

We contribute to this topic and propose an efficient and robust method for nowcasting load using
machine learning and data science techniques. In the data science and forecasting literature, especially
in applications to economics and meteorology, the phrase nowcasting is used for predicting extremely
short-term forecast or predicting the very recent past [5–9]. As mentioned, in our electricity load
situation, we are exactly in the case of predicting the very recent past load values under limited data
availability. Hence, we propose the phrase load nowcasting for these situations.

In this manuscript, we first introduce the nowcasting problem in detail. Then, we propose
several nowcasting models that are oriented to the load forecasting literature. Afterwards, we proceed
with a nowcasting study to validate the models and discuss the corresponding results, including the
interpretation of the best performing model. We close with a summary and some conclusions.

2. The Nowcasting Problem

2.1. Formal Problem Description

Based on the accounting rules, the system operator has to compute the final load values of the
objective region for which he/she is responsible. We denote Yt the corresponding load values at time
point t. The detailed computation depends on the regulatory details and the mentioned accounting
rules of the considered electricity market. Still, independent of the market, all accounting rules that
determine the load Yt have in common that they specify the system balance, so the match of the supply
and demand, the interconnection with neighboring areas, and potential grid losses.

Under the assumption of no grid losses, we could state for each time point t that:

Yt =
∑

i

Consumption_of_uniti,t +
∑

i

Interconnector_balancei,t

where Consumption_of_uniti,t is the electricity consumption of unit i and Interconnector_balancei,t
the imbalance of interconnector i. Obviously, both sums are taken across all consumption units and
interconnectors. Of course, from the generation point of view, we can also state:

Yt =
∑

i

Generation_of_uniti,t +
∑

i

Interconnector_balancei,t

where Generation_of_uniti,t is the generated electricity of generation unit i and
Interconnector_balancei,t. In practice, the latter is easier to compute as we have usually less
production units (mainly large power plants) than consumers. Therefore, the latter is usually applied
for deriving the load. Moreover, the generation units are often divided into subgroups, dependent on
generation type, which could be nuclear, lignite, coal, natural gas, oil, pump storage, hydro, biomass,
wind, and solar, among others. In the formulas, the generation based equation above turns into:

Yt =
∑

i

XG,i,t +
∑

i

XI,i,t (1)

where XG,i,t is the generation of generation unit i and XI,i,t the interconnector balance i. Again, the sums
are taken across all units and interconnectors in the balancing area.
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As introduced above, the key problem is that there is only limited metering information at the
time of prediction. Therefore, some generation units or interconnectors are not metered (yet) and
reduce the number of available time series. Thus, we used:

Yt = Lt + εt (2)

=

JG∑

i=1

XG,i,t +

JI∑

i=1

XI,i,t + εt (3)

with Lt as the overall metered load across all JG metered generation units and all JI interconnectors
balance time series datasets. The error term εt absorbs the missing information of Yt, which is not
covered by Lt, including potential grid losses and contaminated data. In practice, this leads usually to
the fact that the sum of all available metered generation units plus the interconnector imbalance Lt is
well below the targeted load Yt. In the application example, we show below that this is about 80% of
the overall load. Remember that in a perfect metering environment where JG and JI cover all units, it
holds Lt = Yt or, equivalently, εt = 0; see (1).

Now, the prediction task is to nowcast (or forecast) Yt by Ŷt given the available information up to
time t, i.e., XG,i,t and XI,i,t. A specific restriction is that recent values Yt−k (e.g., Yt, Yt−1, Yt−2, or Yt−3)
are not available for predicting Yt. As mentioned in the Introduction, the last known values usually
have a huge delay, often up to 90 days. Thus, we assume that Yt−K is the last known value where K is
a relatively large number. In the situation of hourly data with 90 days of publication delay, this would
be K = 24× 90 = 2160.

2.2. Data and Problem Illustration

We considered a dataset ranging from 31 December 2014 to 30 April 2019 for the region of a
European system operator. The data were metered in quarter-hourly resolution, and if not stated
otherwise, all load values are given in MW. There were JG = 92 generation time series and JI = 5
five interconnection balance time series available. The generation time series contained seven wind
power series and five solar series and a diverse collection of power plant productions of different types:
nuclear, lignite, coal, natural gas (NG), oil, pump storage, hydro, and biomass. Potential missing data
were replaced by the last known values. Moreover, we applied clock change adjustments to the data
due to daylight savings time. Hence, for the last Sunday in March, we interpolated the missing clock
change hour, and for the last Sunday in October, we averaged the doubling clock change hour.

