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Abstract: By applying the Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM)
to the polyethylene-reflected plutonium (PERP) benchmark, this work presents results for the first-
and second-order sensitivities of this benchmark’s leakage response with respect to the spontaneous
fission source parameters. The numerical results obtained for these sensitivities indicate that the
1st-order relative sensitivity of the leakage response to the source parameters for the two fissionable
isotopes in the benchmark are all positive, signifying that an increase in the source parameters
will cause an increase in the total neutron leakage from the PERP sphere. The 1st- and 2nd-order
relative sensitivities with respect to the source parameters for 239Pu are very small (10−4 or less).
In contradistinction, the 1st-order and several 2nd-order relative sensitivities of the leakage response
with respect to the source parameters of 240Pu are large. Large values (e.g., greater than 1.0) are
also displayed by several mixed 2nd-order relative sensitivities of the leakage response with respect
to parameters involving the source and: (i) the total cross sections; (ii) the average neutrons per
fission; and (iii) the isotopic number densities. On the other hand, the values of the mixed 2nd-order
relative sensitivities with respect to parameters involving the source and: (iv) the scattering cross
sections; and (v) and the fission cross sections are smaller than 1.0. It is also shown that the effects
of the 1st- and 2nd-order sensitivities of the PERP benchmark’s leakage response with respect to
the benchmark’s source parameters on the moments (expected value, variance and skewness) of
the PERP benchmark’s leakage response distribution are negligibly smaller than the corresponding
effects (on the response distribution) stemming from uncertainties in the total, fission and scattering
cross sections.

Keywords: polyethylene-reflected plutonium sphere; 1st- and 2nd-order sensitivities; fission source
parameters; fission spectrum; expected value; variance and skewness of leakage response

1. Introduction

In previous works [1–3], the Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM)
conceived by Cacuci [4–6] has been applied to the subcritical polyethylene-reflected plutonium
(acronym: PERP) metal OECD/NEA-benchmark [7], to compute efficiently the exact values of the
1st-order and 2nd-order sensitivities of the PERP’s leakage response with respect to the following model
parameters: (i) 180 group-averaged total microscopic cross sections [1]; (ii) 21,600 group-averaged
scattering microscopic cross sections [2]; and (iii) 120 fission process parameters [3]. This work,
designated as Part IV, presents the results of having applied the 2nd-ASAM to compute the 1st- and
2nd-order sensitivities of the PERP’s leakage response with respect to the PERP benchmark’s 12 source
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parameters. The remaining results obtained by applying the 2nd-ASAM to compute the 1st- and
2nd-order sensitivities of the PERP’s leakage response with respect to the PERP’s 6 isotopic number
densities will be presented in Part V [8]. The overall conclusions drawn from this massive sensitivity
analysis endeavor will be presented in Part VI [9].

Although the physical characteristics of the PERP metal sphere benchmark have been detailed in
Part I [1], it is convenient, for easy reference, to recall the dimensional and material composition of the
benchmark in Table 1.

Table 1. Dimensions and material composition of the PERP benchmark.

Materials Isotopes Weight Fraction Density
(g/cm3) Zones

Material 1
(plutonium metal)

Isotope 1 (239Pu) 9.3804 × 10−1

19.6 Material 1 is assigned to zone 1,
which has a radius of 3.794 cm.

Isotope 2 (240Pu) 5.9411 × 10−2

Isotope 3 (69Ga) 1.5152 × 10−3

Isotope 4 (71Ga) 1.0346 × 10−3

Material 2
(polyethylene)

Isotope 5 (C) 8.5630 × 10−1
0.95

Material 2 is assigned to zone 2,
which has an inner radius of 3.794 cmIsotope 6 (1H) 1.4370 × 10−1

and an outer radius of 7.604 cm.

The PERP benchmark has no delayed neutron or (α, n) source; the sole source of neutrons is
provided by the spontaneous fissions stemming from 239Pu (Isotope 1) and 240Pu (Isotope 2). This source
has been computed using the code SOURCES4C [10]. For an actinide nuclide k, where k = 1, 2 for
the PERP benchmark, the spontaneous source depends on the following 12 model parameters [10]:
the decay constant λk, the atom density Nk, the average number of neutrons per spontaneous fission
νSF

k , the spontaneous fission branching ratio FSF
k , and the two parameters ak and bk used in a Watt’s

fission spectra to approximate the spontaneous fission neutron spectra. The nominal values of these
parameters (except for Nk) are available from a library file contained in SOURCES4C [10], and the
nominal values for Nk are specified from the PERP benchmark. These imprecisely known source
parameters also contribute to the accuracy of the neutron transport calculation. To evaluate the
uncertainties induced in the leakage response by the imprecisely known source parameters, the
1st-order and 2nd-order sensitivities of the leakage response with respect to the source parameters will
be computed by specializing the general expressions derived by Cacuci [6] to the PERP benchmark.

This work is organized, as follows: Section 2 presents the computational results for the 12
first-order sensitivities and 12× 12 second-order sensitivities of the leakage response with respect to
the benchmark’s source parameters. Section 3 reports the numerical results for the 12 × 180 mixed
2nd-order sensitivities to the source parameters and total microscopic cross sections. Section 4 reports
the numerical results for the 12× 21, 600 matrix of mixed 2nd-order sensitivities to the source parameters
and scattering microscopic cross sections. Section 5 presents the numerical results for the 12 × 60
mixed 2nd-order sensitivities to the source parameters and fission microscopic cross sections. Section 6
reports the computational results for the 12× 60 mixed 2nd-order sensitivities to source parameters
and the average number of neutrons per fission of all the fissionable isotopes in the PERP benchmark.
Section 7 reports the numerical results for the 12× 6 mixed 2nd-order sensitivities to source parameters
and the isotopic number densities of all isotopes in the PERP benchmark. Section 8 presents the impact
of the 1st- and 2nd-order sensitivities on the uncertainties induced in the PERP’s leakage response by
the imprecisely known source parameters. Section 9 offers conclusions based upon the computational
results presented in this work.

2. Computation of 1st- and 2nd-Order Sensitivities of the PERP Leakage Response to
Source Parameters

As described in Part I [1], the neutron flux is computed by solving numerically the neutron transport
equation using the PARTISN [11] multigroup discrete ordinates transport code. These PARTISN [11]
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computations were performed using the MENDF71X 618-group cross sections [12] collapsed to
G = 30 energy groups, with group boundaries, Eg, as presented in [1]. The MENDF71X library uses
ENDF/B-VII.1 Nuclear Data [13].

For the PERP benchmark under consideration, PARTISN [11] solves the following multi-group
approximation of the neutron transport equation with a spontaneous fission source provided by the
code SOURCES4C [10]:

Bg(α)ϕg(r, Ω) = Qg(r), g = 1, . . . , G, (1)

ϕg(rd, Ω) = 0, Ω · n < 0, g = 1, . . . , G, (2)

where ϕg(r, Ω) is the customary “group-flux” for group g, and rd denotes the external radius of the
PERP benchmark, and where:

Bg(α)ϕg(r, Ω) , Ω·∇ϕg(r, Ω) + Σg
t (r) ϕ

g(r, Ω)

−

G∑
g′=1

∫
4π

Σg′→g
s

(
r, Ω

′

→ Ω
)
ϕg′

(
r, Ω

′
)
dΩ

′

− χg(r)
G∑

g′=1

∫
4π

(νΣ)g′

f (r) ϕ
g′
(
r, Ω

′
)
dΩ

′

, (3)

Qg(r) ,
N f∑
i=1

λiNi,1FSF
i ν

SF
i

1
I0

∫ Eg

Eg+1
dE e−E/aisinh

√
biE, (4)

with:

I0 =

√
πai3bi

2
e

aibi
4 . (5)

In Equations (4) and (5), the subscript “i” is the number of nuclides with spontaneous fission
source. In Equation (1), the vector α denotes the “vector of imprecisely known model parameters”,

which has been defined in Part I [1] as α ,
[
σt;σs;σ f ;ν; p; q; N

]†
, with vector-components σt, σs, σ f ,

ν, p, q and N, which comprise the various model parameters for the microscopic total cross sections,
scattering cross sections, fission cross sections, average number of neutrons per fission, fission spectra,
sources, and isotopic number densities, respectively. For convenient reference, the components of the
vector of model parameters α are reproduced in Appendix A.

The total neutron leakage from the PERP sphere, denoted as L(α), will depend (indirectly, through
the neutron flux) on all of the imprecisely known model parameters and is defined as follows:

L(α) ,
∫
Sb

dS
G∑

g=1

∫
Ω·n>0

dΩ Ω · n ϕg(r, Ω), (6)

where Sb is the external surface area of the PERP ball. Figure 1 shows the histogram plot of the leakage
for each energy group for the PERP benchmark. The total leakage computed using Equation (6) for the
PERP benchmark is 1.7648× 106 neutrons/sec. Table 2 summarizes the integrals for the source, fission
source, absorption, in-scattering, self-scattering, out-scattering, and particle balance.
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Figure 1. Histogram plot of the leakage for each energy group for the PERP benchmark. 
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The sub-sections to follow will report computational results for the 1st- and 2nd-order 
sensitivities of the leakage response with respect to the source parameters for ( )∂ ∂L α q  and 

( )∂ ∂ ∂2 L α q q , and the 2nd-order mixed sensitivities ( )∂ ∂ ∂2
tL α q σ , ( )∂ ∂ ∂2

sL α q σ , 
( )∂ ∂ ∂2

fL α q σ , ( )∂ ∂ ∂2 L α q ν  and ( )∂ ∂ ∂2 L α q N . 

2.1. First-Order Sensitivities ( )∂ ∂L α q  

In view of Equation (4), the source ( )gQ r  for the PERP benchmark depends on the vector of 

model parameters q , having components defined as follows: 

λ λ ν ν   =    1 2 1 2 1 2 1 2 1 2 1,1

†

2,1

†

1 ,..., , 12., ; , ; , ; , ; , ; ,
q

SF SF SF SF
qJ F F a a b b JN Nq qq  (7) 

The nominal values of the source parameters for the PERP benchmark are listed in Table 3 below. 

Table 3. Nominal values of the source parameters for the PERP benchmark [10]. 
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Figure 1. Histogram plot of the leakage for each energy group for the PERP benchmark.

Table 2. Summary of integrals of neutrons for the PERP benchmark.

Quantity Values (neutrons/s)

Integral source 2.7839 × 105

Integral fission 2.4584 × 106

Integral absorption 9.7201 × 105

Integral in-scattering 8.3842 × 106

Integral self-scattering 1.3558 × 107

Integral out-scattering 8.3842 × 106

Integral net leakage 1.7648 × 106

Integral particle balance 8.3526 × 10−6

The sub-sections to follow will report computational results for the 1st- and 2nd-order sensitivities
of the leakage response with respect to the source parameters for ∂L(α)/∂q and ∂2L(α)/∂q∂q, and
the 2nd-order mixed sensitivities ∂2L(α)/∂q∂σt, ∂2L(α)/∂q∂σs, ∂2L(α)/∂q∂σ f , ∂2L(α)/∂q∂ν and
∂2L(α)/∂q∂N.

2.1. First-Order Sensitivities ∂L(ααα)/∂q

In view of Equation (4), the source Qg(r) for the PERP benchmark depends on the vector of model
parameters q, having components defined as follows:

q ,
[
q1, . . . , qJq

]†
,

[
λ1,λ2; FSF

1 , FSF
2 ; a1, a2; b1, b2; νSF

1 , νSF
2 ; N1,1, N2,1

]†
, Jq = 12. (7)

The nominal values of the source parameters for the PERP benchmark are listed in Table 3 below.
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Table 3. Nominal values of the source parameters for the PERP benchmark [10].

Parameters λ1 [1/sec] FSF
1 [-] a1 [-] b1 [-] νSF

1 [-]
N1,1

[atoms/cm3]

Values 9.11029 × 10−13 3.0 × 10−12 0.885247 3.80269 2.16 4.631644 × 1022

Parameters λ2 [1/sec] FSF
2 [-] a2 [-] b2 [-] νSF

2 [-]
N2,1

[atoms/cm3]

Values 3.35340 × 10−12 5.75 × 10−8 0.794930 4.68927 2.16 2.921242 × 1021

The first-order sensitivity of the PERP leakage response to the source parameters are computed
from the following particular form of Equation (154) from Reference [6]:

∂L(α)
∂q j

=
G∑

g=1

∫
V

dV
∫

4π
dΩ ψ(1),g(r, Ω)

∂Qg(q; r, Ω)

∂q j
, j = 1, . . . , Jq. (8)

The multigroup adjoint fluxesψ(1),g(r, Ω), g = 1, . . . , G appearing in Equation (8) are the solutions
of the following 1st-Level Adjoint Sensitivity System (1st-LASS) presented in Equations (156) and (157)
of [6]:

A(1),g(α)ψ(1),g(r, Ω) = Ω · nδ(r− rd), g = 1, . . . , G, (9)

ψ(1),g(rd, Ω) = 0, Ω · n > 0, g = 1, . . . , G, (10)

where the adjoint operator A(1),g(α) takes on the following particular form of Equation (149) from
Reference [6]:

A(1),g(α)ψ(1),g(r, Ω)

, −Ω·∇ψ(1),g(r, Ω) + Σg
t (t) ψ

(1),g(r, Ω) −
G∑

g′=1

∫
4π

dΩ
′

Σg→g′
s

(
s; Ω→ Ω

′
)
ψ(1),g′

(
r, Ω

′
)

−νΣg
f (f)

G∑
g′=1

∫
4π

dΩ
′

χg′ ψ(1),g′
(
r, Ω

′
)

, g = 1, . . . , G.

(11)

Performing the integration over the energy interval in Equation (4) yields the following expression
for the PERP benchmark’s spontaneous fission source:

Qg = Qg
SF =

N f∑
i=1

Qg
SF,i (12)

with:

Qg
SF,i = λiNi,1FSF

i ν
SF
i

 er f (c2) − er f (c1) + er f (c4) − er f (c3)

2
+

e−(c1)
2
− e−(c2)

2
− e−(c3)

2
+ e−(c4)

2√
πaibi

, (13)

where:
c1 =

(√
Eg+1 −

√
ai2bi/4

)
/
√

ai, (14)

c2 =
(√

Eg −
√

ai2bi/4
)
/
√

ai, (15)

c3 =
(√

Eg+1 +
√

ai2bi/4
)
/
√

ai, (16)

c4 =
(√

Eg +
√

ai2bi/4
)
/
√

ai. (17)
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The first-order derivatives of the spontaneous fission source with respect to the parameters
q j=1 ≡ λi=1 and q j=2 ≡ λi=2 are as follows:

∂Qg(q; r, Ω)

∂q j
=
∂Qg

SF
∂λi

= Ni,1FSF
i ν

SF
i

1
I0

∫ Eg

Eg+1
dE e−E/aisinh

√
biE =

Qg
SF,i

λi
, i, j = 1, 2. (18)

The first-order derivatives of the spontaneous fission source with respect to the parameters
q j=3 ≡ FSF

i=1 and q j=4 ≡ FSF
i=2 are as follows:

∂Qg(q; r, Ω)

∂q j
=
∂Qg

SF

∂FSF
i

=
Qg

SF,i

FSF
i

, j = 3, 4; i = 1, 2. (19)

The first-order derivatives of the spontaneous fission source with respect to the parameters
q j=5 ≡ ai=1 and q j=6 ≡ ai=2 are as follows:

∂Qg(q; r, Ω)

∂q j
=
∂Qg

SF
∂ai

=

∂

(
M∑

m=1

I∑
k=1

Qg
SF,k

)
∂ai

= λiNi,1FSF
i ν

SF
i Da(g; ai, bi), j = 5, 6; i = 1, 2, (20)

where:
Da(g; ai, bi) =

1
2ai
√
π

[
c3e−c1

2
− c4e−c2

2
+ c1e−c3

2
− c2e−c4

2]
+ 1

2ai
√
πaibi

[
(1− 2c1c3)

(
e−c3

2
− e−c1

2)
+ (1− 2c2c4)

(
e−c2

2
− e−c4

2)]
.

(21)

The first-order derivatives of the spontaneous fission source with respect to the parameters
q j=7 ≡ bi=1 and q j=8 ≡ bi=2 are as follows:

∂Qg(q; r, Ω)

∂q j
=
∂Qg

SF
∂bi

=

∂

(
M∑

m=1

I∑
k=1

Qg
SF,k

)
∂bi

= λiNi,1FSF
i ν

SF
i Db(g; ai, bi), j = 7, 8; i = 1, 2, (22)

where:

Db(g; ai, bi) =
√

ai

4
√
πbi

[
e−c1

2
− e−c2

2
+ e−c4

2
− e−c3

2]
+ 1

2bi
√
πaibi

[(
e−c2

2
− e−c1

2
+ e−c3

2
− e−c4

2)
+

√
aibi

(
c1e−c1

2
− c2e−c2

2
+ c3e−c3

2
− c4e−c4

2)]
.

(23)

The first-order derivatives of the spontaneous fission source with respect to the parameters
q j=9 ≡ ν

SF
i=1 and q j=10 ≡ ν

SF
i=2 are as follows:

∂Qg(q;r,Ω)
∂q j

=
∂Qg

SF
∂νSF

i
=

∂

(
M∑

m=1

I∑
k=1

λkNk,mFSF
k νSF

k
1
I0

∫ Eg

Eg+1 dE e−E/ak sinh
√

bkE
)

∂νSF
i

= λiNi,1FSF
i

1
I0

∫ Eg

Eg+1 dE e−E/aisinh
√

biE =
Qg

SF,i

νSF
i

, j = 9, 10; i = 1, 2.

(24)

The first-order derivatives of the spontaneous fission source with respect to the parameters
q j=11 ≡ N1,1 and q j=12 ≡ N2,1 are as follows:

∂Qg(q;r,Ω)
∂q j

=
∂Qg

SF
∂Ni,1

=
∂

(
M∑

m=1

I∑
k=1

λkNk,mFSF
k νSF

k
1
I0

∫ Eg

Eg+1 dE e−E/ak sinh
√

bkE
)

∂Ni,1
=

Qg
SF,i

Ni,1
,

j = 11, 12; i = 1, 2.

(25)
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Inserting the expressions obtained in Equations (18)–(25) into Equation (8) yields the following
expressions for the 1st-order sensitivities of the leakage response with respect to the source parameters:

For j = 1, 2 :
∂L(α)
∂q j

,
∂L(α)
∂λi

=
1
λi

G∑
g=1

∫
V

dVξ(1),g0 (r)Qg
SF,i, i = 1, 2; (26)

For j = 3, 4 :
∂L(α)
∂q j

,
∂L(α)

∂FSF
i

=
1

FSF
i

G∑
g=1

∫
V

dVξ(1),g0 (r)Qg
SF,i, i = 1, 2; (27)

For j = 5, 6 :
∂L(α)
∂q j

,
∂L(α)
∂ai

= λiNi,1FSF
i ν

SF
i

G∑
g=1

∫
V

dVξ(1),g0 (r)Da(g; ai, bi), i = 1, 2; (28)

For j = 7, 8 :
∂L(α)
∂q j

,
∂L(α)
∂bi

= λiNi,1FSF
i ν

SF
i

G∑
g=1

∫
V

dVξ(1),g0 (r)Db(g; ai, bi), i = 1, 2; (29)

For j = 9, 10 :
∂L(α)
∂q j

,
∂L(α)

∂νSF
i

=
1
νSF

i

G∑
g=1

∫
V

dVξ(1),g0 (r)Qg
SF,i, i = 1, 2; (30)

For j = 11, 12 :
∂L(α)
∂q j

,
∂L

(
α; Qg

SF

)
∂Ni,1

=
1

Ni,1

G∑
g=1

∫
V

dVξ(1),g0 (r)Qg
SF,i, i = 1, 2, (31)

where:

ξ
(1),g
0 (r) ,

∫
4π

dΩ ψ(1),g(r,Ω). (32)

The 1st-order absolute sensitivities of the PERP’s leakage response with respect to the source
parameters for the PERP benchmark are computed using Equations (26)–(31). It is important to
note that the parameters q j=1 ≡ λi=1, q j=2 ≡ λi=2, q j=3 ≡ FSF

i=1, q j=4 ≡ FSF
i=2, q j=5 ≡ ai=1, q j=6 ≡ ai=2,

q j=7 ≡ bi=1, q j=8 ≡ bi=2, q j=9 ≡ ν
SF
i=1 and q j=10 ≡ ν

SF
i=2 appear solely in the expression of the spontaneous

fission source, Qg
SF, for the PERP benchmark. Therefore, the expressions provided in Equations

(26)–(30) represent the total 1st-order sensitivities of the leakage response with respect to these
parameters. In contradistinction, however, the isotopic densities N1,1 and N2,1 appear not only in the
expression of the PERP’s source Qg

SF, but also appear as parameters in the definitions of the various
macroscopic cross sections that enter as coefficients of the various terms in the definition of the forward
and adjoint Boltzmann operator (i.e., on the left side of the various forward and adjoint transport
equations). Therefore, the expression shown on the right-most side of Equation (31) represents the
partial 1st-order sensitivity of the PERP’s leakage response with respect to the isotopic densities N1,1

and N2,1 appearing solely in the source Qg
SF. This fact has been emphasized by using the notation

∂L
(
α; Qg

SF

)
in Equation (31).

The sensitivities obtained in Equations (26)–(31) are absolute, as opposed to relative sensitivities,
which makes it difficult to rank the importance of these sensitivities in affecting to the PERP’s leakage
response. Therefore, to facilitate the direct comparison of the importance ranking of the sensitivities
obtained in Equations (26)–(31), the numerical results for these sensitivities will be presented in unit-less
values of the respective relative sensitivities, which are denoted as S(1)

(
q j
)

and are defined as follows:

S(1)
(
q j
)
=

(
∂L/∂q j

)(
q j/L

)
, j = 1, . . . , Jq. (33)
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Applying Equation (33) to Equations (26), (27), (30) and (31), yields the same expression for the
1st-order relative sensitivities for S(1)(λi), S(1)

(
FSF

i

)
, S(1)

(
νSF

i

)
and S(1)(Ni,1) for i = 1, 2, namely:

S(1)(λi) = S(1)
(
FSF

i

)
= S(1)

(
νSF

i

)
= S(1)(Ni,1) =

1
L

G∑
g=1

∫
V

dVξ(1),g0 (r)Qg
SF,i, i = 1, 2, (34)

which means that these sensitivities will all have the same relative values, although their absolute
values differ from each other.

