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Abstract: Proper treatment and careful management of sewage sludge are essential because its
disposal can lead to adverse environmental impacts such as public health hazards, as well as air, soil,
and water pollution. Several efforts are being made currently not only to safely dispose of sewage
sludge but also to utilize it as an energy source. Therefore, in this study, initiatives were taken to
valorize sewage sludge cake by reducing the moisture content and increasing the calorific value by
applying a hydrothermal treatment technique for efficient energy recovery. The sludge cake treated
at 200 ◦C for 1 h was found to be the optimum condition for hydrothermal carbonization, as, in this
condition, the caloric value of the treated sludge increased by 10% and the moisture content removed
was 20 wt.%. To recover energy from the hydrothermally treated sludge, a gasification technology was
applied at 900 ◦C. The results showed that the product gas from hydrothermally treated sludge cake
had a higher lower heating value (0.98 MJ/Nm3) and higher cold gas efficiency (5.8%). Furthermore,
compared with raw sludge cake, less tar was generated during the gasification of hydrothermally
treated sludge cake. The removal efficiency was 28.2%. Overall results depict that hydrothermally
treated sewage sludge cake could be a good source of energy recovery via the gasification process.

Keywords: sewage sludge cake; hydrothermal carbonization; gasification; tar

1. Introduction

Due to the rapid growth in population and the industrialization of society, the demand of water
supply is increasing all over the world. To meet this demand, several water supply lines and sewerage
lines are being constructed every year [1]. As the percentage of the sewered population is increasing
rapidly, the sewage sludge production rate is increasing in a similar way. According to organization for
economic cooperation and development (OECD) statistics, an increase was recorded not only in Korea
but also globally [2–4]. Figure 1 clearly shows an increase in the facility capacity and penetration rate
of sewage in Korea every year [5]. As of 2017, an average of 11,432 tons of sewage sludge is processed
per day in 4072 sewage sludge treatment facilities nationwide [6].
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Figure 1. Facility capacity and penetration of sewage sludge in Korea.

Figure 2 illustrates current methods of disposal of sewage sludge, which includes incineration,
landfill, fertilizer, fueling, recycling and others (such as ocean dumping and a failure to deal with
sludge that year). The ratio of sludge treatment through recycling such as fueling, fertilization, and
recycling was 57.5 wt.%, that through incineration was 18.7 wt.%, that through landfill was 15.4 wt.%,
and that through drying was 6.0 wt.% in 2017, while sewage sludge generation continues to increase
every year [7]. The graph shows a change in the method of sewage sludge treatment. The reason for
the surge in sludge disposal from 2011 to 2012 was the ban on ocean dumping following the London
convention in 2012, resulting in a surge in throughput. Since then, sewage sludge treatment method
rates of fuel supply, landfill, and fertilizer are increasing.
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Figure 2. Sewage sludge disposal methods and throughputs.

However, all these disposal methods have drawbacks. For example, when treated by incineration,
sewage sludge generates environmentally hazardous substances like heavy metals, particulate matter,
dioxins, and other hydrocarbon materials. Eriksso et al. reported that 541 xenobiotic organic compounds
(XOCs) could potentially be present in sewage sludge [8]. Among them, 99 compounds including
polycyclic aromatic hydrocarbons (PAHs), dioxins, furans, polychlorinated biphenyl (PCB), etc. were
identified as hazardous and require further hazard assessment. Furthermore, due to the higher
moisture content of sewage sludge, the operation cost of the incineration process increases as well. The
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composting treatment method has some cons as well; it can enter into the human body through the
food chain because of the presence of bacteria, heavy metals, or viruses in the sludge [9]. The problem
related to the landfill method is its high organic matter content, which is highly decomposable and
creates odor [10]. This series of elements could cause a loss of wellness for local residents. This
causes Nimby syndrome. Nimby syndrome refers to the protectionist attitudes adopted by community
groups that believe in the installation of “noxious” utilities but not near their homes [11]. Taking these
environmental and economic problems into account, it is important to develop appropriate techniques
for converting sewage sludge into usable energy [12]. Therefore, instead of conventional methods,
advanced technologies are suggested in this study.