In Figure 1, we illustrate an example of the considered dataset for the last week of April 2019. We
observed that the load process Yt exhibited the typical daily pattern with smaller values during night
than during day time, and smaller values on the weekend than on working days. Additionally, we
see that the process Lt (see Equation (3)) is the sum of all available meters series XG,i,t and XI,i,t. Note
that metering data exhibited negative values, and this held particularly for the transmission data of
the interconnectors and the storages. Thus, only if all metered data were positive, the process Lt was
visually that of all individual generation and interconnector data. Such a particular example period
can be spotted for the last hours of Sunday in Figure 1.

Further, we observed that during the illustrated period, the generation had a substantial infeed of
wind and solar power. Additionally, we see that nuclear power provided base load energy, but also
some coal power plants in the last two days of April 2019. The remaining power plant contributed
only little to the energy supply during this period. Finally, we want to highlight that Lt followed
the same pattern as Yt, but lied consistently below Yt. This also motivated the first simple model for
predicting Yt.
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Figure 1. Time series plot of the load Yt and the process Lt with its single components XG,i,t and XI,i,t

classified by generation type in the last week of April 2019.

3. Nowcasting Models

3.1. Benchmark Model

The industry benchmark from the system operator solves the problem stated above by a linear
regression on Lt motivated by Equation (2). Thus,

Yt = α0 + α1Lt + εt (4)

To estimate the unknown coefficients α0 and α1, the industry benchmark applies ordinary least
squares (OLS) to the past years data of the same month of the target time t. Thus, if we want to predict
Yt, which is in January, we take all January values for Yt and Lt of the previous year to estimate α0

and α1. As we had quarter-hourly data, this was 31× 96 data points. By OLS, we used α̂0 and α̂1 and
computed nowcasts Yt by Ŷt = α̂0 + α̂1Lt.

The estimation principle is visualized in Figure 2. Here, α0 and α1 of Model (4) were estimated
using the input data from April 2018 for estimating Yt in April 2019. Note that we will generalize this
estimation method slightly and consider a broader range of training periods options in the application.
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Figure 2. (Left) Scatter plot of the process Lt (see (3)) and load Yt in April 2018 with the fitted line
of Model (4). (Right) Time series plot of Yt, Lt, and Ŷt = α̂0 + α̂1Lt for the last week of April 2019 as
in Figure 1.

3.2. Proposed Nowcasting Model

The proposed model was motivated by Equation (3). First, we imposed a linear model on the
individual generation and interconnector components by:

Yt = β0 +

JG∑

i=1

βG,iXG,i,t +

JI∑

i=1

β I,iXI,i,t + εt (5)

= β0 + β′GXG,t + β′I X I,t + εt (6)

= β0 + β′FXF,t + εt. (7)

with XF,t = (XG,t, X I,t). We regarded this as a fundamental linear load model, as the only linear
inputs were XF, which contained all fundamental information: the generated power data XG,t and
the interconnector imbalance X I,t. Note that (7) can be regarded as natural extension of (4) because
Model (7) turns into (4) by choosing βi = α1 for i > 0.

However, we extended Model (7) by two further terms: (i) a term that contains seasonal
information and (ii) a term that represents autoregressive information. In load forecasting, both terms
showed high relevance; see, e.g., [10–13]. Sometimes, models with many seasonal and autoregressive
components performed even very well in short-term forecasting; see, e.g., [14].

Formally, the extended model is given by:

Yt = β0 + β′FXF,t + β′SXS,t + β′AX A,t + εt. (8)

= β0 + β′X t + εt (9)

where XS,t is a vector of seasonal regressors and X A,t is a vector of autoregressive components
of Yt. Of course, (8) turns into (7) by choosing βS = 0 and βA = 0. Note that we also defined
X t = (XF,t, XS,t, XX,t), which did not include the intercept. Hence, β = (βF, βS, βA)

′ did not include
β0.