The numerical values of the 1st-order relative sensitivities of the PERP leakage response with
respect to the source parameters are presented in Tables 4 and 5, below. All the values obtained for the
1st-order sensitivities, as shown in Tables 4 and 5, have been independently verified with the results
calculated from the central-difference estimates obtained by repeated forward PARTISN computations,
in which the source parameters were individually perturbed by a small amount. These verifications
showed good agreements between the sensitivities computed using the 1st-LASS and the corresponding
ones computed using central-difference methods.

Table 4. First-order relative sensitivities S(1)
(
q j

)
for isotope 239Pu.

S(1)(λ1) S(1)(FSF
1 ) S(1)(a1) S(1)(b1) S(1)(νSF

1 ) S(1)(N1,1)

values 2.252 × 10−4 2.252 × 10−4 1.119 × 10−5 2.801 × 10−6 2.252 × 10−4 2.252 × 10−4

Table 5. First-order relative sensitivities S(1)
(
q j

)
for isotope 240Pu.

S(1)(λ2) S(1)(FSF
2 ) S(1)(a2) S(1)(b2) S(1)(νSF

2 ) S(1)(N2,1)

values 9.998 × 10−1 9.998 × 10−1 4.372 × 10−2 1.165 × 10−2 9.998 × 10−1 9.998 × 10−1

The results shown in Table 4 indicate that the 1st-order relative sensitivities with respect to the
source parameters of isotope 239Pu are very small, in the order of 10−4 or less. However, as shown in
Table 5, the 1st-order relative sensitivities with respect to the source parameters λ2, FSF

2 , νSF
2 , and N2,1

of isotope 240Pu are quite large, with values close to 1.0. Also, it can be seen that the leakage response
is less sensitive to spectrum effects (i.e., to parameters a and b of the normalized Watt’s spectrum) than
to the parameters affecting the magnitudes of the respective sources. Moreover, the 1st-order relative
sensitivities with respect to the Watt’s coefficients a2 and b2 of isotope 240Pu are also much larger than
the ones with respect to the Watt’s coefficients a1 and b1 of isotope 239Pu.

As indicated in Table 4, the 1st-order sensitivities of the leakage response with respect to the source
parameters of isotope 239Pu (i.e., λ1, FSF

1 , νSF
1 , a1, b1 and N1,1) are all negligibly small by comparison to

the corresponding results shown in Table 5 for 240Pu.

2.2. Second-Order Sensitivities ∂2L(ααα)/∂q∂q

The equations needed for deriving the expression of the 2nd-order sensitivities ∂2L(α)/∂q∂q are
obtained by particularizing Equation (208) from Reference [6] to the PERP benchmark, which yields:

∂2L(α)
∂q j∂qm2

=
G∑

g=1

∫
V

dV
∫

4π
dΩ ψ(1),g(r,Ω)

∂Qg(q; r, Ω)

∂q j∂qm2

, j = 1, . . . , Jq; m2 = 1, . . . , Jq. (35)

Computing the unmixed 2nd-order derivatives of the spontaneous fission source with respect to
λi, FSF

i , νSF
i and Ni,1 shows that they vanish, i.e.,

∂Qg(q; r, Ω)

∂λi∂λi
=
∂Qg(q; r, Ω)

∂FSF
i ∂FSF

i

=
∂Qg(q; r, Ω)

∂νSF
i ∂ν

SF
i

=
∂Qg(q; r, Ω)

∂Ni,1∂Ni,1
= 0, f or i = 1, 2. (36)
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The mixed 2nd-order derivatives with respect to the source parameters that do not belong to the
same isotope also vanish, i.e.,

∂Qg(q; r, Ω)

∂q j∂qm2

= 0, i f i j , im2 , (37)

where i j and im2 denote the isotope associated with the source parameters q j and qm2 , respectively.
The expressions of the five non-zero 2nd-order derivatives of the spontaneous fission source with

respect to q j=1,2 ≡ λi and other source parameters are provided in Equations (38) through (42), below:

∂Qg(q; r, Ω)

∂λi∂FSF
i

=
∂
(
∂Qg

SF/∂λi
)

∂FSF
i

=
∂
(
Ni,1FSF

i ν
SF
i

1
I0

∫ Eg

Eg+1 dE e−E/aisinh
√

biE
)

∂FSF
i

=
Qg

SF,i

λiFSF
i

, i = 1, 2; (38)

∂Qg(q; r, Ω)

∂λi∂ai
=
∂
(
∂Qg

SF/∂ai
)

∂λi
=
∂
[
λiNi,1FSF

i ν
SF
i Da(g; ai, bi)

]
∂λi

= Ni,1FSF
i ν

SF
i Da(g; ai, bi), i = 1, 2; (39)

∂Qg(q; r, Ω)

∂λi∂bi
=
∂
(
∂Qg

SF/∂bi
)

∂λi
=
∂
[
λiNi,1FSF

i ν
SF
i Db(g; ai, bi)

]
∂λi

= Ni,1FSF
i ν

SF
i Db(g; ai, bi), i = 1, 2; (40)

∂Qg(q; r, Ω)

∂λi∂ν
SF
i

=
∂
(
∂Qg

SF/∂λi
)

∂νSF
i

=
∂
(
Ni,1FSF

i ν
SF
i

1
I0

∫ Eg

Eg+1 dE e−E/aisinh
√

biE
)

∂νSF
i

=
Qg

SF,i

λiν
SF
i

, i = 1, 2; (41)

∂Qg(q; r, Ω)

∂λi∂Ni,1
=
∂
(
∂Qg

SF/∂λi
)

∂Ni,1
=
∂
(
Ni,1FSF

i ν
SF
i

1
I0

∫ Eg

Eg+1 dE e−E/aisinh
√

biE
)

∂Ni,1
=

Qg
SF,i

λiNi,1
, i = 1, 2. (42)

The expressions of the four non-zero 2nd-order derivatives of the spontaneous fission source with
respect to q j=3,4 ≡ FSF

i and other source parameters are given in Equations (43) through (46), below:

∂Qg(q; r, Ω)

∂FSF
i ∂ai

=
∂
(
∂Qg

SF/∂ai
)

∂FSF
i

=
∂
[
λiNi,1FSF

i ν
SF
i Da(g; ai, bi)

]
∂FSF

i

= λiNi,1ν
SF
i Da(g; ai, bi), i = 1, 2; (43)

∂Qg(q; r, Ω)

∂FSF
i ∂bi

=
∂
(
∂Qg

SF/∂bi
)

∂FSF
i

=
∂
[
λiNi,1FSF

i ν
SF
i Db(g; ai, bi)

]
∂FSF

i

= λiNi,1ν
SF
i Db(g; ai, bi), i = 1, 2; (44)

∂Qg(q; r, Ω)

∂FSF
i ∂ν

SF
i

=
∂
(
∂Qg

SF/∂FSF
i

)
∂νSF

i

=
∂
(
λiNi,1ν

SF
i

1
I0

∫ Eg

Eg+1 dE e−E/aisinh
√

biE
)

∂νSF
i

=
Qg

SF,i

FSF
i ν

SF
i

, i = 1, 2; (45)

∂Qg(q; r, Ω)

∂FSF
i ∂Ni,1

=
∂
(
∂Qg

SF/∂FSF
i

)
∂Ni,1

=
∂
(
λiNi,1ν

SF
i

1
I0

∫ Eg

Eg+1 dE e−E/aisinh
√

biE
)

∂Ni,1
=

Qg
SF,i

FSF
i Ni,1

, i = 1, 2. (46)

The expressions of the four non-zero 2nd-order derivatives of the spontaneous fission source with
respect to q j=5,6 ≡ ai and other source parameters are provided in Equations (47), (49), (51) and (52),
below:

∂Qg(q;r,Ω)
∂ai∂ai

=
∂(∂Qg

SF/∂ai)
∂ai

=
∂[λiNi,1FSF

i νSF
i Da(g;ai,bi)]
∂ai

= λiNi,1FSF
i ν

SF
i Da2(g; ai, bi), i = 1, 2, (47)
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where:

Da2(g; ai, bi) = λiNi,1FSF
i ν

SF
i


1

4ai
2 √π

 e−c1
2(

2c1c3
2
− 2c3 − c1

)
+ e−c2

2(
2c4 + c2 − 2c2c4

2
)

+e−c3
2(

2c3c1
2
− 2c1 − c3

)
+ e−c4

2(
2c2 + c4 − 2c4c2

2
) 

+ 1
4ai

2
√
πaibi

 (2c3
2 + 2c1

2 + 8c1c3 − 4c1
2c3

2
− 3)

(
e−c3

2
− e−c1

2)
+(2c4

2 + 2c2
2 + 8c2c4 − 4c2

2c4
2
− 3)

(
e−c2

2
− e−c4

2) 


; (48)

∂Qg(q; r, Ω)

∂ai∂bi
=
∂
(
∂Qg

SF/∂ai
)

∂bi
=
∂
[
λiNi,1FSF

i ν
SF
i Da(g; ai, bi)

]
∂bi

= λiNi,1FSF
i ν

SF
i Dab(g; ai, bi), i = 1, 2, (49)

where:

Dab(g; ai, bi) = λiNi,1FSF
i ν

SF
i



1
8
√
πaibi

[(
e−c1

2
− e−c3

2)
(1 + 2c1c3) +

(
e−c4

2
− e−c2

2)
(1 + 2c2c4)

]
−

1
4aibi
√
πaibi

[
(1− 2c1c3)

(
e−c3

2
− e−c1

2)
+ (1− 2c2c4)

(
e−c2

2
− e−c4

2)]
+ 1

4aibi
√
π


(
2c1c3

2
− c1

)
e−c3

2
+

(
2c1

2c3 − c3
)
e−c1

2

+
(
c4 − 2c2

2c4
)
e−c2

2
+ (c2 − 2c2c4

2)e−c4
2




; (50)

∂Qg(q; r, Ω)

∂ai∂ν
SF
i

=
∂
(
∂Qg

SF/∂ai
)

∂νSF
i

=
∂
[
λiNi,1FSF

i ν
SF
i Da(g; ai, bi)

]
∂νSF

i

= λiNi,1FSF
i Da(g; ai, bi), i = 1, 2; (51)

∂Qg(q; r, Ω)

∂ai∂Ni,1
=
∂
(
∂Qg

SF/∂ai
)

∂Ni,1
=
∂
[
λiNi,1FSF

i ν
SF
i Da(g; ai, bi)

]
∂Ni,1

= λiFSF
i ν

SF
i Da(g; ai, bi), i = 1, 2. (52)

The three 2nd-order derivatives of the spontaneous fission source with respect to q j=7,8 ≡ bi and
other source parameters are provided in Equations (53), (55) and (56), below:

∂Qg(q;r,Ω)
∂bi∂bi

=
∂(∂Qg

SF/∂bi)
∂bi

=
∂[λiNi,1FSF

i νSF
i Db(g;ai,bi)]
∂bi

= λiNi,1FSF
i ν

SF
i Db2(g; ai, bi), i = 1, 2, (53)

where:

Db2(g; ai, bi) = λiNi,1FSF
i ν

SF
i



(
3−aibi

4bi
2
√
πaibi

)(
e−c1

2
− e−c2

2
+ e−c4

2
− e−c3

2)
+

(
aibi−6

8bi
2 √π

)(
c1e−c1

2
− c2e−c2

2
− c4e−c4

2
+ c3e−c3

2)
+

√
ai

4bi
√
πbi

(
c1

2e−c1
2
− c2

2e−c2
2
− c3

2e−c3
2
+ c4

2e−c4
2)


; (54)

∂Qg(q; r, Ω)

∂bi∂ν
SF
i

=
∂
(
∂Qg

SF/∂bi
)

∂νSF
i

=
∂
[
λiNi,1FSF

i ν
SF
i Db(g; ai, bi)

]
∂νSF

i

= λiNi,1FSF
i Db(g; ai, bi), i = 1, 2; (55)

∂Qg(q; r, Ω)

∂bi∂Ni,1
=
∂
(
∂Qg

SF/∂bi
)

∂Ni,1
=
∂
[
λiNi,1FSF

i ν
SF
i Db(g; ai, bi)

]
∂Ni,1

= λiFSF
i ν

SF
i Db(g; ai, bi), i = 1, 2. (56)

The 2nd-order derivatives of the spontaneous fission source with respect to q j=9,10 ≡ ν
SF
i and

q j=11,12 ≡ Ni,1 are as follows:

∂Qg(q; r, Ω)

∂νSF
i ∂Ni,1

=
∂
(
∂Qg

SF/∂νSF
i

)
∂Ni,1

=
∂
(
λiNi,1FSF

i
1
I0

∫ Eg

Eg+1 dE e−E/aisinh
√

biE
)

∂Ni,1
=

Qg
SF,i

νSF
i Ni,1

, i = 1, 2. (57)

Inserting the 2nd-order derivatives obtained in Equations (38)–(57) into Equation (35), yields
the following expressions for the 2nd-order sensitivities of the leakage response with respect to the
source parameters:
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For j = 1, m2 = 3 or j = 2, m2 = 4:

∂2L(α)
∂q j∂qm2

=
∂2L(α)

∂λi∂FSF
i

=
1

λiFSF
i

G∑
g=1

∫
V

dVξ(1),g0 (r)Qg
SF,i, i = 1, 2; (58)

For j = 1, m2 = 5 or j = 2, m2 = 6:

∂2L(α)
∂q j∂qm2

=
∂2L(α)
∂λi∂ai

= Ni,1FSF
i ν

SF
i

G∑
g=1

∫
V

dVξ(1),g0 (r)Da(g; ai, bi), i = 1, 2; (59)

For j = 1, m2 = 7 or j = 2, m2 = 8:

∂2L(α)
∂q j∂qm2

=
∂2L(α)
∂λi∂bi

= Ni,1FSF
i ν

SF
i

G∑
g=1

∫
V

dVξ(1),g0 (r)Db(g; ai, bi), i = 1, 2; (60)

For j = 1, m2 = 9 or j = 2, m2 = 10:

∂2L(α)
∂q j∂qm2

=
∂2L(α)

∂λi∂ν
SF
i

=
1

λiν
SF
i

G∑
g=1

∫
V

dVξ(1),g0 (r)Qg
SF,i, i = 1, 2; (61)

For j = 1, m2 = 11 or j = 2, m2 = 12:

∂2L(α)
∂q j∂qm2

=
∂2L

(
α; Qg

SF

)
∂λi∂Ni,1

=
1

λiNi,1

G∑
g=1

∫
V

dVξ(1),g0 (r)Qg
SF,i, i = 1, 2; (62)

For j = 3, m2 = 5 or j = 4, m2 = 6:

∂2L(α)
∂q j∂qm2

=
∂2L(α)

∂FSF
i ∂ai

= λiNi,1ν
SF
i

G∑
g=1

∫
V

dVξ(1),g0 (r)Da(g; ai, bi), i = 1, 2; (63)

For j = 3, m2 = 7 or j = 4, m2 = 8:

∂2L(α)
∂q j∂qm2

=
∂2L(α)

∂FSF
i ∂bi

= λiNi,1ν
SF
i

G∑
g=1

∫
V

dVξ(1),g0 (r)Db(g; ai, bi), i = 1, 2; (64)

For j = 3, m2 = 9 or j = 4, m2 = 10:

∂2L(α)
∂q j∂qm2

=
∂2L(α)

∂FSF
i ∂ν

SF
i

=
1

FSF
i ν

SF
i

G∑
g=1

∫
V

dVξ(1),g0 (r)Qg
SF,i, i = 1, 2; (65)

For j = 3, m2 = 11 or j = 4, m2 = 12:

∂2L(α)
∂q j∂qm2

=
∂2L

(
α; Qg

SF

)
∂FSF

i ∂Ni,1
=

1
FSF

i Ni,1

G∑
g=1

∫
V

dVξ(1),g0 (r)Qg
SF,i, i = 1, 2; (66)

For j = 5, m2 = 5 or j = 6, m2 = 6:

∂2L(α)
∂q j∂qm2

=
∂2L(α)
∂ai∂ai

= λiNi,1FSF
i ν

SF
i

G∑
g=1

∫
V

dVξ(1),g0 (r)Da2(g; ai, bi), i = 1, 2; (67)
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For j = 5, m2 = 7 or j = 6, m2 = 8:

∂2L(α)
∂q j∂qm2

=
∂2L(α)
∂ai∂bi

= λiNi,1FSF
i ν

SF
i

G∑
g=1

∫
V

dVξ(1),g0 (r)Dab(g; ai, bi), i = 1, 2; (68)

For j = 5, m2 = 9 or j = 6, m2 = 10:

∂2L(α)
∂q j∂qm2

=
∂2L(α)

∂ai∂ν
SF
i

= λiNi,1FSF
i

G∑
g=1

∫
V

dVξ(1),g0 (r)Da(g; ai, bi), i = 1, 2; (69)

For j = 5, m2 = 11 or j = 6, m2 = 12:

∂2L(α)
∂q j∂qm2

=
∂2L

(
α; Qg

SF

)
∂ai∂Ni,1

= λiFSF
i ν

SF
i

G∑
g=1

∫
V

dVξ(1),g0 (r)Da(g; ai, bi), i = 1, 2; (70)

For j = 7, m2 = 7 or j = 8, m2 = 8:

∂2L(α)
∂q j∂qm2

=
∂2L(α)
∂bi∂bi

= λiNi,1FSF
i ν

SF
i

G∑
g=1

∫
V

dVξ(1),g0 (r)Db2(g; ai, bi), i = 1, 2; (71)

For j = 7, m2 = 9 or j = 8, m2 = 10:

∂2L(α)
∂q j∂qm2

=
∂2L(α)

∂bi∂ν
SF
i

= λiNi,1FSF
i

G∑
g=1

∫
V

dVξ(1),g0 (r)Db(g; ai, bi), i = 1, 2; (72)

For j = 7, m2 = 11 or j = 8, m2 = 12:

∂2L(α)
∂q j∂qm2

=
∂2L

(
α; Qg

SF

)
∂bi∂Ni,1

= λiFSF
i ν

SF
i

G∑
g=1

∫
V

dVξ(1),g0 (r)Db(g; ai, bi), i = 1, 2; (73)

For j = 9, m2 = 11 or j = 10, m2 = 12:

∂2L(α)
∂q j∂qm2

=
∂2L

(
α; Qg

SF

)
∂νSF

i ∂Ni,1
=

1
νSF

i Ni,1

G∑
g=1

∫
V

dVξ(1),g0 (r)Qg
SF,i, i = 1, 2. (74)

The 2nd-order absolute sensitivities of the leakage response with respect to the source parameters
for the PERP benchmark are computed using Equations (58)–(74). The corresponding relative
sensitivities are defined as follows:

S(2)
(
q j, qm2

)
=

(
∂2L/∂q j∂qm2

)(
q jqm2 /L

)
, j, m2 = 1, . . . , Jq. (75)

It is noteworthy that the 2nd-order relative sensitivities for S(2)
(
λi, FSF

i

)
, S(2)

(
λi, νSF

i

)
, S(2)(λi, Ni,1),

S(2)
(
FSF

i , νSF
i

)
, S(2)

(
FSF

i , Ni,1
)
, and S(2)

(
νSF

i , Ni,1
)

for i = 1, 2 all have the same expression, namely:

S(2)
(
λi, FSF

i

)
= S(2)

(
λi, νSF

i

)
= S(2)(λi, Ni,1) = S(2)

(
FSF

i , νSF
i

)
= S(2)

(
FSF

i , Ni,1
)
= S(2)

(
νSF

i , Ni,1
)

= 1
L

G∑
g=1

∫
V dVξ(1),g0 (r)Qg

SF,i, i = 1, 2.
(76)
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Furthermore, the right side of Equation (76) is the same as rightmost side of Equation (34). Hence,
the respective mixed 2nd-order relative sensitivities have the same values as the 1st-order sensitivities
of the leakage response with respect to the source parameters λi, FSF

i , νSF
i , and Ni,1, for i = 1, 2, namely,

S(2)
(
λi, FSF

i

)
= S(2)

(
λi, νSF

i

)
= S(2)(λi, Ni,1) = S(2)

(
FSF

i , νSF
i

)
= S(2)

(
FSF

i , Ni,1
)
= S(2)

(
νSF

i , Ni,1
)

= S(1)(λi) = S(1)
(
FSF

i

)
= S(1)

(
νSF

i

)
= S(1)(Ni,1) =

1
L

G∑
g=1

∫
V dVξ(1),g0 (r)Qg

SF,i, i = 1, 2.
(77)

Similarly, the following relations hold for the 2nd-order sensitivities with respect to the Watt’s
spectrum coefficients ai and bi:

S(2)(λi, ai) = S(2)
(
FSF

i , ai
)
= S(2)

(
ai, νSF

i

)
= S(2)(ai, Ni,1) = S(1)(ai)

=
λiNi,1FSF

i νSF
i ai

L

G∑
g=1

∫
V dVξ(1),g0 (r)Da(g; ai, bi), i = 1, 2;

(78)

S(2)(λi, bi) = S(2)
(
FSF

i , bi
)
= S(2)

(
bi, νSF

i

)
= S(2)(bi, Ni,1) = S(1)(bi)

=
λiNi,1FSF

i νSF
i bi

L

G∑
g=1

∫
V dVξ(1),g0 (r)Db(g; ai, bi), i = 1, 2.