Firstly, hydrothermal carbonization (HTC) which is a technology that decomposes organic
materials using subcritical conditions of water at high temperature and high pressure [13]. In addition,
in the process of converting the polymers into low-molecular-weight materials, the viscosity of the
material is lowered, and the particles are micronized [14]. The water of sludge can be divided into four
categories, namely, free water, interstitial or capillary water, surface or vicinal water, and bound water.
Free water accounts for 70–75% of the sludge moisture content [15].

Figure 3 shows the HTC process and its mechanism in detail [16]. The HTC process converts
bound water into free water, which breaks down the structure of organic cells, resulting in an effective
drying process. The HTC involves various reactions such as hydrolysis, decarboxylation, condensation,
and dehydration, which reduce moisture content, as well as inorganic components and hazardous
materials [17]. Energy is also released during this process. This energy increases or maintains the
reaction temperature of the HTC reactor, thus minimizing the need for additional energy input after the
initial heating step, which minimizes the energy loss in the reactor. Escala et al. reported the theoretical
energy balance for this case. According to their study, the energy balance shows that, even if the water
content of stabilized sewage sludge is as low as 10%, there can theoretically be energy gains [18]. In this
study, the HTC methodology was applied to valorize the sewage sludge cake quality by reducing the
moisture content and reducing environmental risks such as the presence of perishable, pathogenic,
and hazardous materials. This improves the economic value and reduces the environmental impacts
of the sewage sludge cake, making it more suitable for future applications [19].
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Secondly, gasification, which is suggested in this study, is a thermochemical conversion process of
carbonaceous material into gaseous products at high temperatures with the aid of a gasification agent.
The gasification agent (another gaseous compound) allows the feedstock to be quickly converted
into gas by means of different heterogeneous reactions [20]. The syngas required from the process
is produced via the reformation of fossil carbon sources, such as coal, oil, or natural gas. To give
new perspectives for energy savings and greenhouse gas emission, mitigation for syngas production
highlights gasification as a candidate for the future energy economy [21].
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Gasification is an efficient technology used for the purposes of producing efficient gas fuels or
using them as building blocks for making different chemicals [22,23]. The main advantage of this
process is that any type of feedstock can be used. Moreover, gasification typically converts the entire
carbon content of the feedstock. The second advantage is that the product gas can be converted into a
variety of fuels (H2, biogas, synthetic diesel, and gasoline) and chemicals (methanol, urea). The other
benefit of the gasification process is the lowered CO2 emissions when using a compact equipment set-up
with higher thermal efficiency [21,24]. In general, during gasification, 20–40% of the stoichiometric
oxidizing agent for complete combustion is injected into the gasifier, and the gasification reactions
take place at a lower temperature compared to the incineration method. The main type of gasification
reactors are downdraft, updraft, and cross draft [25]. A downdraft-type gasifier was selected for
conducting this experiment. Since the final product gas of updraft reactors flows through the pyrolysis
zone, it contains a large amount of tar, whereas the downdraft reactor reduces the tar content due to
cracking and adsorption by char as the final product gas passes through the lower part [26]. The main
stages of downdraft gasification are drying, pyrolysis, combustion, and reduction. Firstly, the moisture
contained in sewage sludge cake is removed from the drying zone below 200 ◦C. Thereafter, the
pyrolysis step proceeds slowly until it reaches 350 ◦C, and most of the reaction is performed at 700 ◦C.
The pyrolysis step is an endothermic reaction, and thermal cracking and condensation take place [27].
The combustion reaction is an exothermic reaction, and all of the heat that causes drying, pyrolysis, and
reduction is either directly generated from combustion or indirectly recovered from combustion by the
heat exchange process of the gasifier. Finally, in the reduction zone, condensable and non-condensable
vapors and char undergo gasification and produce combustible gases. Under these conditions, various
chemical reactions take place, which are shown in Table 1 [28].

Table 1. Typical gasification reactions [22].