It is widely known that in electricity demand, load and consumption modeling periodic features
play an important role. The most important seasonalities are daily, weekly, and annual cycles.
We suggested to model the three periodic components by periodic cubic by splines with periodicities SD,
SW , and SA, which represent a day, a week, and a (meteorologic) year, as in [15]. For out quarter-hourly
data, we had SD = 96, SW = 96× 7 = 672, and SA = 96× 365.24 = 35,063.04. In contrast to Fourier
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analysis, periodic B-splines have the advantage that the basis functions are local and allow for flexibility.
When applied to positive data with positivity constraints, they also benefit from the fact that they
are always positive. We chose equidistant basis functions for each period. Additionally, we specified
the number basis functions BD, BW , and BA for each period. For our application, we chose BD = 24,
BW = 12, and BA = 24. Thus, βS had a length of BD + BW + BA, which was 60 in our application.

Furthermore, we had to specify the autoregressive term in (8). We defined the
autoregressive components:

X A,t = ((Yt−k)k∈KK , (Yt−k)k∈KA)

with two sets of lags KK and KA. KK contained lags around the most recent available Yt−K, and KA

contained lags around a calendar year ago. The latter mimicked annual effects.
We specified for the most recent lags:

KK = {K + (0, 1, . . . , 8), K + SD + (−8,−7, . . . , 8), K + 2SD, K + 8SD}

which contains the nine most recent known values, the values eight hours around the day before Yt−K,
and the lags of the past eight days at the same hour as t. Remember that K = 90SD in our application;
thus, Yt−z with z = K + SD = 91SD = 13× 7SD = 13SW had the same weekday as the target Yt.
For lag around a year ago, we specified:

KA = {50SW , 52SW + (−8,−7, . . . ,−1, 1, 2, . . . , 8)SD, 52SW + (−8,−7, . . . , 8), 54SW}

as 52SW = 364 is approximately one calendar year. In total, KK and KA contributed 54 parameters to
the model.

To summarize, the overall (8) had many parameters. In our application scenario, in total, there
were 5 + 12 + 80 + 60 + 54 = 211 parameters. As this might lead to overestimation issues when
applying plain OLS, we proposed the application of efficient regularization techniques to tackle the
nowcasting problem adequately.

3.3. Estimation of Proposed Nowcasting Model

We will see that the estimation procedure (or training method) played an important role in an
accurate nowcasting. Obviously, a natural estimation candidate for Model (8) is linear regression.
However, as we had many parameters and some of them might contain useless information, this might
be suboptimal. Regularization can help to address the problem. In the energy forecasting literature, the
lasso (least selection and shrinkage operator) seems to be a popular choice for shrinkage and feature
selection methods in linear models; see, e.g., [15–18]. An extension of the lasso is given by the elastic
net, which also has been applied [19–25].

For introducing the estimation procedure, we require some further notations. Let {1, . . . , T}
be the time points of available data for Yt. Thus, our objective was to predict the load Yt at time
point t = T + K, which corresponds to the actual time point. Let T ⊆ {1, . . . , T} be the training
period of size nT. Define Y(m0, s0) = ((Yt −m0)/s0)t∈T as the (m0, s0)-standardized response vector
and X(mp, sp) = (Xi(mi, si))i∈{1,...,p} = ((Xi,t −mi)/si)(i,t)∈{1,...,p}×T as the scaled input matrix with
scaling coefficients mp = (m1, . . . , mp) and sp = (s1, . . . , sp) and number of input parameters p. Denote
m = (m0, m1, . . . , mp) and s = (s0, s1, . . . , sp) the collections of all scaling coefficients.

Furthermore, denote c as a vector of the same size as β, which will be the shrinkage target. In the
vast majority of applications, this is c = 0. The intuition behind this choice is that a specific regressor
has zero impact if it contains useless information, to reduce the garbage in, garbage out problem.