(79)

The computations which were performed to obtain the numerical values of the corresponding
2nd-order sensitivities of the PERP leakage response with respect to the source parameters for 239Pu
have yielded results that are several orders of magnitude smaller than the corresponding 1st-order
sensitivities shown in Table 4. Therefore, the 2nd-order sensitivities of the leakage response with respect
to the source parameters for 239Pu will not be presented in this work, since they are inconsequential for
applications to uncertainty quantification and/or predictive modeling. Hence, the remainder of this
work will present only the 2nd-order sensitivities of the leakage response with respect to the source
parameters (i.e., λ2, FSF

2 , νSF
2 , a2, b2 and N2,1) for isotope 240Pu.

The numerical results obtained for the 2nd-order relative sensitivities to the source parameters of
isotope 240Pu are presented in Table 6. Since the matrix S(2)

(
q j, qm2

)
, j, m2 = 1, . . . , Jq, is symmetrical

with respect to its main diagonal, only the results for the elements of the upper triangular segment of
this matrix are shown in Table 6.

Table 6. 2nd-order relative sensitivities S(2)
(
q j, qm2

)
, j, m2 = 1, . . . , Jq of the leakage response with

respect to the source parameters of isotope 240Pu.

λ2 FSF
2 a2 b2 νSF

2 N2,1

λ2
S(2)(λ2,λ2)

= 0
S(2)

(
λ2, FSF

2

)
= 9.998 × 10−1

S(2)(λ2, a2)
= 4.373× 10−2

S(2)(λ2, b2)
= 1.165 × 10−2

S(2)
(
λ2, νSF

2

)
= 9.998 × 10−1

S(2)
(
λ2, N2,1

)
= 9.998 × 10−1

FSF
2

S(2)
(
FSF

2 , FSF
2

)
= 0

S(2)
(
FSF

2 , a2
)

= 4.373 × 10−2
S(2)

(
FSF

2 , b2
)

= 1.165 × 10−2
S(2)

(
FSF

2 , νSF
2

)
= 9.998 × 10−1

S(2)
(
FSF

2 , N2,1
)

= 9.998 × 10−1

a2
S(2)(a2, a2)

= 6.594 × 10−2
S(2)(a2, b2)

= 3.179 × 10−2
S(2)

(
a2, νSF

2

)
= 4.373 × 10−2

S(2)
(
a2, N2,1

)
= 4.373 × 10−2

b2
S(2)(b2, b2)

= 1.571× 10−3
S(2)

(
b2, νSF

2

)
= 1.165 × 10−2

S(2)
(
b2, N2,1

)
= 1.165 × 10−2

νSF
2 S(2)

(
νSF

2 , νSF
2

)
= 0

S(2)
(
νSF

2 , N2,1
)

= 9.998 × 10−1

N2,1
S(2)

(
N2,1, N2,1

)
= 0
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The results shown in Table 6 indicate that the 2nd-order relative sensitivities of the leakage
response with respect to the source parameters are all positive. The unmixed 2nd-order
sensitivities, i.e., the elements on the main diagonal in Table 6, are mostly zero, except for
S(2)(a2, a2) and S(2)(b2, b2). The largest 2nd-order sensitivities are S(2)

(
λ2, FSF

2

)
= S(2)

(
λ2, νSF

2

)
=

S(2)(λ2, N2,1) =S(2)
(
FSF

2 , νSF
2

)
= S(2)

(
FSF

2 , N2,1
)
= S(2)

(
νSF

2 , N2,1
)
= 0.9998 which are the same as the

1st-order sensitivities S(1)(λ2) = S(1)
(
FSF

2

)
= S(1)

(
νSF

2

)
= S(1)(N2,1) = 0.9998. Furthermore, the

2nd-order sensitivities S(2)(λ2, a2) = S(2)
(
FSF

2 , a2
)
= S(2)

(
a2, νSF

2

)
= S(2)(a2, N2,1) = 0.04373 have the

same values as the 1st-order relative sensitivity of S(1)(a2), which was presented in Table 5. Similarly, the
2nd-order sensitivities S(2)(λ2, b2) = S(2)

(
FSF

2 , b2
)
= S(2)

(
b2, νSF

2

)
= S(2)(b2, N2,1) = 0.01165 have the

same values as the 1st-order relative sensitivity of S(1)(b2). The unmixed 2nd-order relative sensitivity
S(2)(a2, a2) with respect to the Watt’s coefficient a2, is about 50% larger than the corresponding 1st-order
sensitivity. However, the value of the 2nd-order relative sensitivity S(2)(b2, b2) with respect to the
Watt’s coefficient b2 is about 1/7 of the value of the corresponding 1st-order sensitivity S(1)(b2).

3. Mixed Second-Order Sensitivities of the PERP Total Leakage Response with Respect to the
Benchmark’s Source Parameters and Total Cross Sections

This Section presents the computation and analysis of the numerical results for the 2nd-order
mixed sensitivities ∂2L(α)/∂q∂σt, of the PERP’s leakage response with respect to the source parameters
and group-averaged total microscopic cross sections of all isotopes of the PERP benchmark. As has
been shown by Cacuci [6], these mixed sensitivities can be computed using either one of two distinct
expressions, involving distinct 2nd-level adjoint systems and corresponding adjoint functions, by
considering either the computation of ∂2L(α)/∂q∂σt or the computation of ∂2L(α)/∂σt∂q. These two
distinct paths will be presented in Sections 3.1 and 3.2, respectively. The corresponding end results
produced by these two distinct paths must be identical to one another, thus providing a mutual
“solution verification”, ensuring that the respective computations were performed correctly.

3.1. Computing the Second-Order Sensitivities ∂2L(ααα)/∂q∂σσσt

The equation needed for deriving the expression of the 2nd-order sensitivities ∂2L(α)/∂q∂σt is
obtained by particularizing Equation (204) from Reference [6] to the PERP benchmark, which takes on
the following form:

∂2L(α)
∂q j∂tm2

= −
G∑

g=1

∫
V

dV
∫

4π
dΩ h(2),g1, j (r, Ω)ψ(1),g(r, Ω)

∂Σt
g(t)

∂tm2

, j = 1, . . . , Jq ; m2 = 1, . . . , Jσt , (80)

where the 2nd-level adjoint functions h(2),g1, j , j = 1, . . . , Jn; g = 1, . . . , G, are the solutions of the
following 2nd-Level Adjoint Sensitivity System (2nd-LASS) presented in Equations (200) and (202)
of [6]:

Bg
(
α0

)
h(2),g1, j (r, Ω) =

∂Qg(q; r, Ω)

∂q j
, j = 1, . . . , Jq; g = 1, . . . , G, (81)

h(2),g1, j (rd, Ω) = 0, Ω · n < 0; j = 1, . . . , Jn; g = 1, . . . , G. (82)

The derivatives appearing on the right-side of Equation (81) have been defined previously in
Equations (18)–(25) for each of the respective source parameters.
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In Equation (80), the parameters tm2 correspond to the total cross sections, i.e., tm2 ≡ σ
gm2
t,im2

, where

the subscripts im2 , gm2 and mm2 denote the isotope, energy group and material associated with the
parameter tm2 , respectively. The following relation holds:

∂Σt
g(t)

∂tm2

=
∂Σt

g(t)

∂σ
gm2
t,im2

=

∂

(
M∑

m=1

I∑
i=1

Ni,mσ
g
t,i

)
∂σ

gm2
t,im2

= δgm2 gNim2 ,mm2
, (83)

where δgm2 g denotes the Kronecker-delta functional (δgm2 g = 1 if gm2 = g; δgm2 g = 0 if gm2 , g).
Inserting the result obtained in Equation (83) into Equation (80) yields:

∂2L(α)
∂q j∂tm2

= −Nim2 ,mm2

∫
V

dV
∫

4π
dΩ h

(2),gm2
1, j (r, Ω)ψ(1),gm2 (r, Ω), j = 1, . . . , Jq ; m2 = 1, . . . , Jσt . (84)

3.2. Alternative Path: Computing the Second-Order Sensitivities ∂2L(ααα)/∂σσσt∂q

The equation needed for deriving the expression for ∂2L(α)/∂σt∂q is obtained by particularizing
Equation (162) from Reference [6] to the PERP benchmark, which yields:

∂2L(α)
∂t j∂qm2

=
G∑

g=1

∫
V

dV
∫

4π
dΩ ψ

(2),g
2, j (r,Ω)

∂Qg(q; r, Ω)

∂qm2

, j = 1, . . . , Jσt; m2 = 1, . . . , Jq, (85)

where the adjoint functions ψ(2),g
2, j ; j = 1, . . . , Jσt; g = 1, . . . , G; are the solutions of the 2nd-Level

Adjoint Sensitivity System (2nd-LASS) presented in Equations (34) and (40) of Part I [1], which are
reproduced below for convenient reference:

A(1),g
(
α0

)
ψ
(2),g
2, j (r, Ω) = −δg j gNi j,m jψ

(1),g(r, Ω), j = 1, . . . , Jσt; g = 1, . . . , G, (86)

ψ
(2),g
2, j (rd, Ω) = 0, Ω · n > 0; j = 1, . . . , Jσt; g = 1, . . . , G. (87)

The parameters t j and qm2 in Equation (85) correspond to the total cross sections and source
parameters, respectively. Inserting the results obtained in Equations (18)–(25) into Equation (85),
and performing the respective angular integrations, yields the following simplified expressions for
Equation (85):

For j = 1, . . . , Jσt; m2 = 1, 2 :
∂2L(α)
∂t j∂qm2

=
∂2L(α)

∂σ
g
t,i j
∂λim2

=
1
λim2

G∑
g=1

∫
V

dVξ(2),g2, j;0 (r)Q
g
SF,im2

; (88)

For j = 1, . . . , Jσt; m2 = 3, 4 :
∂2L(α)
∂t j∂qm2

=
∂2L(α)

∂σ
g
t,i j
∂FSF

im2

=
1

FSF
im2

G∑
g=1

∫
V

dVξ(2),g2, j;0 (r)Q
g
SF,im2

; (89)

For j = 1, . . . , Jσt; m2 = 5, 6 : ∂2L(α)
∂t j∂qm2

=
∂2L(α)

∂σ
g
t,i j
∂aim2

= λim2
Nim2 ,1FSF

im2
νSF

im2

G∑
g=1

∫
V dVξ(2),g2, j;0 (r)Da

(
g; aim2

, bim2

)
; (90)

For j = 1, . . . , Jσt; m2 = 7, 8 : ∂2L(α)
∂t j∂qm2

=
∂2L(α)

∂σ
g
t,i j
∂bim2

= λim2
Nim2 ,1FSF

im2
νSF

im2

G∑
g=1

∫
V dVξ(2),g2, j;0 (r)Db

(
g; aim2

, bim2

)
; (91)

For j = 1, . . . , Jσt; m2 = 9, 10 :
∂2L(α)
∂t j∂qm2

=
∂2L(α)

∂σ
g
t,i j
∂νSF

im2

=
1
νSF

im2

G∑
g=1

∫
V

dVξ(2),g2, j;0 (r)Q
g
SF,im2

; (92)
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For j = 1, . . . , Jσt; m2 = 11, 12 :
∂2L(α)
∂t j∂qm2

=
∂2L

(
α; Qg

SF

)
∂σ

g
t,i j
∂Nim2 ,1

=
1

Nim2 ,1

G∑
g=1

∫
V

dVξ(2),g2, j;0 (r)Q
g
SF,im2

, (93)

where:

ξ
(2),g
2, j;0 (r) ,

∫
4π

dΩ ψ
(2),g
2, j (r,Ω), (94)

and where the subscripts i j = 1, . . . , 6 and im2 = 1, 2 denote the isotopes associated with the parameters
t j and qm2 , respectively.

3.3. Numerical Results for ∂2L(ααα)/∂q∂σσσt

The second-order absolute sensitivities of the leakage response with respect to the source
parameters and the total cross sections for all isotopes of the PERP benchmark, ∂2L(α)/∂q∂σt,
have been computed using Equation (84), and have been independently verified by computing
∂2L(α)/∂σt∂q using Equations (88)–(93). Computing ∂2L(α)/∂q∂σt requires 12 forward PARTISN

transport computations for obtaining the 2nd-level adjoint functions h(2),g1, j , j = 1, . . . , Jq; g = 1, . . . , G,

needed in Equation (84). In contradistinction, computing ∂2L(α)/∂σt∂N would require Jσt = G× I =
30× 6 = 180 adjoint PARTISN computations for obtaining the adjoint functionsψ(2),g

2, j , j = 1, . . . , Jσt; g =

1, . . . , G, which are needed in Equations (88)–(93). It is thus evident that computing ∂2L(α)/∂q∂σt

using Equation (84) is 15 times more efficient than computing ∂2L(α)/∂σt∂q using Equations (88)–(93).
The matrix ∂2L/∂q j∂tm2 , j = 1, . . . , Jq; m2 = 1, . . . , Jσt has dimensions Jq × Jσt (= 12× 180). The

corresponding matrix for the 2nd-order relative sensitivities is defined as follows:

S(2)
(
q j, tm2

)
,

∂2L
∂q j∂tm2

(q jtm2

L

)
, j = 1, . . . , Jq ; m2 = 1, . . . , Jσt. (95)

Applying Equation (95) to Equations (88), (89), (92) and (93) yields the following relations:

S(2)
(
σ

g
t,k,λi

)
= S(2)

(
σ

g
t,k, FSF

i

)
= S(2)

(
σ

g
t,k, νSF

i

)
= S(2)

(
σ

g
t,k, Ni,1

)
= 1

L

G∑
g=1

σ
g
t,k

∫
V dVξ(2),g2, j;0 (r)Q

g
SF,i,

f or i = 1, 2; k = 1, . . . , 6; g = 1, . . . , 30.
(96)

Therefore, the mixed 2nd-order relative sensitivities S(2)
(
λi, σ

g
t,k

)
, S(2)

(
FSF

i , σg
t,k

)
, S(2)

(
νSF

i , σg
t,k

)
and

S(2)
(
Ni,1, σg

t,k

)
of the PERP’s leakage response with respect to the total cross section parameter σg

t,k and

the source parameters λi, FSF
i , νSF

i , Ni,1, have the same value, which can also be confirmed by using
Equation (84) together with Equation (95).

To facilitate the presentation and interpretation of the numerical results, the matrix S(2)
(
q j, tm2

)
has been partitioned into Jq × I = 12× 6 submatrices, each of dimensions 1×G = 1× 30. The summary
of the main features of these submatrices involving the source parameters of isotope 240Pu is presented
in Table 7 in the following form: when a submatrix comprises elements with relative sensitivities
having absolute values greater than 1.0, the total number of such elements is shown in the shaded
cells of the table. Otherwise, if the relative sensitivities of all the elements of a submatrix have values
that lie in the interval (−1.0, 1.0), only the element having the largest absolute value in the submatrix
is listed in Table 7, together with the phase-space coordinates of that element. The submatrices in
Table 7, which comprise components with absolute values greater than 1.0, will be discussed in detail
in subsequent sub-sections of this Section.
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Table 7. Summary presentation of the matrix S(2)
(
q j, σ

g
t,k

)
, j = 2, 4, 6, 8, 10, 12 ; k = 1, . . . , 6; g =

1, . . . , 30, for 2nd-order relative sensitivities of the leakage response with respect to the source parameters
of isotope 240Pu and total cross sections for all isotopes.

k=1 (239Pu) k=2(240Pu) k=3 (69Ga) k=4 (71Ga) k=5 (C) k=6 (1H)

λ2

S(2)
(
λ2, σg

t,1

)
2 elements with
absolute values

>1.0

S(2)
(
λ2, σg

t,2

)
Min. value

= −8.36 × 10−2

at g = 12

S(2)
(
λ2, σg

t,3

)
Min. value

= −3.76 × 10−3

at g = 12

S(2)
(
λ2, σg

t,4

)
Min. value

= −2.55 × 10−3

at g = 12

S(2)
(
λ2, σg

t,5

)
Min. value

= −7.85 × 10−1

at g = 30

S(2)
(
λ2, σg

t,6

)
6 elements with
absolute values

>1.0

FSF
2

S(2)
(
FSF

2 , σg
t,1

)
2 elements with
absolute values

>1.0

S(2)
(
FSF

2 , σg
t,2

)
Min. value

= −8.36 × 10−2

at g = 12

S(2)
(
FSF

2 , σg
t,3

)
Min. value

= −3.76 × 10−3

at g = 12

S(2)
(
FSF

2 , σg
t,4

)
Min. value

= −2.55 × 10−3

at g = 12

S(2)
(
FSF

2 , σg
t,5

)
Min. value

= −7.85 × 10−1

at g = 30

S(2)
(
FSF

2 , σg
t,6

)
6 elements with
absolute values

>1.0

a2

S(2)
(
a2, σg

t,1

)
Min. value

= −2.54 × 10−1

at g = 7

S(2)
(
a2, σg

t,2

)
Min. value

= −1.60 × 10−2

at g = 7

S(2)
(
a2, σg

t,3

)
Min. value

= −6.79 × 10−4

at g = 7

S(2)
(
a2, σg

t,4

)
Min. value

= −4.50 × 10−4

at g = 7

S(2)
(
a2, σg

t,5

)
Max. value

= 3.47 × 10−2

at g = 30

S(2)
(
a2, σg

t,6

)
Max. value

= 4.14 × 10−1

at g = 30

b2

S(2)
(
b2, σg

t,1

)
Min. value

= −6.72 × 10−2

at g = 7

S(2)
(
b2, σg

t,2

)
Min. value

= −4.22 × 10−3

at g = 7

S(2)
(
b2, σg

t,3

)
Min. value

= −1.79 × 10−4

at g = 7

S(2)
(
b2, σg

t,4

)
Min. value

= −1.19 × 10−4

at g = 7

S(2)
(
b2, σg

t,5

)
Max. value

= 1.24 × 10−2

at g = 30

S(2)
(
b2, σg

t,6

)
Max. value

= 1.48 × 10−1

at g = 30

νSF
2

S(2)
(
νSF

2 , σg
t,1

)
2 elements with
absolute values

>1.0

S(2)
(
νSF

2 , σg
t,2

)
Min. value

= −8.36 × 10−2

at g = 12

S(2)
(
νSF

2 , σg
t,3

)
Min. value

= −3.76 × 10−3

at g = 12

S(2)
(
νSF

2 , σg
t,4

)
Min. value

= −2.55 × 10−3

at g = 12

S(2)
(
νSF

2 , σg
t,5

)
Min. value

= −7.85 × 10−1

at g = 30

S(2)
(
νSF

2 , σg
t,6

)
6 elements with
absolute values

>1.0

N2,1

S(2)
(
N2,1, σg

t,1

)
2 elements with
absolute values

>1.0

S(2)
(
N2,1, σg

t,2

)
Min. value

= −8.36 × 10−2

at g = 12

S(2)
(
N2,1, σg

t,3

)
Min. value

= −3.76 × 10−3

at g = 12

S(2)
(
N2,1, σg

t,4

)
Min. value

= −2.55 × 10−3

at g = 12

S(2)
(
N2,1, σg

t,5

)
Min. value

= −7.85 × 10−1

at g = 30

S(2)
(
N2,1, σg

t,6

)
6 elements with
absolute values

>1.0

As shown in Table 7, the absolute values of most elements in the matrix S(2)
(
q j, σ

g
t,k

)
are smaller

than 1.0; but there are 32 elements with absolute values greater than 1.0, as indicated in the shaded
submatrices. All of the elements in the submatrices S(2)

(
λ2, σg

t,k

)
, S(2)

(
FSF

2 , σg
t,k

)
, S(2)

(
νSF

2 , σg
t,k

)
and

S(2)
(
N2,1, σg

t,k

)
have negative values. In these submatrices, the absolute values of the 2nd-order

sensitivities involving the microscopic total cross sections of isotopes 240Pu, 69Ga, 71Ga and C are
all smaller than 1.0. In particular, the element having the maximum absolute value in each of
these submatrices involves the microscopic total cross sections for the 12th energy group (namely,
σ

g=12
t,k , k = 1, 2, 3, 4) or the 30th energy group (e.g., σg=30

t,k , k = 5, 6). The values of the elements of the

submatrices S(2)
(
a2, σg

t,k

)
and S(2)

(
b2, σg

t,k

)
can be positive or negative, depending on the energy groups

and/or the total cross sections of the respective isotopes; and the absolute values of these elements
are all smaller than 1.0; moreover, the element having the maximum absolute value in each of these
submatrices involves the microscopic total cross sections for the 7th energy group of isotopes 239Pu,
240Pu, 69Ga, and 71Ga, or the 30th energy group of isotopes C and 1H. The largest absolute values
in Table 7 are S(2)

(
λ2, σg=30

t,6

)
= S(2)

(
FSF

2 , σg=30
t,6

)
= S(2)

(
νSF

2 , σg=30
t,6

)
= S(2)

(
N2,1, σg=30

t,6

)
= −9.364. The

largest sensitivities all involve the energy 30th group of H. It maybe because of the highest neutron
leakage from that group, as shown in Figure 1. In addition, the 12th and 7th energy groups also exbibit
higher neutron leakage, which may explain that the maximum absolute value in each of submatrices
mostly relate to those energy groups.
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3.3.1. Second-Order Relative Sensitivities S(2)
(
λ2, σg

t,1

)
, S(2)

(
FSF

2 , σg
t,1

)
, S(2)

(
νSF

2 , σg
t,1

)
and

S(2)
(
N2,1, σg

t,1

)
, g = 1, . . . , 30

Table 8 lists all the component values for the 2nd-order mixed relative sensitivities in the
submatrices S(2)

(
λ2, σg

t,1

)
, S(2)

(
FSF

2 , σg
t,1

)
, S(2)

(
νSF

2 , σg
t,1

)
and S(2)

(
N2,1, σg

t,1

)
. It has already been noted

that the corresponding elements in these four submatrices have the same values. The 2 elements that
have values greater than 1.0 in each of the submatrices are shown bold in Table 8; these large 2nd-order
mixed relative sensitivities involve the total cross sections of isotope 239Pu for the energy groups g = 12
and g = 13, respectively. The largest negative values in these submatrices are attained by the 2nd-order
relative sensitivities S(2)

(
λ2, σg=12

t,1

)
= S(2)

(
FSF

2 , σg=12
t,1

)
= S(2)

(
νSF

2 , σg=12
t,1

)
= S(2)

(
N2,1, σg=12

t,1

)
= −1.320

of the leakage response with respect to source parameter λ2, FSF
2 , νSF

2 , N2,1, respectively, of 240Pu and
the 12th energy group of the total cross section for 239Pu.