Reaction Type Chemical Reaction

Carbon reactions
R1 C + CO2 ↔ 2CO +172.0 kJ/mol
R2 C + H2O↔ CO + H2 +131.0 kJ/mol
R3 C + 2H2 ↔ CH4 −74.8 kJ/mol
R4 C + 0.5O2 ↔ CO −11.0 kJ/mol

Oxidation reactions
R5 C + O2 ↔ CO2 −394.0 kJ/mol
R6 CO + 0.5O2 ↔ CO2 −284.0 kJ/mol
R7 CH4 + 2O2 ↔ CO2 + 2H2O −803.0 kJ/mol
R8 H2 + 0.5O2 ↔ H2O −242.0 kJ/mol

Shift reaction
R9 CO + H2O↔ CO2 + H2 −41.2 kJ/mol

Methanation reactions
R10 2CO + 2H2 ↔ CH4 + CO −247.0 kJ/mol
R11 CO + 3H2 ↔ CH4 + H2O −206.0 kJ/mol
R14 CO2 + 4H2 ↔ CH4 + 2H2O −165.0 kJ/mol

Steam-reforming reactions
R12 CH4 + H2O↔ CO +3H2 +206.0 kJ/mol
R13 CH4 + 0.5O2 ↔ CO + 2H2 −36.0 kJ/mol

The gaseous product obtained during this process is called synthetic gas (syngas) or product gas,
and it mainly contains hydrogen, carbon monoxide, carbon dioxide, and methane [29]. In addition,
inert gases, hydrocarbons, tar, and gas pollutants can be found [30,31]. This method produces fewer air
pollutants compared to direct combustion, and the generated gas is used in gas engines, boilers, and gas
turbines to produce electricity and manufacturing of various chemical products [32,33]. The production
of renewable energy using a gasification system is an environmentally friendly method that helps
reduce dependence on fossil fuels. However, when the gasification technology was applied to sewage
sludge, it was not found to be an efficient process as for other wastes. The main reason behind this
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is the calorific value of sewage sludge, which is low because of the high moisture and low carbon
component. In addition, many harmful substances and contaminants are generated during this
process. To supplement this, the feedstock was pre-treated using a hydrothermal treatment technique
and applied to gasification. Many researchers already reported the HTC and gasification of sewage
sludge [12,14,16]. However, these studies did not reduce contaminant and moisture content in natural
conditions in the combined technology of HTC and gasification. Thus, in this study, an effort was made
to investigate the effect of sewage sludge concurrently treated by HTC and gasification technology.
Furthermore, in this study, tar, which is the biggest problem in gasification, was studied in detail.

2. Materials and Methods

2.1. Characteristics of Sewage Sludge Cake

The feedstock used in this study was sludge generated in a sewage treatment plant, which refers to
the liquid solid precipitated by the action of gravity. The reduced and stabilized sludge was mixed with
a flocculant in the digester. It was dehydrated in a dehydrator to be discharged as a sludge cake. Table 2
shows the methodology of sludge cake characteristics analysis. The target composition of elemental
analysis was carbon (C), hydrogen (H), nitrogen (N), oxygen (O), and sulfur (S). These elements are
combined to make high-molecular materials such as fat, protein, fiber, and so on [34]. Although it
is not well dissolved in liquids, it is well known that cellulose films are destroyed by the physical
properties of sludge. The particles are transformed from a high-molecular-weight material into a
low-molecular-weight material to cause a particle refining reaction [35]. This characteristic change was
observed using organic transform infrared spectroscopy.

Table 2. Sludge cake characteristics analysis methodology.

Analysis Target Equipment Method

Elemental analysis C, H, O, N, S

EA 1112 - Thermo Fisher Scientific
(Waltham, Massachusetts, USA)

EA 1110 - CE Instrument
(Wigan, Greater Manchester, England)

ASTM D 5373
ASTM D 7359-08

Proximate analysis
Moisture
volatiles,

fixed carbon, ash

TGA-701 - LECO
(St. Joseph, Michigan, USA) ASTM D 3172

Heating value analysis Higher heating value AC-600 - LECO
(St. Joseph, Michigan, USA) ASTM D 4809

In the case of proximate analysis, moisture, volatile matter (VM), fixed carbon (FC), and ash
content (AC) were analyzed to determine the rate at which the sample’s volatile matter and fixed
carbon can be converted to gas [36]. Furthermore, the calorific value refers to the maximum amount of
heat generated when the sample reacts, and it is the most important criterion for the performance of
the fuel. The higher heating value (HHV) was analyzed using the equipment in the table below, and
the lower heating value (LHV) was calculated by substituting the elemental analysis value in Dulong’s
equation [37].