With all the notations above, the elastic net estimator for β in Model (8) is given as:

β̂λ,α(m, s; c) = arg min
(β0,β)∈Rp+1

1
nT

∥∥Y(m0, s0)− β0 + β′X(mp, sp)
∥∥2

2 + λα‖β− c‖1 + λ
1− α

2
‖β− c‖2

2 (10)
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where λ, α ≥ 0 are tuning parameters, p is the number of parameters (length of β), and ‖ · ‖1 and
‖ · ‖2 as the standard `1 and `2 norm. The tuning parameters λ and α characterize the regularization
properties of the elastic net. For α = 1, we used the popular choice of the lasso (least absolute shrinkage
and selection operator), and for α = 0, we used the ridge regression, which is also known as Tikhonov
regularization. For λ = 0, we used the OLS solution, and for very large λ, we used a solution very
close to the shrinkage target c. In the non-ridge case α > 0, we even used exactly c as the solution if λ

was sufficiently large. For the case of the ridge regression, we had an explicit solution available. This
was:

β̂λ,0(m, s; c) =
(
X̃(mp, sp)

′X̃(mp, sp) + Diag
(

λ̃
))−1

(X̃(mp, sp)Y(m0, s0) + λc̃)

with X̃(mp, sp) = (1,X(mp, sp)), λ̃ = (0, λ1)′, and c̃ = (0, c)′. In the elastic net or lasso case with
α > 0, we had efficient estimation techniques based on the coordinate descent or LARS (least angle
regression) available. Both options had the drawback that they could only handle the case c = 0.

However, also the scaling coefficients m and s impacted the estimation substantially. Usually,
the scaling coefficients m and s in (10) are standardized so that Y(m0, s0) remains unchanged by
m = 0 and s = 1, and Xi(mi, si) has mean zero and standard deviation of one, i.e., it holds that
Xi(mi, si)

′1 = 0 and ‖Xi(mi, si)‖2 = 1. The latter can be achieved by choosing mi = n−1
T X′i1 and

si =
√

n−1
T (Xi −mi1)′(Xi −mi1). This scaling procedure is standard in the literature and, e.g., the

default in the glmnet or lars packages in R for estimation of the elastic net and lasso estimation with
c = 0.

Still, it turned out that for our nowcasting problem, the scaling procedure for X was suboptimal
as we ignored historic observations. It is true that YT was the last known observation. However, for
Xt, we knew all observations up to T + K, the time point when the forecast was created. Thus, we
proposed to compute the scaling coefficients si and mi on the larger and more recent information
set TK = T ∪ {T + 1, . . . , T + K} for all Xi. Moreover, we suggested for reasons explained in the
next paragraph to scale the Y(m0, s0) by the corresponding sample mean and standard deviation

m0 = n−1
T Y′1 and s0 =

√
n−1
T (Y−m01)′(Y−m01).

Now, we discuss the impact of the shrinkage target c in more detail. We mentioned already that
the standard choice c = 0 was motivated by the fact that by default, a regressor has no influence. Only
if a regressor contributes substantially to the explanation of the response Yt, the estimated coefficient
will deviate from zero and show a corresponding impact. If we have no further information about our
regressors, this is a reasonable approach. We will apply this approach to the ridge and lasso estimator
and denote them by 0-ridge and 0-lasso.

However, in our situation, we knew something about the fundamental relationship between our
response vector Yt and the fundamental regressors XF,t from Equations (1) and (7). This fundamental
relationship could help to impose a suitable regularization for our model. We explain this with the
following example: Suppose there is a situation where in the in-sample period or training period
{0, . . . , T}, a certain power plant or interconnector is offline; thus, all observations are zero. A reason
could be that it is a new unit that just started operating somewhere after the last observation known
YT . Then, the ridge or lasso estimators with c = 0 will give an estimated coefficient of zero for the
corresponding unit. Hence, the power plant will have no out-of-sample contribution to the overall
load even though it is operating now, at YT+K. Thus, from the fundamental point of view, it makes
sense to deviate from the shrinkage target of 0 for all generation units or interconnectors. If we assume
that the metered values are reasonable, eps. not contaminated by implausible data, then taking these
values into account should improve the forecasting accuracy. This holds at least for the situation just
explained. Hence, we proposed the choice:

cC = (cF, cA,S)
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with cF = 1 and cA,S = 0 corresponding to the impact as in the perfect fundamental situation from
Equation (1). Obviously, the vector cF had a length of βF, and cA,S had the aggregated length of βA
and βF. We applied this choice for the ridge regression only and denoted it by c-ridge. The reason
why this choice was not applied to lasso or elastic net estimators with α > 0 was the unavailability of
efficient estimation algorithms.