Table 8. Second-Order Relative Sensitivities S(2)
(
λ2, σg

t,1

)
, S(2)

(
FSF

2 , σg
t,1

)
, S(2)

(
νSF

2 , σg
t,1

)
and

S(2)
(
N2,1, σg

t,1

)
, g = 1, . . . , 30.

g Relative Sensitivities g Relative Sensitivities

1 −0.0003 16 −0.779
2 −0.0006 17 −0.364
3 −0.002 18 −0.227
4 −0.009 19 −0.181
5 −0.046 20 −0.155
6 −0.135 21 −0.137
7 −0.789 22 −0.099
8 −0.725 23 −0.081
9 −0.843 24 −0.051

10 −0.845 25 −0.060
11 −0.775 26 −0.063
12 −1.320 27 −0.017
13 −1.154 28 −0.003
14 −0.952 29 −0.035
15 −0.690 30 −0.462

3.3.2. Second-Order Relative Sensitivities S(2)
(
λ2, σg

t,6

)
, S(2)

(
FSF

2 , σg
t,6

)
, S(2)

(
νSF

2 , σg
t,6

)
and

S(2)
(
N2,1, σg

t,6

)
, g = 1, . . . , 30

Table 9 shows the results obtained for the 2nd-order mixed relative sensitivity of the leakage
response with respect to the source parameters (λ2, FSF

2 , νSF
2 , N2,1) of isotope 2 (240Pu) and the total cross

sections of isotope 6 (1H). These submatrices are denoted as S(2)
(
λ2, σg

t,6

)
, S(2)

(
FSF

2 , σg
t,6

)
, S(2)

(
νSF

2 , σg
t,6

)
and S(2)

(
N2,1, σg

t,6

)
, respectively. As has been shown in Equation (96), the corresponding elements in

these four submatrices have the same values. In each submatrix, 6 elements (shown in bold) have
relative 2nd-order sensitivities with absolute values greater than 1.0; these large mixed 2nd-order
relative sensitivities involve the total cross sections of isotope 1H for energy groups g = 16, . . . , 20 and
g = 30, respectively. The most negative value in the respective submatrix is attained by the elements
S(2)

(
λ2, σg=12

t,6

)
= S(2)

(
FSF

2 , σg=12
t,6

)
= S(2)

(
νSF

2 , σg=12
t,6

)
= S(2)

(
N2,1, σg=12

t,6

)
= −9.364, involving the 30th

energy group of the total cross section of isotope 1H.
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Table 9. Second-Order Relative Sensitivities S(2)
(
λ2, σg

t,6

)
, S(2)

(
FSF

2 , σg
t,6

)
, S(2)

(
νSF

2 , σg
t,6

)
and

S(2)
(
N2,1, σg

t,6

)
, g = 1, . . . , 30.

g Relative Sensitivities g Relative Sensitivities

1 −4.440 × 10−6 16 −1.164
2 −1.169 × 10−5 17 −1.173
3 −4.108 × 10−5 18 −1.141
4 −2.555 × 10−4 19 −1.094
5 −1.735 × 10−3 20 −1.032
6 −7.360 × 10−3 21 −0.969
7 −0.067 22 −0.892
8 −0.085 23 −0.826
9 −0.128 24 −0.749

10 −0.158 25 −0.709
11 −0.183 26 −0.653
12 −0.437 27 −0.584
13 −0.523 28 −0.547
14 −0.576 29 −0.544
15 −0.582 30 −9.364

4. Mixed Second-Order Sensitivities of the PERP Total Leakage Response with Respect to the
Parameters Underlying the Benchmark’s Source Parameters and Scattering Cross Sections

This Section presents the computation and analysis of the numerical results for the 2nd-order
mixed sensitivities ∂2L(α)/∂q∂σs of the leakage response with respect to the source parameters and
group-averaged scattering microscopic cross sections of all isotopes contained in the PERP benchmark.
The 2nd-order mixed sensitivities ∂2L(α)/∂q∂σs can also be computed using the alternative expressions
for ∂2L(α)/∂σs∂q. These two distinct paths will be presented in Sections 4.1 and 4.2, respectively.
As will be discussed in detail in Section 4.3, the pathway for computing ∂2L(α)/∂q∂σs turns out to be
about 590 times more efficient than the pathway for computing ∂2L(α)/∂σs∂q.

4.1. Computing the Second-Order Sensitivities ∂2L(ααα)/∂q∂σσσs

The equations needed for deriving the expressions of the 2nd-order sensitivities ∂2L/∂q j∂sm2 , j =
1, . . . , Jq; m2 = 1, . . . , Jσs, will differ from each other depending on whether the parameter sm2

corresponds to the 0th-order (l = 0) scattering cross sections or to the higher-order (l ≥ 1) scattering
cross sections, because the 0th-order scattering cross sections contribute to the total cross sections while
the higher-order scattering cross sections do not. Therefore, the 0th-order order scattering cross sections
must be considered separately from the higher order scattering cross sections. As described in [1–3]
and Appendix A, the total number of 0th-order scattering cross sections comprised in σs is denoted
as Jσs,l=0, where Jσs,l=0 = G×G× I, while the total number of higher order scattering cross sections
comprised in σs is denoted as Jσs,l≥1, where Jσs,l≥1 = G×G× I × ISCT, with Jσs,l=0 + Jσs,l≥1 = Jσs, where
ISCT is the total number of Legendre moments in the finite expansion of the scattering cross sections.
There are two distinct cases, as follows:

(1)
(

∂2L
∂q j∂sm2

)
(s=σs,l=0)

, j = 1, . . . , Jq; m2 = 1, . . . , Jσs,l=0, where the quantities q j refer to the source

parameters while the quantities sm2 refer to the parameters underlying the 0th-order (l = 0) scattering
microscopic cross sections; and

(2)
(

∂2L
∂q j∂sm2

)
(s=σs,l≥1)

, j = 1, . . . , Jq; m2 = 1, . . . , σs,l≥1,, where the quantities q j refer to the source

parameters while the quantities sm2 refer to the parameters underlying the lth-order (l ≥ 1) scattering
microscopic cross sections.
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4.1.1. Second-Order Sensitivities
(

∂2L
∂q j∂sm2

)
(s=σs,l=0)

, j = 1, . . . , Jq; m2 = 1, . . . , Jσs,l=0

The equations needed for deriving the expression of the 2nd-order mixed sensitivities(
∂2L

∂q j∂sm2

)
(s=σs,l=0)

are obtained by particularizing Equations (204) and (205) from Reference [6] to

the PERP benchmark. The expression obtained by particularizing Equation (204) from Reference [6] in

conjunction with the relations ∂2L
∂q j∂tm2

∂tm2
∂sm2

= ∂2L
∂q j∂sm2

and ∂Σt
g(t)

∂tm2

∂tm2
∂sm2

=
∂Σt

g(t)
∂sm2

yields:

(
∂2L

∂q j∂sm2

)(1)
(s=σs,l=0)

= −
G∑

g=1

∫
V dV

∫
4π dΩ h(2),g1, j (r, Ω)ψ(1),g(r, Ω)

∂Σt
g(t)

∂sm2
,

f or j = 1, . . . , Jq; m2 = 1, . . . , Jσs,l=0,
(97)

where the 2nd-level adjoint functions h(2),g1, j , j = 1, . . . , Jn; g = 1, . . . , G, are the solutions of the
2nd-Level Adjoint Sensitivity System presented in Equations (81) and (82). In Equation (97), the

parameter sm2 corresponds to the 0th-order microscopic total cross sections, i.e., sm2 ≡ σ
g′m2
→gm2

s,lm2=0,im2
, where

the subscripts im2 , lm2 , g′m2
and gm2 refer to the isotope, order of Legendre expansion, and energy

groups associated with sm2 , respectively. It therefore follows that:

∂Σg
t (t)

∂sm2
=

∂

[
M∑

m=1

I∑
i=1

Ni,mσ
g
t,i(t)

]
∂σ

g′m2
→gm2

s,lm2=0,im2

=

∂

 M∑
m=1

I∑
i=1

Ni,m

σg
f ,i(f)+σ

g
c,i(c)+

G∑
g′=1

σ
g→g′

s,l=0,i(s)




∂σ
g′m2

→gm2
s,lm2=0,im2

=

∂

 M∑
m=1

I∑
i=1

G∑
g′=1

Ni,mσ
g→g′

s,l=0,i(s)


∂σ

g′m2
→gm2

s,lm2=0,im2

= δg′m2
gNim2 ,mm2

.

(98)

Inserting the result obtained in Equation (98) into Equation (97) yields the following relation:

(
∂2L

∂q j∂sm2

)(1)
(s=σs,l=0)

= −Nim2 ,mm2

∫
V dV

∫
4π dΩ h

(2),g′m2
1, j (r, Ω)ψ

(1),g′m2 (r, Ω), j = 1, . . . , Jq; m2 = 1, . . . , Jσs,l=0. (99)

Using Equation (205) from Reference [6] to the PERP benchmark yields the following contributions:(
∂2L

∂q j∂sm2

)(2)
(s=σs,l=0)

=
G∑

g=1

∫
V dV

∫
4π dΩ h(2),g1, j (r, Ω)

G∑
g′=1

∫
4π dΩ

′

ψ(1),g′
(
r, Ω

′
) ∂Σg→g′

s (s;Ω→Ω
′

)
∂sm2

,

f or j = 1, . . . , Jq; m2 = 1, . . . , Jσs,l=0.
(100)

The right side of Equation (100) can be simplified by first noting that:

∂Σg→g′
s (s;Ω→Ω

′

)
∂sm2

=
∂Σg→g′

s (s;Ω→Ω
′

)

∂σ
g′m2

→gm2
s,lm2 ,im2

=
∂

[
M∑

m=1

I∑
i=1

Ni,mσ
g→g′

s,i (s;Ω→Ω
′

)

]
∂σ

g′m2
→gm2

s,lm2 ,im2

=
∂

[
M∑

m=1

I∑
i=1

ISCT∑
l=0

Ni,m(2l+1)σg→g′

s,l,i Pl(Ω
′

·Ω)
]

∂σ
g′m2

→gm2
s,lm2 ,im2

= δg′m2
gδgm2 g′Nim2 ,mm2

(2lm2 + 1)Plm2

(
Ω
′

·Ω
)
.

(101)

Inserting the result obtained in Equation (101) into Equation (100), using the addition theorem for
spherical harmonics in one-dimensional geometry, performing the respective angular integrations, and
setting lm2 = 0 in the resulting expression yields the following simplified end-form for Equation (100):(

∂2L
∂q j∂sm2

)(2)
(s=σs,l=0)

= Nim2 ,mm2

∫
V

dVξ
(1),gm2
0 (r)H

(2),g′m2
1, j;0 (r), j = 1, . . . , Jq; m2 = 1, . . . , Jσs,l=0, (102)
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where:

H(2),g
1, j;0 (r) ,

∫
4π

dΩ h(2),g1, j (rΩ). (103)

Collecting the partial contributions obtained in Equations (99) and (102), yields the following
result:(

∂2L
∂q j∂sm2

)
(s=σs, l=0)

=
(

∂2L
∂q j∂sm2

)(1)
(s=σs,l=0)

+
(

∂2L
∂q j∂sm2

)(2)
(s=σs,l=0)

= −Nim2 ,mm2

∫
V dV

∫
4π dΩ h

(2),g′m2
1, j (r, Ω)ψ

(1),g′m2 (r, Ω) + Nim2 ,mm2

∫
V dVξ

(1),gm2
0 (r)H

(2),g′m2
1, j;0 (r),

f or j = 1, . . . , Jq; m2 = 1, . . . , Jσs,l=0 .

(104)

4.1.2. Second-Order Sensitivities
(

∂2L
∂q j∂sm2

)
(s=σs,l≥1)

, j = 1, . . . , Jq; m2 = 1, . . . , σs,l≥1

For the 2nd-order sensitivities
(

∂2L
∂q j∂sm2

)
(s=σs,l≥1)

, j = 1, . . . , Jq; m2 = 1, . . . , σs,l≥1, the quantities q j

correspond to the isotopic source parameters while the parameters sm2 ≡ σ
g′m2
→gm2

s,lm2 ,im2
correspond to the

lth-order (l ≥ 1) scattering cross sections. In this case, the expression for
(

∂2L
∂q j∂sm2

)
(s=σs,l≥1)

is obtained by

particularizing Equation (205) from reference [6] to the PERP benchmark, which yields,(
∂2L

∂q j∂sm2

)
(s=σs,l≥1)

=
G∑

g=1

∫
V dV

∫
4π dΩ h(2),g1, j (r, Ω)

G∑
g′=1

∫
4π dΩ

′

ψ(1),g′
(
r, Ω

′
) ∂Σg→g′

s (s;Ω→Ω
′

)
∂sm2

,

f or j = 1, . . . , Jq; m2 = 1, . . . , Jσs,l≥1.
(105)

Inserting the results obtained in Equation (101) into Equation (105), using the addition theorem for
spherical harmonics in one-dimensional geometry and performing the respective angular integrations
yields the following expression:(

∂2L
∂q j∂sm2

)
(n=N,s=σs,l≥1)

= Nim2 ,mm2
(2lm2 + 1)

∫
V dVξ

(1),gm2
lm2

(r)H
(2),g′m2
1, j;lm2

(r), j = 1, . . . , Jq; m2 = 1, . . . , Jσs,l≥1, (106)

where:

ξ
(1),gm2
l (r) ,

∫
4π

dΩ Pl(Ω)ψ(1),g′(r, Ω), (107)

H
(2),gm2
1, j;l (r) ,

∫
4π

dΩ Pl(Ω)h(2),g1, j (rΩ). (108)

4.2. Alternative Path: Computing the Second-Order Sensitivities ∂2L(ααα)/∂σσσs∂q

The results computed using the expressions for ∂2L(α)/∂q∂σs obtained in Equations (104) and
(106) can be verified by obtaining the expressions for ∂2L(α)/∂σs∂q, which also requires separate
consideration of the zeroth-order scattering cross sections. The two cases involved are as follows:

(1)
(

∂2L
∂s j∂qm2

)
(s=σs,l=0)

, j = 1, . . . , Jσs,l=0; m2 = 1, . . . , Jq, where the quantities s j refer to the

parameters underlying the 0th-order scattering cross sections while the quantities qm2 refer to the
source parameters; and

(2)
(

∂2L
∂s j∂qm2

)
(s=σs,l≥1)

, j = 1, . . . , σs,l≥1; m2 = 1, . . . , Jq, where the quantities s j refer to the parameters

underlying the lth-order (l ≥ 1) scattering cross sections while the quantities qm2 refer to the
source parameters.
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4.2.1. Second-Order Sensitivities
(

∂2L
∂s j∂qm2

)
(s=σs,l=0)

, j = 1, . . . , Jσs,l=0; m2 = 1, . . . , Jq

The equations needed for deriving the expression of the 2nd-order mixed sensitivities(
∂2L

∂s j∂qm2

)
(s=σs,l=0)

are obtained by particularizing Equations (162) and (171) from Reference [6] to

the PERP benchmark, which yield:(
∂2L

∂s j∂qm2

)
(s=σs,l=0)

=
G∑

g=1

∫
V dV

∫
4π dΩ ψ

(2),g
2, j (r,Ω)

∂Qg(q;r,Ω)
∂qm2

+
G∑

g=1

∫
V dV

∫
4π dΩ θ

(2),g
2, j (r,Ω)

∂Qg(q;r,Ω)
∂qm2

, f or j = 1, . . . , Jσs,l=0; m2 = 1, . . . , Jq.
(109)

In Equation (109), the adjoint functions ψ(2),g
2, j , j = 1, . . . , Jσs,l=0; g = 1, . . . , G are the solutions of

the 2nd-Level Adjoint Sensitivity System presented in Equations (32) and (37) of Part II [2], which are
reproduced below for convenient reference:

A(1),g
(
α0

)
ψ
(2),g
2, j (r, Ω) = −δg′ j gNi j,m jψ

(1),g(r, Ω), j = 1, . . . , Jσs,l=0; g = 1, . . . , G, (110)

ψ
(2),g
2, j (rd, Ω) = 0, Ω · n > 0; j = 1, . . . , Jσs,l=0; g = 1, . . . , G. (111)

The 2nd-level adjoint functions, θ(2),g2, j , j = 1, . . . , Jσs,l=0; g = 1, . . . , G, which also appear in
Equation (109), are the solutions of the 2nd-Level Adjoint Sensitivity System presented in Equations
(48) and (52) of Part II [2], which are reproduced below for convenient reference:

A(1),g
(
α0

)
θ
(2),g
2, j (r, Ω) = δg′ j gNi j,m j

(
2l j + 1

)
Pl j(Ω)ξ

(1),g j

l j
(r), j = 1, . . . , Jσs; g = 1, . . . , G; l = 0, . . . , ISCT, (112)

θ
(2),g
2, j (rd, Ω) = 0, Ω · n > 0; j = 1, . . . , Jσs; g = 1, . . . , G. (113)

The expressions of the derivatives ∂Qg(q;r,Ω)
∂qm2

, which appear in Equation (109), have been derived
in Equations (18)–(25). Inserting the results obtained in Equations (18)–(25) into Equation (109),
and performing the respective angular integrations yields the following simplified expressions for
Equation (109):

For j = 1, . . . , Jσs,l=0; m2 = 1, 2:

(
∂2L

∂s j∂qm2

)
(s=σs,l=0)

=
∂2L

∂σ
g j
′→g j

s,l j=0,i j
∂λim2

=
1
λim2

G∑
g=1

∫
V

dV
[
ξ
(2),g
2, j;0 (r) + Θ(2),g

2, j;0 (r)
]
Qg

SF,im2
; (114)

For j = 1, . . . , Jσs,l=0; m2 = 3, 4:

(
∂2L

∂s j∂qm2

)
(s=σs,l=0)

=
∂2L

∂σ
g j
′→g j

s,l j=0,i j
∂FSF

im2

=
1

FSF
im2

G∑
g=1

∫
V

dV
[
ξ
(2),g
2, j;0 (r) + Θ(2),g

2, j;0 (r)
]
Qg

SF,im2
; (115)

For j = 1, . . . , Jσs,l=0; m2 = 5, 6:

(
∂2L

∂s j∂qm2

)
(s=σs,l=0)

= ∂2L

∂σ
gj
′→gj

s,l j=0,i j
∂aim2

= λim2
Nim2 ,1FSF

im2
νSF

im2

G∑
g=1

∫
V dV

[
ξ
(2),g
2, j;0 (r) + Θ(2),g

2, j;0 (r)
]
Da

(
g; aim2

, bim2

)
; (116)
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For j = 1, . . . , Jσs,l=0; m2 = 7, 8:

(
∂2L

∂s j∂qm2

)
(s=σs,l=0)

= ∂2L

∂σ
gj
′→gj

s,l j=0,i j
∂bim2

= λim2
Nim2 ,1FSF

im2
νSF

im2

G∑
g=1

∫
V dV

[
ξ
(2),g
2, j;0 (r) + Θ(2),g

2, j;0 (r)
]
Db

(
g; aim2

, bim2

)
; (117)

For j = 1, . . . , Jσs,l=0; m2 = 9, 10:

(
∂2L

∂s j∂qm2

)
(s=σs,l=0)

=
∂2L

∂σ
g j
′→g j

s,l j=0,i j
∂νSF

im2

=
1
νSF

im2

G∑
g=1

∫
V

dV
[
ξ
(2),g
2, j;0 (r) + Θ(2),g

2, j;0 (r)
]
Qg

SF,im2
; (118)

For j = 1, . . . , Jσs,l=0; m2 = 11, 12:

(
∂2L

∂s j∂qm2

)
(s=σs,l=0)

=
∂2L

(
α; Qg

SF

)
∂σ

g j
′→g j

s,l j=0,i j
∂Nim2 ,1

=
1

Nim2 ,1

G∑
g=1

∫
V

dV
[
ξ
(2),g
2, j;0 (r) + Θ(2),g

2, j;0 (r)
]
Qg

SF,im2
, (119)

where:

Θ(2),g
2, j;0 (r) ,

∫
4π

dΩ θ
(2),g
2, j (rΩ). (120)

4.2.2. Second-Order Sensitivities
(

∂2L
∂s j∂qm2

)
(s=σs,l≥1)

, j = 1, . . . , σs,l≥1; m2 = 1, . . . , Jq

For this case, the parameters s j correspond to the lth-order (l ≥ 1) scattering cross sections, denoted

as s j ≡ σ
g j
′
→g j

s,l j,i j
. Since the lth-order (l ≥ 1) scattering cross sections are not part of the total cross sections,

the expression of
(

∂2L
∂s j∂qm2

)
(s=σs,l≥1)

is obtained by particularizing Equation (171) from Reference [6] to

the PERP benchmark, which yields,(
∂2L

∂s j∂qm2

)
(s=σs,l≥1)

=
G∑

g=1

∫
V

dV
∫

4π
dΩ θ

(2),g
2, j (r,Ω)

∂Qg(q; r, Ω)

∂qm2

, j = 1, . . . , Js,l≥1; m2 = 1, . . . , Jq. (121)

The 2nd-level adjoint functions, θ(2),g2, j , j = 1, . . . , Js,l≥1; g = 1, . . . , G, which appear in Equation
(121), are the solutions of the 2nd-Level Adjoint Sensitivity System presented in Equations (48) and (52)
of Part II [2], as have been presented previously in Equations (112)–(113). Inserting the results obtained
in Equations (18)–(25) into Equation (121), and performing the respective angular integrations, yields
the following expressions:

For j = 1, . . . , Jσs,l≥1; m2 = 1, 2:

(
∂2L

∂s j∂qm2

)
(s=σs,l≥1)

=
∂2L

∂σ
g j
′→g j

s,l j,i j
∂λim2

=
1
λim2

G∑
g=1

∫
V

dVΘ(2),g
2, j;0 (r)Q

g
SF,im2

; (122)

For j = 1, . . . , Jσs,l≥1; m2 = 3, 4:

(
∂2L

∂s j∂qm2

)
(s=σs,l≥1)

=
∂2L

∂σ
g j
′→g j

s,l j,i j
∂FSF

im2

=
1

FSF
im2

G∑
g=1

∫
V

dVΘ(2),g
2, j;0 (r)Q

g
SF,im2

; (123)
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For j = 1, . . . , Jσs,l≥1; m2 = 5, 6:

(
∂2L

∂s j∂qm2

)
(s=σs,l≥1)

=
∂2L

∂σ
g j
′→g j

s,l j,i j
∂aim2

= λim2
Nim2 ,1FSF

im2
νSF

im2

G∑
g=1

∫
V

dVΘ(2),g
2, j;0 (r)Da

(
g; aim2

, bim2

)
; (124)

For j = 1, . . . , Jσs,l≥1; m2 = 7, 8:

(
∂2L

∂s j∂qm2

)
(s=σs,l≥1)

=
∂2L

∂σ
g j
′→g j

s,l j,i j
∂bim2

= λim2
Nim2 ,1FSF

im2
νSF

im2

G∑
g=1

∫
V

dVΘ(2),g
2, j;0 (r)Db

(
g; aim2

, bim2

)
; (125)

For j = 1, . . . , Jσs,l≥1; m2 = 9, 10:

(
∂2L

∂s j∂qm2

)
(s=σs,l≥1)

=
∂2L

∂σ
g j
′→g j

s,l j,i j
∂νSF

im2

=
1
νSF

im2

G∑
g=1

∫
V

dVΘ(2),g
2, j;0 (r)Q

g
SF,im2

; (126)

For j = 1, . . . , Jσs,l≥1; m2 = 11, 12.:

(
∂2L

∂s j∂qm2

)
(s=σs,l≥1)

=
∂2L

(
α; Qg

SF

)
∂σ

g j
′→g j

s,l j,i j
∂Nim2 ,1

=
1

Nim2 ,1

G∑
g=1

∫
V

dVΘ(2),g
2, j;0 (r)Q

g
SF,im2

. (127)

4.3. Numerical Results for ∂2L(ααα)/∂q∂σσσs

The second-order absolute sensitivities, ∂2L(α)/∂q∂σs, of the leakage response with respect to
the source parameters and the scattering cross sections for all isotopes of the PERP benchmark have
been computed using Equations (104) and (106), and have been independently verified by computing
∂2L(α)/∂σs∂q using Equations (114)–(119) and (122)–(127). For the PERP benchmark, computing
the second-order absolute sensitivities, ∂2L(α)/∂q∂σs, using Equations (104) and (106), requires 12
forward PARTISN computations to obtain all the required adjoint functions. On the other hand,
computing the alternative expression ∂2L(α)/∂σs∂q using Equations (114)–(119) and (122)–(127),
requires 7101 adjoint PARTISN computations to obtain the needed second level adjoint functions. As
has been discussed in Part III [3], the reason for needing “only” 7101, rather than 21600, PARTISN
computations is that all of the up-scattering and some of the down-scattering cross sections are zero for
the PERP benchmark. Therefore, computing ∂2L(α)/∂q∂σs using Equations (104) and (106) is about
590 (≈7101/12) times more efficient than computing ∂2L(α)/∂σs∂q by using Equations (114)–(119) and
(122)–(127).

The dimensions of the matrix ∂2L/∂q j∂sm2 , j = 1, . . . , Jq; m2 = 1, . . . , Jσs is Jq × Jσs (= 12× 21, 600),
where Jσs = G × G × (ISCT + 1) × I = 30 × 30 × 4 × 6 = 21, 600. The matrix of 2nd-order relative

sensitivities corresponding to ∂2L/∂q j∂sm2 , j = 1, . . . , Jq; m2 = 1, . . . , Jσs, denoted as S(2)
(
q j, σ

g′→g
s,l,k

)
, is

defined as follows:

S(2)
(
q j, σ

g′→g
s,l,k

)
,

∂2L

∂q j∂σ
g′→g
s,l,k

q jσ
g′→g
s,l,k

L

, j = 1, . . . , 12; l = 0, . . . , 3; k = 1, . . . , 6; g′, g = 1, . . . , 30. (128)

Applying Equation (128) to Equations (114), (115), (118), (119), (122), (123), (126) and (127), yields
the following expressions:
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(i) for the mixed 2nd-order relative sensitivities of the leakage response with respect to the
zeroth-order scattering cross sections:

S(2)
(
σ

g′→g
s,l=0,k,λi

)
= S(2)

(
σ

g′→g
s,l=0,k, FSF

i

)
= S(2)

(
σ

g′→g
s,l=0,k, νSF

i

)
= S(2)

(
σ

g′→g
s,l=0,k, Ni,1

)
= 1

L

G∑
g=1

σ
g′→g
s,l=0,k

∫
V dV

[
ξ
(2),g
2, j;0 (r) + Θ(2),g

2, j;0 (r)
]
Qg

SF,i, f or i = 1, 2; k = 1, . . . , 6; g′, g = 1, . . . 30;
(129)

(ii) for the mixed 2nd-order relative sensitivities of the leakage response with respect to the higher
order (i.e., l = 1, 2, 3) scattering cross sections:

S(2)
(
σ

g′→g
s,l,k ,λi

)
= S(2)

(
σ

g′→g
s,l,k , FSF

i

)
= S(2)

(
σ

g′→g
s,l,k , νSF

i

)
= S(2)

(
σ

g′→g
s,l,k , Ni,1

)
= 1

L

G∑
g=1

σ
g′→g
s,l,k

∫
V dVΘ(2),g

2, j;0 (r)Q
g
SF,i, f or i = 1, 2; k = 1, . . . , 6; l = 1, 2, 3; g′, g = 1, . . . 30.

(130)

As expected, the results obtained in Equations (129) and (130) are the same as have been previously
obtained in Equations (104) and (106), together with Equation (128).

To facilitate the presentation and interpretation of the numerical results, the Jq × Jσs (= 12 ×

21, 600) matrix S(2)
(
q j, σ

g′→g
s,l,k

)
has first been partitioned into 4 submatrices, namely, S(2)

(
q j, σ

g′→g
s,l=0,k

)
,

S(2)
(
q j, σ

g′→g
s,l=1,k

)
, S(2)

(
Ni,m, σg′→g

s,l=2,k

)
and S(2)

(
q j, σ

g′→g
s,l=3,k

)
, for the scattering orders l = 0, l = 1, l = 2 and

l = 3, respectively; then each of them is further partitioned into Jq × I = 12× 6 smaller submatrices,
each of dimensions 1× (G ·G) = 1× 900. The results are summarized below, in Sections 4.3.1–4.3.4.

4.3.1. Results for the Relative Sensitivities S(2)
(
q j, σ

g′→g
s,l=0,k

)
The matrix S(2)

(
q j, σ

g′→g
s,l=0,k

)
, j = 2, 4, 6, 8, 10, 12; k = 1, . . . , 6; g′, g = 1, . . . , 30, comprises the

mixed 2nd-order relative sensitivities of the leakage response with respect to the source parameters
of isotope 240Pu and the 0th-order scattering microscopic cross sections for all isotopes in the PERP
benchmark. Table 10 presents the summary of the numerical results obtained for these mixed 2nd-order
relative sensitivities.

As shown in Table 10, the absolute values of all elements in the matrix S(2)
(
q j, σ

g′→g
s,l=0,k

)
are

smaller than 1.0. The overall largest value in the matrix S(2)
(
q j, σ

g′→g
s,l=0,k

)
is attained by the sensitivities

S(2)
(
λ2, σ12→12

s,l=0,5

)
= S(2)

(
FSF

2 , σ12→12
s,l=0,5

)
= S(2)

(
νSF

2 , σ12→12
s,l=0,5

)
= S(2)

(
N2,1, σ12→12

s,l=0,5

)
= 0.681, all of which

involve the 0th-order self-scattering cross section for the 12th energy group of isotope 5 (C). The

values of the mixed 2nd-order relative sensitivities S(2)
(
λ2, σg′→g

s,l=0,k

)
, S(2)

(
FSF

2 , σg′→g
s,l=0,k

)
, S(2)

(
νSF

2 , σg′→g
s,l=0,k

)
and S(2)

(
N2,1, σg′→g

s,l=0,k

)
for k = 1, . . . , 4, with respect to the source parameters λ2, FSF

2 , νSF
2 , N2,1 of

isotope 240Pu and the 0th-order scattering cross sections of isotopes 239Pu, 240Pu, 69Ga and 71Ga,
can be positive or negative, but there are more positive values than negative ones. For instance,

among the 900 elements in the submatrix S(2)
(
λ2, σg′→g

s,l=0,k=1

)
, 251 elements have positive values and

87 elements have negative values, while the remaining elements are zero. On the other hand, the
nonzero values of the mixed 2nd-order relative sensitivities with respect to the source parameters
λ2, FSF

2 , νSF
2 , N2,1 of isotope 240Pu and the 0th-order scattering cross sections of isotopes C and 1H

[i.e., S(2)
(
λ2, σg′→g

s,l=0,k

)
, S(2)

(
FSF

2 , σg′→g
s,l=0,k

)
, S(2)

(
νSF

2 , σg′→g
s,l=0,k

)
, S(2)

(
N2,1, σg′→g

s,l=0,k

)
, for k = 5, 6] are all positive.

As also shown in Table 10, the values of all of the largest elements of each of the respective sub-matrices
are positive; most of these elements involve the 0th-order self-scattering cross sections for the 12th
energy group of isotopes 239Pu, 240Pu, 69Ga, 71Ga and C, while the others involve the 0th-order
out-scattering cross section σ16→17

s,l=0,k=6 for isotope 1H.
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Table 10. Summary presentation of the matrix S(2)
(
q j, σ

g′→g
s,l=0,k

)
, for 2nd-order relative sensitivities of

the leakage response with respect to the source parameters of isotope 240Pu and the 0th-order (l = 0)
scattering cross sections for all isotopes in the PERP benchmark.

k=1 (239Pu) k=2(240Pu) k=3 (69Ga) k=4 (71Ga) k=5 (C) k=6 (1H)

λ2

S(2)

 λ2,
σ

g′→g
s,l=0,1


Max. value

= 1.34 × 10−1

g′ = 12, g = 12

S(2)

 λ2,
σ

g′→g
s,l=0,2


Max. value

= 8.89 × 10−3

g′ = 12, g = 12

S(2)

 λ2,
σ

g′→g
s,l=0,3


Max. value

= 5.14 × 10−4

g′ = 12, g = 12

S(2)

 λ2,
σ

g′→g
s,l=0,4


Max. value

= 3.30 × 10−4

g′ = 12, g = 12

S(2)

 λ2,
σ

g′→g
s,l=0,5


Max. value

= 6.81 × 10−1

g′ = 12, g = 12

S(2)

 λ2,
σ

g′→g
s,l=0,6


Max. value

= 1.26 × 10−1

g′ = 16, g = 17

FSF
2

S(2)

 FSF
2 ,

σ
g′→g
s,l=0,1


Max. value

= 1.34 × 10−1

g′ = 12, g = 12

S(2)

 FSF
2 ,

σ
g′→g
s,l=0,2


Max. value

= 8.89 × 10−3

g′ = 12, g = 12

S(2)

 FSF
2 ,

σ
g′→g
s,l=0,3


Max. value

= 5.14 × 10−4

g′ = 12, g = 12

S(2)

 FSF
2 ,

σ
g′→g
s,l=0,4


Max. value

= 3.30 × 10−4

g′ = 12, g = 12

S(2)

 FSF
2 ,

σ
g′→g
s,l=0,5


Max. value

= 6.81 × 10−1

g′ = 12, g = 12

S(2)

 FSF
2 ,

σ
g′→g
s,l=0,6


Max. value

= 1.26 × 10−1

g′ = 16, g = 17

a2

S(2)

 a2,
σ

g′→g
s,l=0,1


Max. value

= 3.43 × 10−2

g′ = 7, g = 7

S(2)

 a2,
σ

g′→g
s,l=0,2


Max. value

= 2.00 × 10−3

g′ = 7, g = 7

S(2)

 a2,
σ

g′→g
s,l=0,3


Max. value

= 8.67 × 10−5

g′ = 7, g = 7

S(2)

 a2,
σ

g′→g
s,l=0,4


Max. value

= 5.43 × 10−5

g′ = 7, g = 7

S(2)

 a2,
σ

g′→g
s,l=0,5


Max. value

= 8.35 × 10−3

g′ = 7, g = 7

S(2)

 a2,
σ

g′→g
s,l=0,6


Min. value

= −9.22 × 10−3

g′ = 16, g = 17

b2

S(2)

 b2,
σ

g′→g
s,l=0,1


Max. value

= 9.10 × 10−3

g′ = 7, g = 7

S(2)

 b2,
σ

g′→g
s,l=0,2


Max. value

= 5.32 × 10−4

g′ = 7, g = 7

S(2)

 b2,
σ

g′→g
s,l=0,3


Max. value

= 2.30 × 10−5

g′ = 7, g = 7

S(2)

 b2,
σ

g′→g
s,l=0,4


Max. value

= 1.44 × 10−5

g′ = 7, g = 7

S(2)

 b2,
σ

g′→g
s,l=0,5


Max. value

= 2.19 × 10−3

g′ = 7, g = 7

S(2)

 b2,
σ

g′→g
s,l=0,6


Min. value

= −3.34 × 10−3

g′ = 16, g = 17

νSF
2

S(2)

 νSF
2 ,

σ
g′→g
s,l=0,1


Max. value

= 1.34 × 10−1

g′ = 12, g = 12

S(2)

 νSF
2 ,

σ
g′→g
s,l=0,2


Max. value

= 8.89 × 10−3

g′ = 12, g = 12

S(2)

 νSF
2 ,

σ
g′→g
s,l=0,3


Max. value

= 5.14 × 10−4

g′ = 12, g = 12

S(2)

 νSF
2 ,

σ
g′→g
s,l=0,4


Max. value

= 3.30 × 10−4

g′ = 12, g = 12

S(2)

 νSF
2 ,

σ
g′→g
s,l=0,5


Max. value

= 6.81 × 10−1

g′ = 12, g = 12

S(2)

 νSF
2 ,

σ
g′→g
s,l=0,6


Max. value

= 1.26 × 10−1

g′ = 16, g = 17

N2,1

S(2)

 N2,1,
σ

g′→g
s,l=0,1


Max. value

= 1.34 × 10−1

g′ = 12, g = 12

S(2)

 N2,1,
σ

g′→g
s,l=0,2


Max. value

= 8.89 × 10−3

g′ = 12, g = 12

S(2)

 N2,1,
σ

g′→g
s,l=0,3


Max. value

= 5.14 × 10−4

g′ = 12, g = 12

S(2)

 N2,1,
σ

g′→g
s,l=0,4


Max. value

= 3.30 × 10−4

g′ = 12, g = 12

S(2)

 N2,1,
σ

g′→g
s,l=0,5


Max. value

= 6.81 × 10−1

g′ = 12, g = 12

S(2)

 N2,1,
σ

g′→g
s,l=0,6


Max. value

= 1.26 × 10−1

g′ = 16, g = 17

The mixed 2nd-order relative sensitivities with respect to the source parameters a2, b2 of isotope
240Pu and the 0th-order scattering cross sections for all isotopes, namely, S(2)

(
a2, σg′→g

s,l=0,k

)
, S(2)

(
b2, σg′→g

s,l=0,k

)
,

for k = 1, . . . , 6, are small, having absolute values of the order of 10−2 or less. As shown in Table 10, the
values of the largest elements of the respective sub-matrix are all positive, except for S(2)

(
a2, σ16→17

s,l=0,k=6

)
and S(2)

(
b2, σ16→17

s,l=0,k=6

)
, which have small negative values; these elements involve (most of the time)

either the 0th-order self-scattering cross sections for the 7th energy group of isotopes 239Pu, 240Pu,
69Ga, 71Ga and C, or (occasionally) the 0th-order out-scattering cross section σ16→17

s,l=0,k=6 for isotope 1H.

4.3.2. Results for the Relative Sensitivities S(2)
(
q j, σ

g′→g
s,l=1,k

)
Table 11 presents the summary of the results for the mixed 2nd-order relative sensitivities of the

leakage response with respect to the source parameters of isotope 240Pu and the 1st-order scattering cross
sections for all isotopes in the PERP benchmark; these 2nd-order sensitivities are elements of the matrix

S(2)
(
q j, σ

g′→g
s,l=1,k

)
, j = 2, 4, 6, 8, 10, 12; k = 1, . . . , 6; g′, g = 1, . . . , 30. As shown in Table 11, the absolute

values of all elements in the matrix S(2)
(
q j, σ

g′→g
s,l=1,k

)
are smaller than 1.0. The overall largest (absolute)

value is S(2)
(
λ2, σ12→13

s,l=1,k=6

)
= S(2)

(
FSF

2 , σ12→13
s,l=1,k=6

)
= S(2)

(
νSF

2 , σ12→13
s,l=1,k=6

)
= S(2)

(
N2,1, σ12→13

s,l=1,k=6

)
= −0.104.
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Table 11. Summary presentation of the matrix S(2)
(
q j, σ

g′→g
s,l=1,k

)
, for 2nd-order relative sensitivities of

the leakage response with respect to the source parameters of isotope 240Pu and the 1st-order (l = 1)
scattering cross sections for all isotopes in the PERP benchmark.

k=1 (239Pu) k=2(240Pu) k=3 (69Ga) k=4 (71Ga) k=5 (C) k=6 (1H)

λ2

S(2)

 λ2,
σ

g′→g
s,l=1,1


Min. value

= −8.72 × 10−2

g′ = 7, g = 7

S(2)

 λ2,
σ

g′→g
s,l=1,2


Min. value

= −5.24 × 10−3

g′ = 7, g = 7

S(2)

 λ2,
σ

g′→g
s,l=1,3


Min. value

= −1.76 × 10−4

g′ = 7, g = 7

S(2)

 λ2,
σ

g′→g
s,l=1,4


Min. value

= −1.07 × 10−4

g′ = 7, g = 7

S(2)

 λ2,
σ

g′→g
s,l=1,5


Min. value

= −2.74 × 10−2

g′ = 12, g = 12

S(2)

 λ2,
σ

g′→g
s,l=1,6


Min. value

= −1.04 × 10−1

g′ = 12, g = 13

FSF
2

S(2)

 FSF
2 ,

σ
g′→g
s,l=1,1


Min. value

= −8.72 × 10−2

g′ = 7, g = 7

S(2)

 FSF
2 ,

σ
g′→g
s,l=1,2


Min. value

= −5.24 × 10−3

g′ = 7, g = 7

S(2)

 FSF
2 ,

σ
g′→g
s,l=1,3


Min. value

= −1.76 × 10−4

g′ = 7, g = 7

S(2)

 FSF
2 ,

σ
g′→g
s,l=1,4


Min. value

= −1.07 × 10−4

g′ = 7, g = 7

S(2)

 FSF
2 ,

σ
g′→g
s,l=1,5


Min. value

= −2.74 × 10−2

g′ = 12, g = 12

S(2)

 FSF
2 ,

σ
g′→g
s,l=1,6


Min. value

= −1.04 × 10−1

g′ = 12, g = 13

a2

S(2)

 a2,
σ

g′→g
s,l=1,1


Min. value

= −2.91 × 10−2

g′ = 7, g = 7

S(2)

 a2,
σ

g′→g
s,l=1,2


Min. value

= −1.75 × 10−3

g′ = 7, g = 7

S(2)

 a2,
σ

g′→g
s,l=1,3


Min. value

= −5.88 × 10−5

g′ = 7, g = 7

S(2)

 a2,
σ

g′→g
s,l=1,4


Min. value

= −3.57 × 10−5

g′ = 7, g = 7

S(2)

 a2,
σ

g′→g
s,l=1,5


Min. value

= −7.36 × 10−3

g′ = 7, g = 7

S(2)

 a2,
σ

g′→g
s,l=1,6


Max. value

= 7.46 × 10−3

g′ = 16, g = 16

b2

S(2)

 b2,
σ

g′→g
s,l=1,1


Min. value

= −7.73 × 10−3

g′ = 7, g = 7

S(2)

 b2,
σ

g′→g
s,l=1,2


Min. value

= −4.65 × 10−4

g′ = 7, g = 7

S(2)

 b2,
σ

g′→g
s,l=1,3


Min. value

= −1.56 × 10−5

g′ = 7, g = 7

S(2)

 b2,
σ

g′→g
s,l=1,4


Min. value

= −9.48 × 10−6

g′ = 7, g = 7

S(2)

 b2,
σ

g′→g
s,l=1,5


Min. value

= −1.93 × 10−3

g′ = 7, g = 7

S(2)

 b2,
σ

g′→g
s,l=1,6


Max. value

= 2.71 × 10−3

g′ = 16, g = 16

νSF
2

S(2)

 νSF
2 ,

σ
g′→g
s,l=1,1


Min. value

= −8.72 × 10−2

g′ = 7, g = 7

S(2)

 νSF
2 ,

σ
g′→g
s,l=1,2


Min. value

= −5.24 × 10−3

g′ = 7, g = 7

S(2)

 νSF
2 ,

σ
g′→g
s,l=1,3


Min. value

= −1.76 × 10−4

g′ = 7, g = 7

S(2)

 νSF
2 ,

σ
g′→g
s,l=1,4


Min. value

= −1.07 × 10−4

g′ = 7, g = 7

S(2)

 νSF
2 ,

σ
g′→g
s,l=1,5


Min. value

= −2.74 × 10−2

g′ = 12, g = 12

S(2)

 νSF
2 ,

σ
g′→g
s,l=1,6


Min. value

= −1.04 × 10−1

g′ = 12, g = 13

N2,1

S(2)

 N2,1,
σ

g′→g
s,l=1,1


Min. value

= −8.72 × 10−2

g′ = 7, g = 7

S(2)

 N2,1,
σ

g′→g
s,l=1,2


Min. value

= −5.24 × 10−3

g′ = 7, g = 7

S(2)

 N2,1,
σ

g′→g
s,l=1,3


Min. value

= −1.76 × 10−4

g′ = 7, g = 7

S(2)

 N2,1,
σ

g′→g
s,l=1,4


Min. value

= −1.07 × 10−4

g′ = 7, g = 7

S(2)

 N2,1,
σ

g′→g
s,l=1,5


Min. value

= −2.74 × 10−2

g′ = 12, g = 12

S(2)

 N2,1,
σ

g′→g
s,l=1,6


Min. value

= −1.04 × 10−1

g′ = 12, g = 13

The elements of S(2)
(
λ2, σg′→g

s,l=1,k

)
, S(2)

(
FSF

2 , σg′→g
s,l=1,k

)
, S(2)

(
νSF

2 , σg′→g
s,l=1,k

)
, S(2)

(
N2,1, σg′→g

s,l=1,k

)
for k =

1, . . . , 5, namely the mixed 2nd-order relative sensitivities with respect to the source parameters
λ2, FSF

2 , νSF
2 , N2,1 of isotope 240Pu and the 1st-order scattering cross sections of isotopes 239Pu, 240Pu,

69Ga and 71Ga and C, can have either positive or negative values. For example, of the 900 elements of

the submatrix S(2)
(
λ2, σg′→g

s,l=1,k=1

)
, 263 elements have negative values, 75 elements have positive values,

and the remaining elements are zero. Table 11 also indicates that all of the nonzero values of the

elements of the matrices S(2)
(
λ2, σg′→g

s,l=1,k=6

)
, S(2)

(
FSF

2 , σg′→g
s,l=1,k=6

)
, S(2)

(
νSF

2 , σg′→g
s,l=1,k=6

)
, S(2)

(
N2,1, σg′→g

s,l=1,k=6

)
,

which comprise the mixed 2nd-order relative sensitivities with respect to the source parameters λ2,
FSF

2 , νSF
2 , N2,1 of isotope 240Pu and the 1st-order scattering cross sections of isotope 1H, are negative.