2.2. Hydrothermal Carbonization Process

HTC is a treatment process for rupturing cell walls and organic membranes using subcritical
conditions of water while improving the dehydration of sludge [38]. The process diagram of the
hydrothermal reactor in this experiment is shown in Figure 4. The process consisted of a reactor,
a heater, a condenser, a pressure gauge, etc., and the reactor had a capacity of 1 L. The amount of water
and sewage sludge cake was mixed in a ratio of 4:1. The reaction temperature was increased for 30 min,
and the reaction time was 1 h. A stirrer was installed in the reactor to ensure uniformity, and the stirrer
was run at 400 rpm. Before starting the reaction, nitrogen was injected to achieve inert conditions
inside the reactor. After the completion of the reaction, the decompression valve was opened, and
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steam was removed from the reactor to lower the pressure. A pressure gauge was installed to monitor
the pressure change in the reactor during the reaction. The reaction temperatures were set to four
conditions: the low-temperature condition of 0 ◦C and the sub-critical water temperatures of 180 ◦C,
200 ◦C, and 220 ◦C. In order to determine the drying efficiency over time, water was removed by
applying constant pressure with a mechanical pressing device, measured 10 times every 6 h at 30 ◦C in
a dryer.
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Figure 4. Schematic diagram of hydrothermal reactor. 1—motor; 2—water line; 3—nitrogen; 4—heating
jacket; 5—stirrer; 6—reaction zone; 7—pressure gauge; 8—temperature sensor; 9—steam condenser;
10—decompression valves.

2.3. Gasification Process

Figure 5 shows a schematic diagram of the gasification process used in the experiment. The process
consisted of a feeder, a downdraft gasifier, a cyclone, a bag filter, and a scrubber. The feeder was a
semi-batch type and 5 g of sample was fed per minute. The experiments were conducted at 900 ◦C.
To clean the product gas, a cyclone, a filter, and a wet-scrubber were used in the process. Gas analysis
was performed using micro-GC (Agilent 3000 A). Analyses of by-products including tar and gaseous
pollutants, which are a problem in the gasification process, were also performed. Gaseous pollutant
analyses were performed for HCl, HCN, and NH3. HCl and HCN were analyzed using an ion
chromatograph (IC) and NH3 was analyzed using air pollution test standards in Korea.

Tar analysis was performed by removing dust through a thimble filter using a cold solvent trapping
(CST) method with isopropyl solution. Among the tar analysis methods, the European Tar Protocol
can measure organic contaminants and particles in the product gas from gasifiers. Figure 6 depicts the
schematic diagram of the tar sampling method. The sampling train consisted of six impingers, the first
of which had an empty bottle for condensation of water, while the second to fifth impingers had 50 mL
of isopropyl alcohol (IPA). Impingers 1, 2, and 3 were installed in a heated bath at 35 ◦C, and impingers
4, 5 and 6 were installed in a cold bath using ice. Each sampling was conducted for at least 1 h at a
flowrate of 1 L/min and the qualitative analysis was done using GC–MS (Shimadzu 2010 plus).

The efficiency of the gasification process was calculated using Equations (1)–(4) for the Ygas,
LHVgas, ηCCR, and ηCGE. ηCGE is an index indicating the efficiency of converting thermal energy from
a sample to a gas by gasification, and it can evaluate the energy recovery rate. In the case of ηCCR,
it is an index indicating the ratio of the carbon converted to gas to the carbon contained in the fuel,
allowing the reactivity of the sample to be calculated; Ygas is an index for determining the amount of
gas generation [39,40].

ηCGE = ((LHV of Product) × Ygas) ÷ (LHV of feedstock)) × 100, (1)
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where Ygas is the product gas yield (Nm3/kg), LHVgas is the lower heating value (MJ/Nm3) of the
product gas, and LHV is the lower heating value of the feedstock (MJ/kg).

ηCCR = 12 × Ygas × (CO + CO2 + CH4 + 2 × C2H6 + 2 × C3H8) ÷ (22.4 × C), (2)

where Ygas is the gas yield of the feedstock; CO, CO2, CH4, C2H6, and C3H8 are presented as v/v (%)
and C is presented as wt.% of the feedstock.