4. Nowcasting Study

We conducted a rolling window nowcasting study using the considered European dataset, and
the design was similar to a standard rolling window forecasting study, as illustrated in Figure 3. The
initial last known load value YT was on 29 January 2018 at 23:45. Based on historic data, we nowcast
the SD = 96 values YT+K+1, . . . , YT+K+SD . We considered a publication delay of K = 90× 96 = 8640
(90 days), which resulted in the first nowcast being on 30 April 2018, approximately three months later.
Then, we shifted the last known load value by a day (SD = 96 time points) to YT+SD and nowcast
YT+K+SD+1, . . . , YT+K+2SD . This procedure was repeated N = 366 times, which gave an out-of-sample
time of about a year and around 96× 366 = 35,136 observations for evaluation. For the in-sample
dataset, we considered for our application six choices:

(i) All available data from the past 37 months (three years plus one month):
(365× 3 + 30− 90)× 96 = 99,360 observations of Yt, denoted as 3years

(ii) All available data from the past 25 months (two years plus one month):
(365× 2 + 30− 90)× 96 = 64,320 observations of Yt, denoted as 2years

(iii) All available data from the past 13 months (one year plus one month):
(365 + 30− 90)× 96 = 29,280 observations of Yt, denoted as 1year

(iv) Data of the past year, 120 days centered around the nowcasting day of the past year:
120× 96 = 11,520 observations of Yt, denoted as 4months

(v) Data of the past year, 60 days centered around the nowcasting day of the past year:
60× 96 = 5760 observations of Yt, denoted as 2months

(vi) Data of the past year, 30 days centered around the nowcasting day of the past year:
30× 96 = 2880 observations of Yt, denoted as 1month

Option (i) used the maximum amount of data of (365× 3 + 30− 90) = 1035 days, which was
also used for illustration in Figure 3. Note that Option (vi) was very close to the industry benchmark
approach, which used the data of the month of the previous year for estimating the model parameters.Version March 10, 2020 submitted to Energies 8 of 14
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MAE =
1

SD

SD∑

s=1

MAEs with MAEs =
1
N

N∑

n=1

|Yi,s − Ŷi,s| (11)

RMSE =
1

SD

SD∑

s=1

RMSEs with RMSEs =

√√√√ 1
N

N∑

n=1

|Yi,s − Ŷi,s|2 (12)

Note our models are regression based and the forecasted valued should coincide with the the217

expected value. Thus, the RMSE should be preferred for evaluation as it identifies the true mean218

Figure 3. Illustration of the nowcasting study design.

We considered the all competing models, benchm, 0-lasso (λ), 0-ridge (λ), and c-ridge(λ) in the
rolling window forecasting study. As emphasized, the lasso and ridge models depended on the tuning
parameter λ, which we had to specify. For all models, we considered exponential grids Λ for λ; in
detail: For the ridge models, we chose Λ = 2Lr with Lr as an equidistant grid from −10 to 20 of length
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100, and for the lasso models, Λ = 2Ll as an equidistant grid from −30 to 3 of length 100. Of course,
we did not know in advance the optimal λ. Therefore, we considered for the 0-lasso, 0-ridge, and
c-ridge models a version where λ was chosen on the past performance (cumulated loss) of the the
corresponding models, initializing with λ = 1 for the first prediction. We denoted the models by
0-lasso∗, 0-ridge∗, and c-ridge∗.

For measuring the nowcasting accuracy or measures for forecasting performance, we considered
the out-of-sample MAE (mean absolute error) and the out-of-sample RMSE (root mean square error).
To evaluate the forecasting accuracy also for each of the SD = 96 quarter-hours separately, we defined:

MAE =
1

SD

SD∑

s=1

MAEs with MAEs =
1
N

N∑

n=1

|Yi,s − Ŷi,s| (11)

RMSE =
1

SD

SD∑

s=1

RMSEs with RMSEs =

√√√√ 1
N

N∑

n=1

|Yi,s − Ŷi,s|2 (12)

Note that our models were regression based, and the forecasted value should coincide with the
the expected value. Thus, the RMSE should be preferred for evaluation as it identified the true mean
correctly. In contrast, the MAE was optimal for median forecasts. However, it is often used as a robust
alternative to the RMSE. For more details on the evaluation of point forecasts, we refer to [26].