The results presented in the Table 11 also reveal that the largest elements of the respective sub-matrix
are all negative, involving either the 1st-order self-scattering cross sections for the 7th energy group of
isotopes 239Pu, 240Pu, 69Ga and 71Ga (i.e., σ7→7

s,l=1,k, k = 1, . . . , 4) or the 12th energy group of isotope C

(i.e., σ12→12
s,l=0,k=5), or the 1st-order out-scattering cross section σ12→13

s,l=0,k=6 of isotope 1H.

As also shown in Table 11, the elements of S(2)
(
a2, σg′→g

s,l=1,k

)
, S(2)

(
b2, σg′→g

s,l=1,k

)
for k = 1, . . . , 6 [i.e., the

mixed 2nd-order relative sensitivities of the leakage response with respect to the source parameters
a2, b2 of isotope 240Pu and the 1st-order scattering cross sections for all isotopes] are all small and
can have either positive or negative values. The value of the largest elements of these submatrices
are generally negative, except for S(2)

(
a2, σ16→16

s,l=1,k=6

)
and S(2)

(
b2, σ16→16

s,l=1,k=6

)
, which have positive values.

The majority of these elements involve the 1st-order self-scattering cross sections for the 7th energy
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group of isotopes 239Pu, 240Pu, 69Ga, 71Ga and C (namely, σ7→7
s,l=0,k, k = 1, . . . , 5) while a minority involve

the 16th energy group of isotope 1H (namely, σ16→16
s,l=1,k=6).

4.3.3. Results for the Relative Sensitivities S(2)
(
q j, σ

g′→g
s,l=2,k

)
The matrix S(2)

(
q j, σ

g′→g
s,l=2,k

)
, j = 2, 4, 6, 8, 10, 12; k = 1, . . . , 6; g′, g = 1, . . . , 30, comprises the

2nd-order mixed relative sensitivities of the leakage response with respect to the source parameters
of isotope 240Pu and the 2nd-order scattering cross sections for all isotopes in the PERP benchmark.
As expected, based on the work previously performed in Part II [2], these 2nd-order mixed relative
sensitivities with respect to the higher-order scattering cross sections are very small, of the order of
10−2 or less. The overall largest element in this matrix is S(2)

(
λ2, σ12→12

s,l=2,k=6

)
= S(2)

(
FSF

2 , σ12→12
s,l=2,k=6

)
=

S(2)
(
νSF

2 , σ12→12
s,l=2,k=6

)
= S(2)

(
N2,1, σ12→12

s,l=2,k=6

)
= 2.70 × 10−2. Due to the small values of its elements, the

detailed features of S(2)
(
q j, σ

g′→g
s,l=2,k

)
are not presented in work.

4.3.4. Results for the Relative Sensitivities S(2)
(
q j, σ

g′→g
s,l=3,k

)
The matrix S(2)

(
q j, σ

g′→g
s,l=3,k

)
, j = 2, 4, 6, 8, 10, 12; k = 1, . . . , 6; g′, g = 1, . . . , 30, comprises the

2nd-order mixed relative sensitivities of the leakage response with respect to the source parameters
of isotope 240Pu and the 3rd-order scattering cross sections for all isotopes in the PERP benchmark.
The elements S(2)

(
λ2, σ12→12

s,l=3,k=6

)
= S(2)

(
FSF

2 , σ12→12
s,l=3,k=6

)
= S(2)

(
νSF

2 , σ12→12
s,l=3,k=6

)
= S(2)

(
N2,1, σ12→12

s,l=3,k=6

)
=

−5.35 × 10−3 have the largest absolute values; the remaining elements are even smaller and will
therefore not be discussed further.

5. Mixed Second-Order Sensitivities of the PERP Total Leakage Response with Respect to the
Benchmark’s Source Parameters and Fission Cross Sections

This Section presents the computation and analysis of the numerical results for the 2nd-order
mixed sensitivities ∂2L(α)/∂q∂σ f , of the leakage response with respect to the source parameters
and group-averaged fission microscopic cross sections of all isotopes of the PERP benchmark. These
2nd-order mixed sensitivities can also be obtained by alternatively computing the matrix ∂2L(α)/∂σ f∂q.
As illustrated in Sections 5.1 and 5.2, respectively, these two distinct paths use distinct 2nd-level adjoint
functions and therefore provide an intrinsic verification of the accuracy of the respective computations.

5.1. Computing the Second-Order Sensitivities ∂2L(ααα)/∂q∂σσσ f

The equations needed for deriving the expressions of the 2nd-order sensitivities ∂2L(α)/∂q∂σ f
are obtained by particularizing Equations (204) and (206) from Reference [6] to the PERP benchmark.
Specifically, the expression obtained by particularizing Equation (204) from Reference [6], in conjunction

with the relations ∂2L
∂q j∂tm2

∂tm2
∂ fm2

= ∂2L
∂q j∂ fm2

and ∂Σt
g(t)

∂tm2

∂tm2
∂ fm2

=
∂Σt

g(t)
∂ fm2

, yields the following relation:

(
∂2L

∂q j∂ fm2

)(1)
( f=σ f )

= −
G∑

g=1

∫
V dV

∫
4π dΩ h(2),g1, j (r, Ω)ψ(1),g(r, Ω)

∂Σt
g(t)

∂ fm2
,

f or j = 1, . . . , Jq; m2 = 1, . . . , Jσ f ,
(131)
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where the 2nd-level adjoint functions h(2),g1, j , j = 1, . . . , Jn; g = 1, . . . , G, are the solutions of the
2nd-LASS presented previously in Equations (81) and (82). Noting that

∂Σg
t

∂ fm2

=

∂

[
M∑

m=1

I∑
i=1

Ni,mσ
g
t,i

]
∂σ

gm2
f ,im2

=

∂

[
M∑

m=1

I∑
i=1

Ni,mσ
g
f ,i

]
∂σ

gm2
f ,im2

= δgm2 gNim2 ,mm2
, (132)

and inserting the result obtained in Equation (132) into Equation (131) yields the following expression:(
∂2L

∂q j∂ fm2

)(1)
( f=σ f )

= −Nim2 ,mm2

∫
V dV

∫
4π dΩ h

(2),gm2
1, j (r, Ω)ψ(1),gm2 (r, Ω),

f or j = 1, . . . , Jq; m2 = 1, . . . , Jσ f .
(133)

Specializing Equation (206) from Reference [6] to the PERP benchmark yields the
following expression:(

∂2L
∂q j∂ fm2

)(2)
( f=σ f )

=
G∑

g=1

∫
V dV

∫
4π dΩ h(2),g1, j (r,Ω)

∂
[
(νΣ f )

g
(f)

]
∂ fm2

G∑
g′=1

∫
4π dΩ

′

χg′ψ(1),g′
(
r,Ω

′
)
,

f or j = 1, . . . , Jq; m2 = 1, . . . , Jσ f ,
(134)

where:

∂
[(
νΣ f

)g]
∂ fm2

=

∂

[
M∑

m=1

I∑
i=1

Ni,m
(
νσ f

)g

i

]
∂σ

gm2
f ,im2

=

∂

[
M∑

m=1

I∑
i=1

Ni,mν
g
i σ

g
f ,i

]
∂σ

gm2
f ,im2

= δgm2 gNim2 ,mm2
ν

g
im2

. (135)

Inserting the result obtained in Equation (135) into Equation (134) yields the following expression:(
∂2L

∂q j∂ fm2

)(2)
( f=σ f )

= Nim2 ,mm2
ν

gm2
im2

∫
V dVH

(2),gm2
1, j;0 (r)

G∑
g′=1

χg′ξ
(1),g′

0 (r),

f or j = 1, . . . , Jq; m2 = 1, . . . , Jσ f .
(136)

Collecting the partial contributions obtained in Equations (133) and (136) yields the following
result:(

∂2L
∂q j∂ fm2

)
( f=σ f )

=
2∑
i

(
∂2L

∂q j∂ fm2

)(i)
( f=σ f )

= −Nim2 ,mm2

∫
V dV

∫
4π dΩ h

(2),gm2
1, j (r, Ω)ψ(1),gm2 (r, Ω)

+Nim2 ,mm2
ν

gm2
im2

∫
V dVH

(2),gm2
1, j;0 (r)

G∑
g′=1

χg′ξ
(1),g′

0 (r), f or j = 1, . . . , Jq; m2 = 1, . . . , Jσ f .
(137)

5.2. Alternative Path: Computing the Second-Order Sensitivities ∂2L(ααα)/∂σσσ f∂q

The equations needed for deriving the alternative expression of the 2nd-order mixed sensitivities
∂2L(α)/∂q∂σ f are obtained by particularizing Equations (162) and (181) from Reference [6] to the
PERP benchmark, which yields:(

∂2L
∂ f j∂qm2

)
( f=σ f )

=
G∑

g=1

∫
V dV

∫
4π dΩ ψ

(2),g
2, j (r,Ω)

∂Qg(q;r,Ω)
∂qm2

+
G∑

g=1

∫
V dV

∫
4π dΩ u(2),g

2, j (r,Ω)
∂Qg(q;r,Ω)

∂qm2
, f or j = 1, . . . , Jσ f ; m2 = 1, . . . , Jq.

(138)
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In Equation (138), the adjoint functions ψ(2),g
2, j , j = 1, . . . , Jσ f ; g = 1, . . . , G are the solutions of the

2nd-Level Adjoint Sensitivity System presented in Equations (35) and (40) of Part III [3], which are
reproduced below for convenient reference:

A(1),g
(
α0

)
ψ
(2),g
2, j (r, Ω) = −δg j gNi j,m jψ

(1),g(r, Ω), j = 1, . . . , Jσ f ; g = 1, . . . , G, (139)

ψ
(2),g
2, j (rd, Ω) = 0, Ω · n > 0; j = 1, . . . , Jσ f ; g = 1, . . . , G. (140)

Furthermore, the 2nd-level adjoint functions u(2),g
2, j , j = 1, . . . , Jσ f ; g = 1, . . . , G are the solutions of

the 2nd-Level Adjoint Sensitivity System presented in Equations (21) and (30) of Part III [3], which are
also reproduced below for convenient reference:

A(1),g
(
α0

)
u(2),g

2, j (r, Ω) = δg j gNi j,m jν
g
i j

G∑
g′=1

χg′ξ
(1),g′

0 (r), j = 1, . . . , Jσ f ; g = 1, . . . , G, (141)

u(2),g
2, j (rd, Ω) = 0, Ω · n > 0; j = 1, . . . , Jσ f ; g = 1, . . . , G. (142)

Inserting the results obtained in Equations (18)−(25) into Equation (138) and performing the
respective angular integrations yields the following simplified expression for Equation (138):

For j = 1, . . . , Jσ f ; m2 = 1, 2:

(
∂2L

∂ f j∂qm2

)
( f=σ f )

=
∂2L

∂σ
g j

f ,i j
∂λim2

=
1
λim2

G∑
g=1

∫
V

dV
[
ξ
(2),g
2, j;0 (r) + U(2),g

2, j;0 (r)
]
Qg

SF,im2
; (143)

For j = 1, . . . , Jσ f ; m2 = 3, 4:

(
∂2L

∂ f j∂qm2

)
( f=σ f )

=
∂2L

∂σ
g j

f ,i j
∂FSF

im2

=
1

FSF
im2

G∑
g=1

∫
V

dV
[
ξ
(2),g
2, j;0 (r) + U(2),g

2, j;0 (r)
]
Qg

SF,im2
; (144)

For j = 1, . . . , Jσ f ; m2 = 5, 6:

(
∂2L

∂ f j∂qm2

)
( f=σ f )

= ∂2L
∂σ

gj
f ,i j
∂aim2

= λim2
Nim2 ,1FSF

im2
νSF

im2

G∑
g=1

∫
V dV

[
ξ
(2),g
2, j;0 (r) + U(2),g

2, j;0 (r)
]
Da

(
g; aim2

, bim2

)
; (145)

For j = 1, . . . , Jσ f ; m2 = 7, 8:

(
∂2L

∂ f j∂qm2

)
( f=σ f )

= ∂2L
∂σ

gj
f ,i j
∂bim2

= λim2
Nim2 ,1FSF

im2
νSF

im2

G∑
g=1

∫
V dV

[
ξ
(2),g
2, j;0 (r) + U(2),g

2, j;0 (r)
]
Db

(
g; aim2

, bim2

)
; (146)

For j = 1, . . . , Jσ f ; m2 = 9, 10:

(
∂2L

∂ f j∂qm2

)
( f=σ f )

=
∂2L

∂σ
g j

f ,i j
∂νSF

im2

=
1
νSF

im2

G∑
g=1

∫
V

dV
[
ξ
(2),g
2, j;0 (r) + U(2),g

2, j;0 (r)
]
Qg

SF,im2
; (147)

For j = 1, . . . , Jσ f ; m2 = 11, 12:

(
∂2L

∂ f j∂qm2

)
( f=σ f )

=
∂2L

(
α; Qg

SF

)
∂σ

g j

f ,i j
∂Nim2 ,1

=
1

Nim2 ,1

G∑
g=1

∫
V

dV
[
ξ
(2),g
2, j;0 (r) + U(2),g

2, j;0 (r)
]
Qg

SF,im2
, (148)
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where:

U(2),g
2, j;0 (r) ,

∫
4π

dΩ u(2),g
2, j (r,Ω). (149)

5.3. Numerical Results for ∂2L(ααα)/∂q∂σσσ f

The second-order absolute sensitivities, ∂2L(α)/∂q∂σ f , of the leakage response with respect
to the source parameters and the fission cross sections for all isotopes of the PERP benchmark
have been computed using Equation (137), and have been independently verified by computing
∂2L(α)/∂σ f∂q using Equations (143)–(148). For the PERP benchmark, computing the second-order
absolute sensitivities, ∂2L(α)/∂q∂σ f , using Equation (137) requires 12 PARTISN computations (using
the forward transport equation with a modified source) to obtain all the adjoint functions needed in
Equation (137). On the other hand, computing the alternative expression ∂2L(α)/∂σ f∂q by using
Equations (143)–(148) requires 120 adjoint PARTISN computations to obtain the second level adjoint
functions needed in Equations (143)–(148). Thus, computing ∂2L(α)/∂q∂σ f using Equation (137) is 10
(=120/12) times more efficient than computing ∂2L(α)/∂σ f∂q by using Equations (143)–(148).

The matrix ∂2L/∂q j∂ fm2 , j = 1, . . . , Jq; m2 = 1, . . . , Jσ f has dimensions Jq × Jσ f (= 12× 60), where
Jσ f = G ×N f = 30 × 2 and where N f = 2 denotes the total number of fissionable isotopes in the
PERP benchmark. The matrix of 2nd-order relative sensitivities corresponding to ∂2L/∂q j∂ fm2 , j =

1, . . . , Jq; m2 = 1, . . . , Jσ f , will be denoted as S(2)
(
q j, σ

g
f ,k

)
and is defined as follows:

S(2)
(
q j, σ

g
f ,k

)
,

∂2L
∂q j∂σ

g
f ,k

q jσ
g
f ,k

L

, j = 1, . . . , 12; k = 1, 2; g = 1, . . . , 30. (150)

Applying Equation (150) to Equations (143), (144), (147) and (148) yields the following result:

S(2)
(
σ

g
f ,k,λi

)
= S(2)

(
σ

g
f ,k, FSF

i

)
= S(2)

(
σ

g
f ,k, νSF

i

)
= S(2)

(
σ

g
f ,k, Ni,1

)
= 1

L

G∑
g=1

σ
g
f ,k

∫
V dV

[
ξ
(2),g
2, j;0 (r) + U(2),g

2, j;0 (r)
]
Qg

SF,i, f or i = 1, 2; k = 1, 2; g = 1, . . . , 30.
(151)

As indicated by Equation (151), the mixed 2nd-order relative sensitivities with respect to the

microscopic fission cross section σg
f ,k and the source parameters λi, FSF

i , νSF
i , Ni,1, namely, S(2)

(
λi, σ

g
f ,k

)
,

S(2)
(
FSF

i , σg
f ,k

)
, S(2)

(
νSF

i , σg
f ,k

)
and S(2)

(
Ni,1, σg

f ,k

)
, have the same value. This result has also been confirmed

by using Equation (137) together with Equation (150).

Table 12 summarizes the results for the Jq × Jσ f (= 6 × 60) matrix S(2)
(
q j, σ

g
f ,k

)
, j =

2, 4, 6, 8, 10, 12 ; k = 1, 2; g = 1, . . . , 30, which comprises the 2nd-order relative sensitivities of
the leakage response with respect to the source parameters of isotope 240Pu and the fission cross
sections for all isotopes in the PERP benchmark. To facilitate the presentation of the numerical results,

the matrix S(2)
(
q j, σ

g
f ,k

)
has been partitioned into Jq ×N f (= 6× 2) submatrices, each of dimensions

1 × G = 1 × 30. It has been found that the absolute values of all elements of S(2)
(
q j, σ

g
f ,k

)
are all

smaller than 1.0. Of the sensitivities summarized in Table 12, the single largest relative value is

S(2)
(
λ2, σg=12

f ,1

)
= S(2)

(
FSF

2 , σg=12
f ,1

)
= S(2)

(
νSF

2 , σg=12
f ,1

)
= S(2)

(
N2,1, σg=12

f ,1

)
= 0.882. All elements of the

submatrices S(2)
(
λ2, σg

f ,k

)
, S(2)

(
FSF

2 , σg
f ,k

)
, S(2)

(
νSF

2 , σg
f ,k

)
and S(2)

(
N2,1, σg

f ,k

)
have positive values, and

the element with the largest value in each of these submatrices involves the microscopic fission cross
sections for the 12th energy group of isotopes 239Pu and 240Pu (namely, σg=12

f ,k , k = 1, 2). On the

other hand, the elements of the submatrices S(2)
(
a2, σg

f ,k

)
and S(2)

(
b2, σg

f ,k

)
, have positive values for
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g = 1, . . . , 10, and negative values for g = 11, . . . , 30. Furthermore, the element having the largest

absolute value in each of the submatrices S(2)
(
a2, σg

f ,k

)
and S(2)

(
b2, σg

f ,k

)
involves the microscopic fission

cross sections for the 7th energy group of isotopes 239Pu and 240Pu, respectively.

Table 12. Summary of the matrix S(2)
(
q j, σ

g
f ,k

)
, j = 2, 4, 6, 8, 10, 12 ; k = 1, 2; g = 1, . . . , 30, for 2nd-order

relative sensitivities of the leakage response with respect to the source parameters of isotope 240Pu and
fission cross sections for all fissionable isotopes.

k=1
(239Pu)

k=2
(240Pu)

λ2
S(2)

(
λ2, σg

f ,1

)
Max. value = 8.82 × 10−1, at g = 12

S(2)
(
λ2, σg

f ,2

)
Max. value = 4.57 × 10−2, at g = 12

FSF
2

S(2)
(
FSF

2 , σg
f ,1

)
Max. value = 8.82 × 10−1, at g = 12

S(2)
(
FSF

2 , σg
f ,2

)
Max. value = 4.57 × 10−2, at g = 12

a2
S(2)

(
a2, σg

f ,1

)
Max. value = 1.90 × 10−1, at g = 7

S(2)
(
a2, σg

f ,2

)
Max. value = 1.07 × 10−2, at g = 7

b2
S(2)

(
b2, σg

f ,1

)
Max. value = 5.02 × 10−1, at g = 7

S(2)
(
b2, σg

f ,2

)
Max. value = 2.84 × 10−3, at g = 7

νSF
2

S(2)
(
νSF

2 , σg
f ,1

)
Max. value = 8.82 × 10−1, at g = 12

S(2)
(
νSF

2 , σg
f ,2

)
Max. value = 4.57 × 10−2, at g = 12

N2,1
S(2)

(
N2,1, σg

f ,1

)
Max. value = 8.82 × 10−1, at g = 12

S(2)
(
N2,1, σg

f ,2

)
Max. value = 4.57 × 10−2, at g = 12

6. Mixed Second-Order Sensitivities of the PERP Total Leakage Response with Respect to the
Benchmark’s Source Parameters and the Average Number of Neutrons per Fission

This Section presents the computation and analysis of the numerical results for the 2nd-order
mixed sensitivities ∂2L(α)/∂q∂ν of the leakage response with respect to the source parameters and the
average number of neutrons per fission of all isotopes in the PERP benchmark. These 2nd-order mixed
sensitivities can also be computed by using the alternative expression ∂2L(α)/∂ν∂q, which requires
adjoint functions that are distinct from those required for computing ∂2L(α)/∂q∂ν. These two distinct
paths are illustrated in Sections 6.1 and 6.2, respectively, as follows.