Ygas (Nm3/kg) = Product gas flow rate (Nm3/h) ÷ Input feedstock mass rate (kg/h), (3)

where the volume of the product gas is on an N2-free basis (Nm3), while the quantity of sludge is given
in kg.

LHVgas (kcal/Nm3) = CO × 30.35 + H2 × 24.70 + CH4 × 85.70 + C2H6 × 153.80 + C3H8 × 223.50, (4)

where CO, H2, CH4, and CnHm (including C2H6, C3H8) are gas concentrations in vol.%.
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Figure 5. Schematic diagram of gasification process: 1—air supply unit; 2—mass flow controller;
3—feeder; 4—feeding pipe; 5—furnace; 6—cyclone; 7—residue box; 8—scrubber; 9—water circulation;
10—fabric filter; 11—activated carbon; 12—filtering system; 13—gas pollutant sampling; 14—gas
vacuum pump; 15—dry gas meter; 16—micro-GC.
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3. Results and Discussion

3.1. Hydrothermal Carbonization Efficiency

3.1.1. Characteristics of Hydrothermally Treated Sludge Cake

Table 3 shows the results of the physicochemical analysis of raw sludge cake and sludge cake
after HTC. Compared to other investigations on the thermal treatments of sludge, the carbon and
volatile components and the heating value were high, which is good as a fuel for gasification [39,41].
In the case of proximate analysis, upon increasing the HTC temperature, fixed carbon increased due to
carbonization, but volatile matter decreased due to thermal decomposition. The elemental analysis
results depict that, as the temperature increased, the carbon component increased, while the hydrogen
and oxygen components decreased. This appeared to decrease the H/C and O/C atomic ratios due to
the change in H2O and CO2 levels due to the dehydration reaction. Dehydration is generally explained
by the removal of hard siloxanes, and decarboxylation is the thermal cracking of long-chain carboxylic
acids to carbonize the biomass by lowering the H/C and O/C ratios. As a result, the unit calorific value
of the solid product is considered to be increased [42]. In addition, the decrease in sulfur and nitrogen
components in feedstock, which are precursors of gaseous contaminants as the reaction temperature
rises, is associated with the conversion to the gas or liquid phase as the volatile components decrease.
This can reduce the potential risk for air pollutants such as H2S, HCl, HCN, NH3, SOx, and NOx.

Table 3. Characteristics of sewage sludge cake (dry basis).

Analysis Component Sample

Sludge Cake HTC-180 HTC-200 HTC-220

Proximate
(wt.%)

FC 7.54 8.30 8.67 8.96
VC 70.30 68.60 66.32 65.12
AC 22.16 23.10 25.01 25.92

Elementary
(wt.%)

C 42.54 43.91 45.03 45.58
H 7.62 7.34 7.00 6.68
N 3.89 2.59 2.01 1.84
S 0.36 0.20 0.17 0.15
O 23.43 22.86 20.78 19.83

Heating value
(MJ/kg)

HHV 21.33 21.48 21.74 21.64
LHV 19.59 19.80 20.15 20.12

3.1.2. Natural Drying Efficiency

The moisture content of sewage sludge cake not only requires a lot of energy to treat, but it also has
the problem of reducing fuel quality and increasing transportation costs. Therefore, after mechanical
dehydration, in order to show the drying efficiency with minimum energy, it was confirmed how
much drying efficiency was shown in the natural drying state. To compare the drying efficiency over
time, a graph was plotted (Figure 7). The figure depicts the moisture content over time before and after
the HTC. Before HTC refers to raw sewage sludge and after HTC refers to the optimum conditions
for hydrothermal carbonization. The optimum conditions involved a temperature of 200 ◦C for 1 h.
In this experiment, 100 g of the sample was placed in a container and measured 10 times every 6 h
at 30 ◦C. The sludge cake moisture content after 60 h was 23.3 wt.% after HTC and 42.8 wt.% before
HTC. Before HTC, the standard error of measurement was 1.02, and, after HTC, the standard error of
measurement was 0.89.