5. Results

5.1. Nowcasting Performance

We first discuss the overall nowcasting performance of the considered models. The out-of-sample
MAE and RMSE values are given in Table 1 and 2. There, we also computed improvements in the MAE
and RMSE with respect to the benchmark model benchm estimated on the shorted training period
1month. Remember that ridge∗ and lasso∗ chose the tuning parameter based on the past performance,
whereas ridge and lasso represented the models that gave ex-post the best prediction accuracy on the
λ-grid Λ.

Table 1. Out-of-sample MAE in MW with relative improvement in % with respect to the benchmark
trained on the shortest training period for all models and training periods. A heat map is used to
indicate better (→ green) and worse (→ red) performing models.

Models → benchm c-ridge∗ 0-ridge∗ 0-lasso∗ c-ridge 0-ridge 0-lasso
Period ↓ MAE Imp. MAE Imp. MAE Imp. MAE Imp. MAE Imp. MAE Imp. MAE Imp.

3years 1302.7 −18.3 453.6 58.8 483.6 56.1 509.5 53.7 452.1 58.9 481.4 56.3 507.0 53.9
2years 1328.8 −20.7 430.0 60.9 474.1 56.9 487.8 55.7 428.7 61.1 469.0 57.4 484.7 56.0
1year 1290.5 −17.2 653.9 40.6 588.7 46.5 591.0 46.3 630.5 42.7 581.7 47.2 588.8 46.5

4months 1130.2 −2.7 934.3 15.1 549.5 50.1 583.8 47.0 923.2 16.1 538.3 51.1 578.6 47.4
2months 1097.9 0.3 944.5 14.2 602.4 45.3 626.6 43.1 919.6 16.5 593.8 46.1 617.2 43.9
1month 1100.9 0.0 918.0 16.6 607.1 44.9 635.0 42.3 913.1 17.1 604.1 45.1 629.3 42.8
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Table 2. Out-of-sample RMSE in MW with relative improvement in % with respect to the benchmark
trained on the shortest training period for all models and training periods. A heat map is used to
indicate better (→ green) and worse (→ red) performing models.

Models → benchm c-ridge∗ 0-ridge∗ 0-lasso∗ c-ridge 0-ridge 0-lasso
Period ↓ RMSE Imp. RMSE Imp. RMSE Imp. RMSE Imp. RMSE Imp. RMSE Imp. RMSE Imp.

3years 1556.0 −18.8 578.9 55.8 710.0 45.8 868.5 33.7 582.2 55.5 713.0 45.6 825.0 37.0
2years 1562.4 −19.3 560.4 57.2 705.1 46.2 759.5 42.0 556.8 57.5 699.5 46.6 721.9 44.9
1year 1460.6 −11.5 1051.3 19.7 858.9 34.4 940.9 28.2 919.9 29.8 817.2 37.6 923.3 29.5

4months 1332.9 −1.8 1185.3 9.5 776.6 40.7 960.9 26.6 1102.3 15.8 754.6 42.4 880.6 32.8
2months 1299.5 0.8 1274.3 2.7 877.1 33.0 975.9 25.5 1121.3 14.4 828.2 36.8 966.9 26.2
1month 1309.7 0.0 1147.9 12.4 850.3 35.1 917.6 29.9 1150.5 12.2 858.2 34.5 914.5 30.2

First, we observe that all ridge and lasso models showed clear improvements against the
benchmark. The largest improvement of around 60% in both measures was gained by the c-ridge
(or c-ridge∗) model calibrated on the training period of 2years. Second, we see that the ridge∗

and lasso∗ models showed almost the same performance as ridge and lasso, which indicated
that the ex-post selection of λ was not a big problem. Next, the benchmark model benchm with
short calibration periods of 1month and 2months showed the best prediction accuracy against the
benchmark model. In contrast, the ridge and lasso approaches showed that long training periods
of 2years and 3yearsperformed best. The reason was likely that the estimation of many parameters
required more data to receive stable parameter estimates. Figure 4 illustrates the solution path of the
ridge and lasso models for a calibration period 2years which uses about two years of data.