6.1. Computing the Second-Order Sensitivities ∂2L(ααα)/∂q∂ννν

The equations needed for deriving the expressions of the 2nd-order sensitivities ∂2L(α)/∂q∂ν are
obtained by particularizing Equation (206) from Reference [6] to the PERP benchmark, which yields
the following expression:(

∂2L
∂q j∂ fm2

)
( f=ν)

=
G∑

g=1

∫
V dV

∫
4π dΩ h(2),g1, j (r, Ω)

∂
[
(νΣ f )

g
(f)

]
∂ fm2

G∑
g′=1

∫
4π dΩ

′

χg′ψ(1),g′
(
r, Ω

′
)
,

f or j = 1, . . . , Jq; m2 = Jσ f + 1, . . . , Jσ f + Jν ,
(152)
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where the 2nd-level adjoint functions h(2),g1, j , j = 1, . . . , Jn; g = 1, . . . , G, are the solutions of the
2nd-LASS presented previously in Equations (81) and (82). Noting that

∂
[(
νΣ f

)g]
∂ fm2

=

∂

[
M∑

m=1

I∑
i=1

Ni,m
(
νσ f

)g

i

]
∂ν

gm2
im2

=

∂

[
M∑

m=1

I∑
i=1

Ni,mν
g
i σ

g
f ,i

]
∂ν

gm2
im2

= δgm2 gNim2 ,mm2
σ

g
f ,im2

, (153)

and inserting the result obtained in Equation (153) into Equation (152) yields the following simplified
expression for Equation (152):

(
∂2L

∂q j∂ fm2

)
( f=ν)

= Nim2 ,mm2
σ

gm2
f ,im2

∫
V dVH

(2),gm2
1, j;0 (r)

G∑
g′=1

χg′ξ
(1),g′

0 (r), j = 1, . . . , Jq; m2 = Jσ f + 1, . . . , Jσ f + Jν . (154)

6.2. Alternative Path: Computing the Second-Order Sensitivities ∂2L(ααα)/∂ννν∂q

The equations needed for deriving the alternative expression of the 2nd-order mixed sensitivities
∂2L(α)/∂ν∂q are obtained by particularizing Equation (181) from Reference [6] to the PERP benchmark.
This procedure yields:

(
∂2L

∂ f j∂qm2

)
( f=ν)

=
G∑

g=1

∫
V dV

∫
4π dΩ u(2),g

2, j (r,Ω)
∂Qg(q;r,Ω)

∂qm2
, j = Jσ f + 1, . . . , Jσ f + Jν ; m2 = 1, . . . , Jq, (155)

where the 2nd-level adjoint functions, u(2),g
2, j , j = 1, . . . , Jσ f ; g = 1, . . . , G, are the solutions of the

2nd-Level Adjoint Sensitivity System presented in Equations (118) and (125) of Part III [3], which is
reproduced below for convenient reference:

A(1),g
(
α0

)
u(2),g

2, j (r, Ω) = δg j gNi j,m jσ
g j

f ,i j

G∑
g′=1

χg′ξ
(1),g′

0 (r), j = Jσ f + 1, . . . , Jσ f + Jν; g = 1, . . . , G, (156)

u(2),g
2, j (rd, Ω) = 0, Ω · n > 0; j = Jσ f + 1, . . . , Jσ f + Jν; g = 1, . . . , G. (157)

Inserting the results obtained in Equations (18)–(25) into Equation (155) and performing the
respective angular integrations yields the following particular expressions for Equation (155):

For j = Jσ f + 1, . . . , Jσ f + Jν; m2 = 1, 2:

(
∂2L

∂ f j∂qm2

)
( f=ν)

=
∂2L

∂ν
g j

i j
∂λim2

=
1
λim2

G∑
g=1

∫
V

dVU(2),g
2, j;0 (r)Q

g
SF,im2

; (158)

For j = Jσ f + 1, . . . , Jσ f + Jν; m2 = 3, 4:

(
∂2L

∂ f j∂qm2

)
( f=ν)

=
∂2L

∂ν
g j

i j
∂FSF

im2

=
1

FSF
im2

G∑
g=1

∫
V

dVU(2),g
2, j;0 (r)Q

g
SF,im2

; (159)

For j = Jσ f + 1, . . . , Jσ f + Jν; m2 = 5, 6:

(
∂2L

∂ f j∂qm2

)
( f=ν)

=
∂2L

∂ν
g j

i j
∂aim2

= λim2
Nim2 ,1FSF

im2
νSF

im2

G∑
g=1

∫
V

dVU(2),g
2, j;0 (r)Da

(
g; aim2

, bim2

)
; (160)
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For j = Jσ f + 1, . . . , Jσ f + Jν; m2 = 7, 8:

(
∂2L

∂ f j∂qm2

)
( f=ν)

=
∂2L

∂ν
g j

i j
∂bim2

= λim2
Nim2 ,1FSF

im2
νSF

im2

G∑
g=1

∫
V

dVU(2),g
2, j;0 (r)Db

(
g; aim2

, bim2

)
; (161)

For j = Jσ f + 1, . . . , Jσ f + Jν; m2 = 9, 10:

(
∂2L

∂ f j∂qm2

)
( f=ν)

=
∂2L

∂ν
g j

i j
∂νSF

im2

=
1
νSF

im2

G∑
g=1

∫
V

dVU(2),g
2, j;0 (r)Q

g
SF,im2

; (162)

For j = Jσ f + 1, . . . , Jσ f + Jν; m2 = 11, 12:

(
∂2L

∂ f j∂qm2

)
( f=ν)

=
∂2L

(
α; Qg

SF

)
∂ν

g j

i j
∂Nim2 ,1

=
1

Nim2 ,1

G∑
g=1

∫
V

dVU(2),g
2, j;0 (r)Q

g
SF,im2

. (163)

6.3. Numerical Results for ∂2L(ααα)/∂q∂ννν

The second-order absolute sensitivities, ∂2L(α)/∂q∂ν, of the leakage response with respect
to the source parameters and the average number of neutrons per fission for all isotopes of the
PERP benchmark have been computed using Equation (154) and have been independently verified
by computing ∂2L(α)/∂ν∂q using Equations (158)–(163). Computing the second-order absolute
sensitivities ∂2L(α)/∂q∂ν using Equation (154) requires 12 forward PARTISN computations to obtain
all the required 2nd-level adjoint functions. On the other hand, computing the alternative expression
∂2L(α)/∂ν∂q using Equations (158)–(163), requires 60 adjoint PARTISN computations to obtain the
required second-level adjoint functions. Thus, computing ∂2L(α)/∂q∂ν using Equation (154) is 5 times
more efficient than computing ∂2L(α)/∂ν∂q by using Equations (158)–(163).

The matrix ∂2L/∂q j∂ fm2 , j = 1, . . . , Jq; m2 = Jσ f + 1, . . . , Jσ f + Jν has dimensions Jq × Jν (=

12 × 60), where Jν = G ×N f = 30 × 2. The matrix of 2nd-order relative sensitivities corresponding

to ∂2L/∂q j∂ fm2 , j = 1, . . . , Jq; m2 = Jσ f + 1, . . . , Jσ f + Jν , will be denoted as S(2)
(
q j, ν

g
k

)
and is defined

as follows:

S(2)
(
q j, ν

g
k

)
,

∂2L
∂q j∂ν

g
k

q jν
g
k

L

, j = 1, . . . , 12; k = 1, 2; g = 1, . . . , 30. (164)

Applying Equation (164) to Equations (158), (159), (162) and (163) yields the following relation:

S(2)
(
ν

g
k ,λi

)
= S(2)

(
ν

g
k , FSF

i

)
= S(2)

(
ν

g
k , νSF

i

)
= S(2)

(
ν

g
k , Ni,1

)
= 1

L

G∑
g=1

ν
g
k

∫
V dVU(2),g

2, j;0 (r)Q
g
SF,i,

f or i = 1, 2; k = 1, 2; g = 1, . . . , 30.
(165)

As indicated in Equation (165), the mixed 2nd-order relative sensitivities S(2)
(
λi, ν

g
k

)
, S(2)

(
FSF

i , νg
k

)
,

S(2)
(
νSF

i , νg
k

)
and S(2)

(
Ni,1, νg

k

)
of the leakage response with respect to the average number of neutrons per

fission νg
k and the source parametersλi, FSF

i , νSF
i , Ni,1, respectively, are all equal to each other. The relation

expressed by Equation (165) has also been confirmed independently by using Equation (154) together
with Equation (164).

Table 13 summarizes the results for the 12 submatrices, each of dimensions 1 ×G = 1 × 30, of
the matrix S(2)

(
q j, ν

g
k

)
, j = 2, 4, 6, 8, 10, 12; k = 1, 2; g = 1, . . . , 30, comprising the 2nd-order relative

sensitivities of the leakage response with respect to the source parameters of isotope 240Pu and the
average number of neutrons per fission of all fissionable isotopes of the PERP benchmark.
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Table 13. Summary results for S(2)
(
q j, ν

g
k

)
, j = 2, 4, 6, 8, 10, 12 ; k = 1, 2; g = 1, . . . , 30, for 2nd-order

relative sensitivities of the leakage response with respect to the source parameters of isotope 240Pu and
the average number of neutrons per fission for all fissionable isotopes.

k=1 (239Pu) k=2(240Pu)

λ2
S(2)

(
λ2, νg

k=1

)
1 element with absolute value >1.0

S(2)
(
λ2, νg

k=2

)
Max. value = 6.31 × 10−2, at g = 12

FSF
2

S(2)
(
FSF

2 , νg
k=1

)
1 element with absolute value >1.0

S(2)
(
FSF

2 , νg
k=2

)
Max. value = 6.31 × 10−2, at g = 12

a2
S(2)

(
a2, νg

k=1

)
Max. value = 2.47 × 10−1, at g = 7

S(2)
(
a2, νg

k=2

)
Max. value = 1.40 × 10−2, at g = 7

b2
S(2)

(
b2, νg

k=1

)
Max. value = 6.53 × 10−2, at g = 7

S(2)
(
b2, νg

k=2

)
Max. value = 3.70 × 10−3, at g = 7

νSF
2

S(2)
(
νSF

2 , νg
k=1

)
1 element with absolute value >1.0

S(2)
(
νSF

2 , νg
k=2

)
Max. value = 6.31 × 10−2, at g = 12

N2,1
S(2)

(
N2,1, νg

k=1

)
1 element with absolute value >1.0

S(2)
(
N2,1, νg

k=2

)
Max. value = 6.31 × 10−2, at g = 12

As shown in Table 13, most of the elements of S(2)
(
q j, ν

g
k

)
have absolute values smaller than

1.0. Only 4 elements in the shaded submatrices have absolute values greater than 1.0. All elements
of the submatrices S(2)

(
λ2, νg

k

)
, S(2)

(
FSF

2 , νg
k

)
, S(2)

(
νSF

2 , νg
k

)
and S(2)

(
N2,1, νg

k

)
, k = 1, 2, have positive

values. In each of these submatrices, the element having the largest absolute value involves the
average number of neutrons per fission for the 12th energy group of the isotopes (i.e., νg=12

k , k =

1, 2). For the submatrices S(2)
(
a2, νg

k

)
and S(2)

(
b2, νg

k

)
, the values of the mixed 2nd-order relative

sensitivities are positive for g = 1, . . . , 10, and negative for g = 11, . . . , 30; the largest elements in these
submatrices involve the average number of neutrons per fission for the 7th energy group of the two
fissionable isotopes 239Pu and 240Pu, respectively. Table 14 presents the values of the components
of submatrices S(2)

(
λ2, νg

k=1

)
, S(2)

(
FSF

2 , νg
k=1

)
, S(2)

(
νSF

2 , νg
k=1

)
and S(2)

(
N2,1, νg

k=1

)
, which are shaded in

Table 13. As shown (in bold) in Table 14, the only elements that have absolute values greater than 1.0
are S(2)

(
λ2, νg=12

k=1

)
= S(2)

(
FSF

2 , νg=12
k=1

)
= S(2)

(
νSF

2 , νg=12
k=1

)
= S(2)

(
N2,1, νg=12

k=1

)
= 1.214, i.e., the 2nd-order

relative sensitivities of the leakage response with respect to the source parameters λ2, FSF
2 , νSF

2 , N2,1,
respectively, for isotope 240Pu and the average number of neutrons per fission for isotope 239Pu in the
12th energy group.
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Table 14. Second-Order Relative Sensitivities S(2)
(
λ2, νg

k=1

)
, S(2)

(
FSF

2 , νg
k=1

)
, S(2)

(
νSF

2 , νg
k=1

)
and

S(2)
(
N2,1, νg

k=1

)
, g = 1, . . . , 30.

g Relative Sensitivities g Relative Sensitivities

1 5.265 × 10−4 16 0.297
2 1.069 × 10−3 17 0.117
3 3.064 × 10−3 18 0.068
4 0.014 19 0.060
5 0.067 20 0.065
6 0.169 21 0.071
7 0.762 22 0.063
8 0.658 23 0.064
9 0.802 24 0.042

10 0.842 25 0.055
11 0.786 26 0.051
12 1.214 27 0.026
13 0.847 28 0.012
14 0.555 29 0.034
15 0.321 30 0.461

7. Mixed Second-Order Sensitivities of the PERP Total Leakage Response with Respect to the
Benchmark’s Source Parameters and Isotopic Number Densities

The 2nd-order sensitivities of the leakage response with respect to the source parameters

λi, FSF
i , ai, bi , νSF

i and the fissionable isotope number densities Ni,1, i = 1, 2 , namely
∂2L(α;Qg

SF)
∂λi∂Ni,1

,
∂2L(α;Qg

SF)
∂FSF

i ∂Ni,1
,
∂2L(α;Qg

SF)
∂ai∂Ni,1

,
∂2L(α;Qg

SF)
∂bi∂Ni,1

, and
∂2L(α;Qg

SF)
∂νSF

i ∂Ni,1
, have been computed using Equations (62), (66),

(70), (73) and (74), respectively, and the respective numerical results have been presented in Table 6.
As denoted by the presence of Qg

SF in the argument of the leakage response L
(
α; Qg

SF

)
, only the

contributions stemming from the spontaneous fission source were considered in the computation of
these mixed 2nd-order sensitivities.

In order to account for the partial contributions stemming from the macroscopic total, scattering
and fission cross sections, as well as the source, this Section presents the computation and analysis of
the numerical results for the 2nd-order mixed sensitivities ∂2L(α)/∂q∂N of the leakage response with
respect to the source parameters and isotopic number densities of all (including the non-fissionable)
isotopes of the PERP benchmark. Note that the 2nd-order mixed sensitivities ∂2L(α)/∂q∂N can also be
computed using the alternative expressions for ∂2L(α)/∂N∂q. These two distinct paths are illustrated
in Sections 7.1 and 7.2, respectively.

7.1. Computing the Second-Order Sensitivities ∂2L(ααα)/∂q∂N

The equations needed for deriving the expressions of the 2nd-order sensitivities ∂2L(α)/∂q∂N
are obtained by particularizing Equations (204), (205), (206) and (208) from Reference [6] to the PERP
benchmark. Specifically, the contribution stemming from the macroscopic total cross sections is
obtained by particularizing Equation (204) from Reference [6], which yields:(

∂2L
∂q j∂nm2

)(1)
=

[
∂2L

∂q j∂tJσt+m2

]
t=N

= −
G∑

g=1

∫
V dV

∫
4π dΩ h(2),g1, j (r, Ω)ψ(1),g(r, Ω)

∂Σt
g(t)

∂nm2
,

f or j = 1, . . . , 10; m2 = 1, . . . , Jn,
(166)
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where the 2nd-level adjoint functions h(2),g1, j , j = 1, . . . , Jn; g = 1, . . . , G, are the solutions of the 2nd-LASS
presented previously in Equations (81) and (82), and where the parameters nm2 , m2 = 1, . . . , Jn are the
components of the vector N as defined in [1] and reproduced in Appendix A, namely:

N ,
[
n1, . . . , nJn

]†
, [N1,1, N2,1, N3,1, N4,1, N5,2, N6,2]

†, Jn = 6. (167)

Noting that:

∂Σt
g(t)

∂nm2

=
∂Σt

g(t)
∂Nim2 ,mm2

=

∂

(
M∑

m=1

I∑
i=1

Ni,mσ
g
t,i

)
∂Nim2 ,mm2

= σ
g
t,im2

, (168)

and inserting the result obtained in Equation (168) into Equation (166) yields the following simplified
expression for Equation (166):(

∂2L
∂q j∂nm2

)(1)
=

[
∂2L

∂q j∂tJσt+m2

]
t=N

= −
G∑

g=1

∫
V dVσg

t,im2

∫
4π dΩ h(2),g1, j (r, Ω)ψ(1),g(r, Ω),

f or j = 1, . . . , 10; m2 = 1, . . . , Jn.
(169)

The contribution stemming from the macroscopic scattering cross sections is obtained by
particularizing Equation (205) from Reference [6] to the PERP benchmark, which yields:

(
∂2L

∂q j∂nm2

)(2)
=

[
∂2L

∂q j∂sJσs+m2

]
s=N

=
G∑

g=1

∫
V dV

∫
4π dΩ h(2),g1, j (r, Ω)

G∑
g′=1

∫
4π dΩ

′

ψ(1),g′
(
r, Ω

′
) ∂Σg→g′

s (s;Ω→Ω
′

)
∂nm2

, j = 1, . . . , 10; m2 = 1, . . . , Jn.
(170)

Noting that:

∂Σg→g′
s (s; Ω→ Ω

′

)

∂nm2

=
∂Σg→g′

s (s; Ω→ Ω
′

)

∂Nim2 ,mm2

=
ISCT∑
l=0

(2l + 1)σg→g′

s,l,im2
Pl

(
Ω
′

·Ω
)
, (171)

inserting Equation (171) into Equation (170) and performing the respective angular integrations yields
the following simplified expression for Equation (170):

(
∂2L

∂q j∂nm2

)(2)
=

G∑
g=1

ISCT∑
l=0

(2l + 1)
∫

V dV H(2),g
1, j;l (r)

G∑
g′=1

σ
g→g′

s,l,im2
ξ
(1),g′

l (r), j = 1, . . . , 10; m2 = 1, . . . , Jn. (172)

The contribution stemming from the macroscopic fission cross sections is obtained by
particularizing Equation (206) from Reference [6] to the PERP benchmark, which yields:

(
∂2L

∂q j∂nm2

)(3)
=

[
∂2L

∂q j∂ fJσ f +Jν+m2

]
f=N

=
G∑

g=1

∫
V dV

∫
4π dΩ h(2),g1, j (r,Ω)

∂
[
(νΣ f )

g
(f)

]
∂nm2

G∑
g′=1

∫
4π dΩ

′

χg′ψ(1),g′
(
r,Ω

′
)
, j = 1, . . . , 10; m2 = 1, . . . , Jn.

(173)

Noting that:

∂
(
νΣ f

)g
(f)

∂nm2

=

∂
M∑

m=1

I∑
i=1

Ni,m
(
νσ f

)g

i

∂Nim2 ,mm2

=

∂
M∑

m=1

I∑
i=1

Ni,mν
g
i σ

g
f ,i

∂Nim2 ,mm2

= ν
g
im2
σ

g
f ,im2

, (174)
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inserting Equation (174) into Equation (173) and performing the respective angular integrations, yields
the following simplified expression for Equation (173):(

∂2L
∂q j∂nm2

)(3)
=

G∑
g=1

∫
V

dVνg
im2
σ

g
f ,im2

H(2),g
1, j;0 (r)

G∑
g′=1

χg′ξ
(1),g′

0 (r), j = 1, . . . , 10; m2 = 1, . . . , Jn. (175)

Finally, the contribution stemming from the source term is obtained by particularizing Equation
(208) from Reference [6] to the PERP benchmark, which yields:(

∂2L
∂q j∂nm2

)(4)
=

[
∂2L

∂q j∂qJq+m2

]
q=N

=
G∑

g=1

∫
V dV

∫
4π dΩ ψ(1),g(r, Ω)

∂Qg(q;r,Ω)
∂q j∂nm2

,

f or j = 1, . . . , 10; m2 = 1, . . . , Jn,
(176)

where the derivatives ∂Qg(q;r,Ω)
∂q j∂nm2

have been derived previously in Equations (42), (46), (52), (56) and
(57), respectively. The simplified expression in Equation (176) has been obtained and solved previously
in Equations (62), (66), (70), (73) and (74), respectively.

Collecting the partial contributions obtained in Equations (169), (172), (175) and (176) yields the
following expression:

∂2L
∂q j∂nm2

=
4∑
i

(
∂2L

∂q j∂nm2

)(i)
= −

G∑
g=1

∫
V dVσg

t,im2

∫
4π dΩ h(2),g1, j (r, Ω)ψ(1),g(r, Ω)

+
G∑

g=1

ISCT∑
l=0

(2l + 1)
∫

V dV H(2),g
1, j;l (r)

G∑
g′=1

σ
g→g′

s,l,im2
ξ
(1),g′

l (r) +
G∑

g=1

∫
V dVνg

im2
σ

g
f ,im2

H(2),g
1, j;0 (r)

G∑
g′=1

χg′ξ
(1),g′

0 (r)

+
G∑

g=1

∫
V dVξ(1),g0 (r) ∂Qg(q;r,Ω)

∂q j∂nm2
,

f or j = 1, . . . , 10; m2 = 1, . . . , Jn.