When the water content was set to 100.0 wt.% of the sample after the mechanical treatment, it can
be seen that the curve was not only 19.5 wt.% lower than before HTC but it also decreased rapidly
with time. In the hydrothermal reaction above 190 ◦C, the binding water present in the protein and
carbohydrate was destroyed, and the cell wall was changed to free water. The heat transfer area was
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increased due to the increase in surface area due to cell-wall destruction, and the heat conductivity was
increased; thus, the drying efficiency was increased upon increasing the temperature of the dry matter [43].
High hydrothermal reaction temperatures seemed to reduce the oxygen-containing functional groups
during the increase in the carbon aromatic structure, thus making the hydrochar hydrophobic [42].
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3.1.3. Change in Structure with Respect to Temperature

Fourier transform infrared spectroscopy (FTIR) analysis was conducted to confirm the structural
change with temperature. As shown in Figure 8, strong absorption peaks were found at 3450 cm−1,
2920 cm−1, 1656 cm−1, and 1050 cm−1. Among them, the largest peak of 3400 cm−1 at the center of
the 3700–2800 cm−1 range was due to the hydrogen oscillation and the amide hydrogen oscillation
of alcohol, phenol, or carboxylic acid [44]. The peak of 2922 cm−1 was due to the CH oscillation of
aliphatic groups, the peak of 1650 cm−1 was due to the COO and C = O of aminoids and ketones,
and the 1030 cm−1 peak was due to C – O oscillation [45].
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Looking at the overall picture, it can be seen that, as the temperature increased, the bands of
organic groups, including methylene groups, hydroxyl groups, carboxyl groups, esters, and amides,
significantly decreased. In addition, it can be seen that the violent decomposition and hydrolysis
of organic components occurred due to the relatively large interval between the graphs of 180◦ and
200◦ [46–48].

3.2. Gasification Performance

3.2.1. Syngas Efficiency

In order to inject the same amount of oxidant under the same conditions, the amount of oxidant
was calculated according to the results of the elemental analysis (can be found in Table 3). The oxidizing
agent was injected at the equivalence ratio (ER) of 0.3, which was 3.05 L/min for the raw sludge cake
and 3.07 L/min for the hydrothermal treated sludge cake. Figure 9 illustrates the composition of
product gas (N2, H2, CH4, CO, and CO2) from raw sludge cake and hydrothermally treated sludge cake
at 200 ◦C. The gas composition shows that, after the HTC, the composition ratio of CO was relatively
high, and the composition of CO2 was comparatively low. The reactions of formulas R1 (Bououard)
and R2 (water—gas or steam) seemed to be dominant. It was determined that the reaction between
formulas R1 and R2 was an endothermic reaction, and the reaction was more active, whereby H2 and
CO tended to increase. In addition, it can be seen that hydrocarbon gases such as C2H4, C2H6, and
C3H8 after HTC were reduced because the conversion to low molecules was more actively performed
at high temperature by thermal decomposition of hydrocarbon gases.
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Figure 9. Composition of product gas before and after hydrothermal treatment.

Figure 10 shows the results of different gasification efficiency parameters. The gas yield for raw
sludge cake was slightly higher compared to hydrothermally treated sludge. For raw sludge cake,
gas yield was 1.76 m3/kg, whereas, for hydrothermally treated sludge, the gas yield was 1.74 m3/kg.
The value of ηCCR was 67.99% for raw sludge cake and 65.51% for hydrothermally treated sludge, which
indicates a higher ηCCR for raw sludge cake. After HTC, it seems that the amount of gas was reduced
due to high ash content. In the case of ηCCR, the composition of CO2 and hydrocarbons was relatively
low and, thus, the ηCCR tended to decrease. However, the value of ηCGE was 39.53% for raw sludge
cake and 45.33% for sludge after HTC. This result indicates that the sludge syngas LHV after HTC was
higher than that of raw sludge cake and, thus, was higher in terms of energy recovery. Seggiani et al.
reported gas compositions with similar data values. However, their value for sewage sludge CGE was
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28.9% and LHVgas was 3.37 MJ/Nm3. The reason why this experiment’s values were lower is because
the amount of volatile components and the heating value were higher in the feedstock [49].
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3.2.2. Gas Pollutant and Tar Characteristics

Generally, the product gas generated in the gasification process contains gaseous contaminants
such as HCl, NH3, and HCN. These materials need to be refined to limit the concentrations required by
each process to link methanol synthesis processes, gas engine generation, and gas turbines. For the
raw sludge cake gasification process, the HCl concentration was 15.36 ppm, the NH3 concentration
was 26.90 ppm, and the HCN concentration was 13.67 ppm. For the hydrothermally treated sludge
gasification process, the concentration of HCl was 3.50 ppm, the concentration of NH3 was 19.50 ppm,
and the concentration of HCN was 5.08 ppm. Compared to the raw sludge cake, it can be seen that the
amount of gas pollutants was significantly reduced in the hydrothermally treated sludge gasification
process. Because the nitrogen, sulfur, and chlorine components of the raw sludge cake were reduced
by HTC, this eventually helped to significantly reduce the gaseous contaminants.