Here, the ‖ · ‖1-norm of β̂ as a typical measure for model complexity is plotted against the MAE
and RMSE score. Note that ‖β̂‖1 is the sum of all absolute parameters. The solution paths for different
λ values of a certain model e.g., c-ridge (λ) (red circle), are represented by the color intensity. The
darker the color of the symbol within the solution path, the smaller λ. Thus, black symbols correspond
to the OLS solution.

We observe that all three models c-ridge (λ), 0-ridge (λ), and 0-lasso (λ) converged to the the
OLS solution for small λ. The OLS solution had an MAE of around 500 MW and an RMSE of slightly
above 700 MW with an ‖ · ‖1-norm of β of around 5.5. We clearly see that for small λ values, 0-ridge
(λ) and 0-lasso (λ) obtained smaller β values and tended towards the 0 solution. In contrast, c-ridge
(λ) had always a similar range of the ‖ · ‖1-norm of β. The corresponding MAE and RMSE minima
has a ‖ · ‖1-norm around 5.2, which is a similar magnitude as the OLS solution. Thus, the parameter
complexity of both solutions was comparable, but the parameters were better selected by the c-ridge
approach due to the shrinkage towards a reasonable target, instead of 0.

Next, we wanted to look at the intraday structure of the nowcasting errors across the 96
quarter-hours. The forecasting accuracy in term of MAEs and RMSEs is visualized in Figure 5. There,
we observe that the benchmarks exhibited a relatively clear diurnal pattern. The nowcasting error was
largest during the working hours, esp. during the afternoon. For the lasso and ridge models, the daily
pattern was substantially reduced. For instance, the MAEs of c-ridge∗ varied between 383 MW and
484 MW, which was a variation of around 100 MW. The intraday MAE h variation of the MAE of the
benchmark model was around 300 MW and significantly larger. However, as the overall forecasting
error reduced by 60%, the relative variation of the of the MAE forecasting performance remained at a
similar level.
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Figure 4. Graph of ‖β̂‖1 against MAE (left) and RMSE (right) of the selected lasso and ridge models,
illustrating the solution paths for different λ values. The darker the color, the smaller the shrinkage
(black = OLS).
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Figure 5. Intraday prediction accuracy in MAEs and RMSEs of selected models.

We saw that the proposed models with an in-sample sample size of about two years performed
best. It was clear that the computational complexity increased with the amount of data used for
training and calibration. Still, in all cases, the models allowed the implementation and application
on a real-time basis due to the linear model structure. For instance, the estimation of the c-ridge,
0-ridge, and 0-lasso models on the full λ-grid with a training period of 2years took 3.0 s, 0.5 s, and,
2.3 s, respectively. These times were measured on a standard computer using a simple CPU. The ridge
models were estimated using the solve.QP function of the R package quadprog, and the lasso model
was trained and calibrated using glmnet function of the R package glmnet.

5.2. Model Interpretation

As our models were linear models, it was relatively easy to interpret the parameters. The easiest
way to get an understanding of the impact of each parameter in the model was to evaluate the absolute
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impact of parameter i with respect to the overall parameter contribution |β̂i|/‖β̂‖1. Those impacts of
the c-ridge∗ model with a training period of about two years such as the benchmark model benchm
with training period of about a month are illustrated in the bar chart in Figure 6. As the full model had
many parameters, we grouped the impacts |β̂i|/‖β̂‖1 by parameter type to maintain readable results.
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Figure 6. Bar chart of the absolute impact |β̂i|/‖β̂‖1 of Model c-ridge∗ for 2years and benchm for
1month grouped by parameter type.

Obviously, we saw that the only the c-ridgemodel had a contribution from external regressors and
autoregressive impacts (EXT_A, EXT_W, and EXT_D represent the annual, weekly, and daily seasonal
components; LAGS_A and LAGS_S represent the annual and short-term autoregressive lags), as the
benchmark model did not take those effects into account. Here, it seemed that the annual impacts
contributed substantially to the c-ridge∗ model, and this held for both types’ effects from deterministic
external regressors (EXT_A) and autoregressive effects (LAGS_A). Furthermore, the daily seasonal
component (EXT_D) showed about a 3.5% contribution to the overall solution. For the generation
units, we observed that all reduced their absolute impact in the c-ridge∗ model with respect to the
benchmark model. However, all parameters remained relevant.