Tar is a substance that condenses in a region (at the rear end) where the temperature is low due to
gasification, and it prevents the flow of gas or blocks the gasification process. Figure 11 illustrates the
results of tar qualitative analysis. Benzene, toluene, styrene, and naphthalene species were found in the
tar. In this experiment, the amount of tar generated can be seen to decrease for hydrothermally treated
sludge as the high-molecular-weight material converted into low-molecular-weight material due to the
hydrothermal reaction. Compared to raw sludge cake gasification, the amount of benzene decreased
from 436 ppm to 347 ppm (by 20%), styrene decreased from 273 ppm to 164 ppm, toluene decreased
from 4.19 ppm to 2.43 ppm, and naphthalene decreased from 2.25 to 0.49 ppm for hydrothermally
treated sludge.
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4. Conclusions

In this study, hydrothermal carbonization and gasification technologies were applied as a combined
process for high-efficiency energy production (not as a single technology). Available reports on sewage
sludge treatments showed segregated treatment process only. To the best of our knowledge, this is the
first time that a combined HTC and gasification technology was applied to reduce contaminant and
moisture contents in natural conditions. Another key aspect of this research was a detailed study on
tar, which is one of the greatest concerns in the gasification process. The major outcomes from this
study are described below.

In the case of the sludge cake undergoing HTC, after the hydrothermal treatment, the caloric value
of the treated sewage sludge cake increased by 10% and the moisture content removed was 20 wt.%.
In addition, the carbon content increased with increasing temperature, and the remaining components
showed a decreasing tendency, as the carbon content increased. The results of HTC further depicted that
this process more hygienic, environmentally friendly, and economical compared to the conventional
treatment of sewage sludge cake, as no worm production takes place during this process and odor
generation is relatively low. The gasification experimentation results showed that, compared to raw
sludge cake, hydrothermally treated sewage sludge cake had higher syngas yield with a high content
of CO, H2, and CH4, although the dry gas yield and ηCCR showed similar values. However, gaseous
contaminants and tar generation, which plays a crucial role in the gasification process, were less
compared to the raw sludge cake gasification process, since the N, S, and Cl components, which are
the pollutant precursors, were reduced in the HTC method. In summary, the moisture content in
the hydrothermally treated sludge cake was reduced and the amount of heat generated during the
process helped to improve the quality of the sewage sludge cake. However, since the value of moisture
and ash is higher than that of solid fuel, it is necessary to provide a reasonable standard by mixing it
with low-moisture and low-ash biomass, such as sawdust. The HTC method produced lower tar and
gaseous contaminants that can cause operational problems when the gasification technology is applied
as HTC. If the technology is implemented in the future, the sewage sludge cake can be used as a solid
fuel for energy recovery without a separate drying device.
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Nomenclature

ASTM American Society for Testing and Materials
BTX Benzene, toluene, and xylene
ηCCR Carbon conversion ratio
ηCGE Cold gas efficiency
CST Cold solvent trapping
DGM Dry gas meter
FC Fixed carbon
FTIR Fourier-transform infrared spectroscopy
HC Hydro-char
HCl Hydrochloric acid
HCN Hydrogen cyanide
HHV Higher heating value
HTC Hydrothermal carbonization
IPA Isopropyl alcohol
ID FAN Induced draft fan
IC Ion chromatography
LHV Lower heating value
LHVgas Lower heating value of product gas
NH3 Ammonia
MC Moisture content
PAHs Polycyclic aromatic hydrocarbons
PCB Polychlorinated biphenyl
TC Thermocouple
VM Volatile matter
XOCs Xenobiotic organic compounds
Ygas Yield of product gas
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