The interpretation by the absolute impacts |β̂i|/‖β̂‖1 was suitable for evaluation of the impact
within the estimated model. However, the regressors Xi,t lived on completely different scales. To
obtain interpretable impacts with respect to the load Yt, we had to evaluate the time series of β̂iXi,t,
which represented the impact of each single component to the final model. Therefore, Figure 7 shows a
time series plot of the actual load Yt, the benchmark model benchm nowcasts, and the c-ridge∗ model
nowcasts, along with the estimated contributions β̂iXi,t for each regressor i.
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Figure 7. Time series plot of the actual load Yt (black), with the fitted model of the benchmark model
(red) and the c-ridge∗ approach (blue) on 6–12 August 2018. Additionally, the estimated impact of the
single components β̂iXi,t for the c-ridge∗ model (bottom) and benchmark model (top) classified by
type with different colors is illustrated.

We observed that for both models, the interconnector, wind, and solar contributed substantially
to the final solution. For the c-ridge∗ nowcast, a very important contribution to Ŷt came from the
annual autoregressive impacts (LAG_A). It mainly had positive contributions, but also some negative
contributions. For the c-ridge∗ nowcast, some moderate impact could be seen from the nuclear power
and hydro. The latter contributed more to the negative side than to the positive, which was a bit
surprising, as the fundamental model would suggest a positive impact. Furthermore, the benchmark
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model had no negative contribution from hydro power. All other generation types had only a minor
impact for both considered models. Finally, we observed that the intercept contributed around
2000 MW to the final contribution of the c-ridge∗ model, which was about 10% of the overall load Yt.
Remember that about 80% of the load Yt was metered (by generation units and interconnectors). Thus,
from the missing 20% load, around a half (=10%) seemed to be base load.

6. Summary and Conclusions

We formally introduced the problem of load nowcasting to the energy forecasting literature.
In contrast to load forecasting, the recent load of a certain balancing area was predicted based on
limited available metering data within this area. Thus, we were predicting the recent past. We
introduced an industry benchmark model and multiple high-dimensional linear model to tackle the
nowcasting problem. The model design orientated from load forecasting problems. Next to the
impacts of metered generation and interconnector units, the models had seasonal and autoregressive
components to improve the prediction performance. We considered multiple estimation techniques
based on lasso and ridge and studied the impact of the choice of the training/calibration period.

The overall results showed that in comparison to the industry benchmark, an accuracy
improvement in terms of MAE and RMSE of about 60% was achieved. The best model was based
on the ridge estimator and used a specific non-standard shrinkage target. Moreover, we highlighted
that the model parameters could be interpreted. The overall results showed that the annual effects
(deterministic and autoregressive) contributed significantly to the proposed ridge model.

Future research could investigate more nowcasting models, especially non-linear ones,
like artificial neural networks or support vector machines. Obviously, the study could be extended
to probabilistic nowcasting. The considered nowcasting models could also serve a basis for the
construction of load forecasting models. Here, the generation and interconnector units Xi,t had to be
considered in a lagged manner (Xi,t−k), potentially for multiple lags. In general, many methodologies
can be transferred from energy forecasting, especially from short-term load forecasting.

Finally, the model accuracy might be enriched by the use of more external information. In load
forecasting, the (average) temperature of a objective area is often seen as highly relevant. Thus,
the incorporation into a nowcasting model could be beneficial as well. This information can be added
easily by adding the temperature (and potential non-linear transformations) as a new regressor to the
model. We can also add further dummy variables that characterize known structural breaks, e.g., for
changes in the regulation or reshaping of the balancing area. Furthermore, it was clear that additional
metering information would improve the nowcasting accuracy. With respect to renewable energy
information from wind and solar power, a finer geographical resolution might improve the forecasting
accuracy, as Figure 7 shows a high importance for a few individual time series of the c-ridge∗ model
with respect to the benchmark model.
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