(177)

7.2. Alternative Path: Computing the Second-Order Sensitivities ∂2L(ααα)/∂N∂q

The equations needed for deriving the alternative expression of the 2nd-order mixed sensitivities
∂2L(α)/∂N∂q are obtained by particularizing Equations (162), (171), (181) and (208) from Reference [6]
to the PERP benchmark. The combined expression obtained by particularizing these equations takes
on the following form:

∂2L
∂n j∂qm2

=
G∑

g=1

∫
V dV

∫
4π dΩ ψ

(2),g
2, j (r, Ω)

∂Qg(q;r,Ω)
∂qm2

+
G∑

g=1

∫
V dV

∫
4π dΩ θ

(2),g
2, j (r, Ω)

∂Qg(q;r,Ω)
∂qm2

+
G∑

g=1

∫
V dV

∫
4π dΩ u(2),g

2, j (r, Ω)
∂Qg(q;r,Ω)

∂qm2
+

G∑
g=1

∫
V dV

∫
4π dΩ ψ(1),g(r, Ω)

∂Qg(q;r,Ω)
∂n j∂qm2

,

f or j = 1, . . . , Jn; m2 = 1, . . . , 10.

(178)

The adjoint functions ψ(2),g
2, j , j = 1, . . . , Jn; g = 1, . . . , G, which appear in Equation (178), are the

solutions of the 2nd-Level Adjoint Sensitivity System presented in Equations (165)–(166) of [6] and
reproduced below, for easy reference:

A(1),g
(
α0

)
ψ
(2),g
2,i (r, Ω) = −ψ(1),g(r, Ω)

∂Σt
g(t)
∂n j

, i = 1, . . . , Jn; g = 1, . . . , G, (179)

ψ
(2),g
2,i (rd, Ω) = 0, Ω · n > 0; i = 1, . . . , Jn; g = 1, . . . , G. (180)
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The 2nd-level adjoint functions θ(2),g2, j , j = 1, . . . , Jn; g = 1, . . . , G, are the solutions of the following
2nd-Level Adjoint Sensitivity System presented in Equations (174)–(175) of [6] and reproduced below,
for easy reference:

A(1),g
(
α0

)
θ
(2),g
2, j (r, Ω) =

G∑
g′=1

∫
4π dΩ

′

ψ(1),g′
(
r, Ω

′
) ∂Σg→g′

s (s;Ω→Ω
′

)
∂n j

, j = 1, . . . , Jn; g = 1, . . . , G, (181)

θ
(2),g
2, j (rd, Ω) = 0, Ω · n > 0; j = 1, . . . , Jn; g = 1, . . . , G. (182)

The 2nd-level adjoint functions u(2),g
2, j , j = 1, . . . , Jσ f ; g = 1, . . . , G are the solutions of the 2nd-Level

Adjoint Sensitivity System presented in Equations (184)–(185) of [6], and reproduced below for
convenient reference:

A(1),g
(
α0

)
u(2),g

2, j (r, Ω) =
∂
[(
νΣ f

)g
(f)

]
∂n j

G∑
g′=1

∫
4π

dΩ
′

ψ(1),g′
(
r, Ω

′
)
χg′ , j = 1, . . . , Jn; g = 1, . . . , G, (183)

u(2),g
2, j (rd, Ω) = 0, Ω · n > 0; j = 1, . . . , Jn; g = 1, . . . , G. (184)

Noting that:
∂Qg(q; r, Ω)

∂n j∂qm2

= 0 j , m2 and j , 1, 2, (185)

inserting the results obtained in Equations (18)–(24), (42), (46), (52), (56) and (57) into Equation (178),
and performing the respective angular integrations yields the following expression for Equation (178):

For j = 1, . . . , Jn; m2 = 1, 2:

∂2L
∂n j∂qm2

= ∂2L
∂n j∂λk

= 1
λk

G∑
g=1

∫
V dV

[
ξ
(2),g
2, j;0 (r) + Θ(2),g

2, j;0 (r) + U(2),g
2, j;0 (r)

]
Qg

SF,k

+δ jk
1

n jλk

G∑
g=1

∫
V dVξ(1),g0 (r)Qg

SF,k, k = 1, 2;
(186)

For j = 1, . . . , Jn; m2 = 3, 4:

∂2L
∂n j∂qm2

= ∂2L
∂n j∂FSF

k
= 1

FSF
k

G∑
g=1

∫
V dV

[
ξ
(2),g
2, j;0 (r) + Θ(2),g

2, j;0 (r) + U(2),g
2, j;0 (r)

]
Qg

SF,k

+δ jk
1

n jFSF
k

G∑
g=1

∫
V dVξ(1),g0 (r)Qg

SF,k, k = 1, 2;
(187)

For j = 1, . . . , Jn; m2 = 5, 6:

∂2L
∂n j∂qm2

= ∂2L
∂n j∂ak

= λkNk,1FSF
k ν

SF
k

G∑
g=1

∫
V dV

[
ξ
(2),g
2, j;0 (r) + Θ(2),g

2, j;0 (r) + U(2),g
2, j;0 (r)

]
Da(g; ak, bk)

+δ jkλkFSF
k ν

SF
k

G∑
g=1

∫
V dVξ(1),g0 (r)Da(g; ak, bk), k = 1, 2;

(188)

For j = 1, . . . , Jn; m2 = 7, 8:

∂2L
∂n j∂qm2

= ∂2L
∂n j∂bk

= λkNk,1FSF
k ν

SF
k

G∑
g=1

∫
V dV

[
ξ
(2),g
2, j;0 (r) + Θ(2),g

2, j;0 (r) + U(2),g
2, j;0 (r)

]
Db(g; ak, bk)

+δ jkλkFSF
k ν

SF
k

G∑
g=1

∫
V dVξ(1),g0 (r)Db(g; ak, bk), k = 1, 2;

(189)
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For j = 1, . . . , Jn; m2 = 9, 10:

∂2L
∂n j∂qm2

= ∂2L
∂n j∂ν

SF
k

= 1
νSF

k

G∑
g=1

∫
V dV

[
ξ
(2),g
2, j;0 (r) + Θ(2),g

2, j;0 (r) + U(2),g
2, j;0 (r)

]
Qg

SF,k

+δ jk
1

n jν
SF
k

G∑
g=1

∫
V dVξ(1),g0 (r)Qg

SF,k, k = 1, 2.
(190)

7.3. Numerical Results for ∂2L(ααα)/∂q∂N

The second-order absolute sensitivities, ∂2L(α)/∂q∂N, of the leakage response with respect to the
source parameters and the isotopic number densities for all isotopes of the PERP benchmark have been
computed using Equation (177), and have been independently verified by computing ∂2L(α)/∂N∂q
using Equations (186)–(190). The matrix ∂2L/∂q j∂nm2 , j = 1, . . . , 10; m2 = 1, . . . , Jn has dimensions
10× 6. The matrix of 2nd-order relative sensitivities corresponding to ∂2L/∂q j∂nm2 , j = 1, . . . , 10; m2 =

1, . . . , Jn, will be denoted as S(2)
(
q j, Ni,m

)
and is defined as follows:

S(2)
(
q j, Nk,m

)
,

∂2L
∂q j∂Nk,m

(q jNk,m

L

)
, j = 1, . . . , 10; k = 1, . . . , 6; m = 1, 2. (191)

Table 15 summarizes the results for the elements of the matrix S(2)
(
q j, Nk,m

)
, j = 2, 4, 6, 8, 10 ; k =

1, . . . , 6; m = 1, 2 of 2nd-order relative sensitivities of the leakage response with respect to the source
parameters of isotope 240Pu and the isotopic number densities for all isotopes in the PERP benchmark.

Table 15. Results for the elements of S(2)
(
q j, Nk,m

)
, j = 2, 4, 6, 8, 10 ; k = 1, . . . , 6; m = 1, 2.

k=1
(239Pu)

k=2
(240Pu)

k=3
(69Ga)

k=4
(71Ga)

k=5
(C)

k=6
(1H)

λ2
S(2)

(
λ2, N1,1

)
= 5.967

S(2)
(
λ2, N2,1

)
= 1.219

S(2)
(
λ2, N3,1

)
= 2.228 × 10−3

S(2)
(
λ2, N4,1

)
= 1.364 × 10−3

S(2)(λ2, N5,2)
= 6.310 × 10−1

S(2)(λ2, N6,2)
= 1.001

FSF
2

S(2)
(
FSF

2 , N1,1
)

= 5.967
S(2)

(
FSF

2 , N2,1
)

= 1.219
S(2)

(
FSF

2 , N3,1
)

= 2.228 × 10−3
S(2)

(
FSF

2 , N4,1
)

= 1.364 × 10−3
S(2)

(
FSF

2 , N5,2
)

= 6.310 × 10−1
S(2)

(
FSF

2 , N6,2
)

= 1.001

a2
S(2)

(
a2, N1,1

)
= 3.065 × 10−1

S(2)
(
a2, N2,1

)
= 2.592 × 10−2

S(2)
(
a2, N3,1

)
= 7.758 × 10−5

S(2)
(
a2, N4,1

)
= 7.537 × 10−5

S(2)(a2, N5,2)
= 1.078 × 10−2

S(2)(a2, N6,2)
= −1.709 × 10−2

b2
S(2)

(
b2, N1,1

)
= 8.202 × 10−2

S(2)
(
b2, N2,1

)
= 7.648 × 10−3

S(2)
(
b2, N3,1

)
= 1.934 × 10−5

S(2)
(
b2, N4,1

)
= 2.083 × 10−5

S(2)(b2, N5,2)
= 2.386 × 10−3

S(2)(b2, N6,2)
= −6.788 × 10−3

νSF
2

S(2)
(
νSF

2 , N1,1
)

= 5.967
S(2)

(
νSF

2 , N2,1
)

= 1.219
S(2)

(
νSF

2 , N3,1
)

= 2.228 × 10−3
S(2)

(
νSF

2 , N4,1
)

= 1.364 × 10−3
S(2)

(
νSF

2 , N5,2
)

= 6.310 × 10−1
S(2)

(
νSF

2 , N6,2
)

= 1.001

As shown (in bold) in Table 15, the values of 9 elements in the matrix S(2)
(
q j, Nk,m

)
are greater

than 1.0. The elements S(2)
(
λ2, Nk,m

)
, S(2)

(
FSF

2 , Nk,m
)

and S(2)
(
νSF

2 , Nk,m
)
, k = 1, . . . 6; m = 1, 2, have

identical values. Of the sensitivities presented in Table 15, the largest relative sensitivities are
S(2)(λ2, N1,1) = S(2)

(
FSF

2 , N1,1
)
= S(2)

(
νSF

2 , N1,1
)
= 5.967. Adding 239Pu will considerably affect the

sensitivity of other parameters. Also, all the mixed 2nd-order sensitivities of the leakage response with
respect to the source parameters and the isotopic number densities are positive, except for S(2)(a2, N6,2)

and S(2)(b2, N6,2), which have negative values.

8. Quantification of Uncertainties in the PERP Leakage Response due to Uncertainties in
Source Parameters

Correlations between the source parameters or correlations between these source parameters and
other cross section parameters are not available for the PERP benchmark. As discussed in [1–3], when
such correlations are unavailable, the maximum entropy principle (see, e.g., Ref. [14]) indicates that
neglecting them minimizes the inadvertent introduction of spurious information into the computations
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of the various moments of the response’s distribution in parameter space. Considering the PERP leakage
response 1st- and 2nd-order sensitivities with respect to the PERP benchmark’s source parameters, the
formulas for computing the expected value, variance and skewness of the leakage response distribution
are as follows:

1) The expected value, [E(L)]q, of the leakage response L(α) has the following expression:

[E(L)]q = L
(
α0

)
+ [E(L)](2,U)

q , (192)

where the superscript “U” indicates contributions solely from the uncorrelated source parameters, and
where the term [E(L)](2,U)

q , which provides the 2nd-order contributions, is given by the following
expression:

[E(L)](2,U)
q =

1
2

Jq∑
i=1

∂2L(α)
∂qi∂qi

(
sqi

)2
, Jq = 12. (193)

In Equation (193), the quantity sqi denotes the standard deviation associated with the imprecisely
known model parameter qi, i = 1, . . . , Jq.

2) Taking into account contributions solely from the uncorrelated and normally-distributed source
parameters (which will be indicated by using the superscript “(U,N)” in the following equations), the
expression for computing the variance, denoted as [var(L)](U,N)

q , of the PERP leakage response has the
following form:

[var(L)](U,N)
q = [var (L)](1,U,N)

q + [var (L)](2,U,N)
q , (194)

where the first-order contribution term, [var (L)](1,U,N)
q , to the variance [var(L)](U,N)

q is defined as
follows:

[var (L)](1,U,N)
q ,

Jq∑
i=1

[
∂L(α)
∂qi

]2(
sqi

)2
, Jq = 12, (195)

while the second-order contribution term, [var (L)](2,U,N)
q , to the variance [var(L)](U,N)

q is defined as
follows:

[var (L)](2,U,N)
q ,

1
2

Jq∑
i=1

[
∂2L(α)
∂qi∂qi

(
sqi

)2
]2

, Jq = 12. (196)

3) Considering contributions solely from the uncorrelated normally-distributed source parameters,
the third-order moment, [µ3(L)]

(U,N)
q , of the leakage response for the PERP benchmark takes on the

following form:

[µ3(L)]
(U,N)
q = 3

Jq∑
i=1

[
∂L(α)
∂qi

]2 ∂2L(α)
∂qi∂qi

(
sqi

)4
, Jq = 12. (197)

As Equation (197) indicates, if the 2nd-order sensitivities were unavailable, the third moment
[µ3(L)]

(U,N)
q would vanish and the response distribution would by default be assumed to be Gaussian.

4) The skewness, [γ1(L)]
(U,N)
q , due to the variances of source parameters in the leakage response,

L, is defined as follows:

[γ1(L)]
(U,N)
q = [µ3(L)]

(U,N)
q /

{
[var(L)](U,N)

q

}3/2
. (198)

The effects of the first- and second-order sensitivities on the response’s expected value, variance and
skewness are quantified by considering typical values for the standard deviations for the uncorrelated
source parameters, using these values together with the respective sensitivities computed in Section 2
in Equations (192) through (198). The results thus obtained are presented in Table 16, considering
uniform parameter standard deviations of 1%, 5%, and 10%, respectively. These results indicate that
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the effects of both the first- and second-order sensitivities on the expected response value, its standard
deviation and skewness are negligible, which is expected in view of the small values for the first- and
second-order sensitivities presented in Tables 4 and 5.

Table 16. Comparison of Response Moments Induced by Various Relative Standard Deviations
Assumed for the Source Parameters qi.

Relative Standard Deviation 10% 5% 1%

L
(
α0

)
1.7648 × 106 1.7648 × 106 1.7648 × 106

[E(L)](2,U)
q 5.9586 × 102 1.4897 × 102 5.9586 × 100

[E(L)]q = L
(
α0

)
+ [E(L)](2,U)

q 1.7654 × 106 1.7649 × 106 1.7648 × 106

[var (L)](1,U,N)
q 1.2459 × 1011 3.1147 × 1010 1.2459 × 109

[var (L)](2,U,N)
q 6.7741 × 105 4.2338 × 104 6.7741 × 101

[var(L)](U,N)
q =

[var (L)](1,U,N)
q +

[var (L)](2,U,N)
q

1.2459 × 1011 3.1147 × 1010 1.2459 × 109

[µ3(L)]
(U,N)
q 2.0825 × 1011 1.3016 × 1010 2.0825 × 107

[γ1(L)]
(U,N)
q =

[µ3(L)]
(U,N)
q /

{
[var(L)](U,N)

q

}3/2 4.7356 × 10−6 2.3678 × 10−6 4.7356 × 10−7

The relative effects of uncertainties in the source parameters can be compared to the corresponding
effects stemming from the total and scattering cross sections, respectively, by considering standard
deviations of 10% for all of these parameters and by comparing the corresponding results shown in
Table 16 with the corresponding results presented in Table 25 from Part I [1] and Table 19 from Part
II [2]. This comparison reveals that the following relations hold:

[E(L)](2,U)
q = 5.9586× 102

�

∣∣∣∣[E(L)](2,U)
s

∣∣∣∣ = 1.3473× 104
� [E(L)](2,U)

t = 4.5980× 106,

[var (L)](1,U,N)
s = 1.2379× 1010 < [var (L)](1,U,N)

q = 1.2459× 1011
� [var (L)](1,U,N)

t = 3.4196× 1012,

[var (L)](2)q = 6.7741× 105
� [var (L)](2)s = 4.3207× 107

� [var (L)](2)t = 2.8789× 1013,

[γ1(L)]
(U,N)
q = 4.7356× 10−4 <

∣∣∣∣[γ1(L)]
(U,N)
s

∣∣∣∣ = 3.5595× 10−3
� [γ1(L)]

(U,N)
t = 0.3407.

The above relations indicate that the contributions to the expected value, second-order variance and
skewness stemming from the uncorrelated source parameters are much smaller than the corresponding
contributions stemming from the group-averaged uncorrelated microscopic scattering and total cross
sections. However, the contributions to the first-order variance stemming from uncorrelated source
parameters are larger than those stemming from the uncorrelated microscopic scattering cross sections
but are much smaller than those stemming from the uncorrelated microscopic total cross sections.

Correlations between the source parameters are not available in the literature. Hence, the results
presented in Table 16 consider only illustrative values for the standard deviations of the source
parameters and unmixed 2nd-order sensitivities, in addition to the 1st-order sensitivities. On the
other hand, the results presented in Sections 3–7 indicated that several mixed 2nd-order sensitivities in
matrices ∂2L(α)/∂q∂σt, ∂2L(α)/∂q∂ν and ∂2L(α)/∂q∂N, have large values, as follows:

(a) 32 elements of the matrix S(2)
(
q j, σ

g
t,k

)
, j = 2, 4, 6, 8, 10, 12 ; k = 1, . . . , 6; g = 1, . . . , 30,

presented in Table 7;
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(b) four elements of the matrix S(2)
(
q j, ν

g
k

)
, j = 2, 4, 6, 8, 10, 12 ; k = 1, 2; g = 1, . . . , 30, presented in

Table 13.
(c) nine elements of the matrix S(2)

(
q j, Nk,m

)
, j = 2, 4, 6, 8, 10 ; k = 1, . . . , 6; m = 1, 2, presented in

Table 15.
It would be very important to establish if correlations among the model parameters mentioned

in items (a)–(c), above, since such correlations could contribute, in conjunction with the respective
mixed second-order sensitivities, to the values of the response moments. Since the mixed second-order
sensitivities of the leakage response to the source parameters and group-averaged total microscopic
cross sections are significantly larger than the unmixed second-order sensitivities of the leakage
response to the source parameters, it is likely that the correlations among the respective source
parameters and the total cross sections could provide significantly larger contributions to the response
moments than just the standard deviations of the source parameters.

9. Discussions and Conclusions Related to the Sensitivities and Uncertainties to the
Source Parameters

This work has presented results for the first-order sensitivities, ∂L(α)/∂q, and the second-order
sensitivities ∂2L(α)/∂q∂q of the PERP total leakage response with respect to the source parameters.
In addition, this work has also presented the results for the mixed second-order sensitivities
∂2L(α)/∂q∂σt, ∂2L(α)/∂q∂σs, ∂2L(α)/∂q∂σ f , ∂2L(α)/∂q∂ν and ∂2L(α)/∂q∂N. The following
conclusions can be drawn from the results reported in this work:

(1) The 1st-order relative sensitivities of the PERP leakage response with respect to the source
parameters for the fissionable isotopes are all positive, signifying that an increase in the source
parameters will cause an increase in the total neutron leakage from the PERP sphere.

(2) The 1st-order relative sensitivities for S(1)(λi), S(1)
(
FSF

i

)
, S(1)

(
νSF

i

)
and S(1)(Ni,1) for i = 1, 2 have

the same value, although their absolute sensitivities differ from each other. The 1st-order relative
sensitivities with respect to the source parameters of isotope 239Pu are very small, of the order of
10−4 or less. However, the 1st-order relative sensitivities with respect to the source parameters λ2,
FSF

2 , νSF
2 , and N2,1 of isotope 240Pu are quite large, with values close to 1.0.

(3) The following relations hold for the 1st- and 2nd-order sensitivities to the source parameters:

S(1)(λi) = S(1)
(
FSF

i

)
= S(1)

(
νSF

i

)
= S(1)(Ni,1) = S(2)

(
λi, FSF

i

)
= S(2)

(
λi, νSF

i

)
= S(2)(λi, Ni,1) =

S(2)
(
FSF

i , νSF
i

)
= S(2)

(
FSF

i , Ni,1
)

= S(2)
(
νSF

i , Ni,1
)
; S(1)(ai) = S(2)(λi, ai) = S(2)

(
FSF

i , ai
)

=

S(2)
(
ai, νSF

i

)
= S(2)(ai, Ni,1); and S(1)(bi) = S(2)(λi, bi) = S(2)

(
FSF

i , bi
)

= S(2)
(
bi, νSF

i

)
=

S(2)(bi, Ni,1) for i = 1, 2.
(4) The 2nd-order sensitivities ∂2L(α)/∂q∂q are all positive. The 2nd-order relative sensitivities of

the leakage response with respect to the source parameters of isotope 239Pu are very small, of
the order of 10−4 or less. However, several mixed 2nd-order relative sensitivities of the leakage
response with respect to the source parameters of isotope 240Pu are quite large, having values
close to 1.0. The unmixed 2nd-order sensitivities in the matrix S(2)

(
q j, qm2

)
, j, m2 = 1, . . . , Jq

are mostly zero, except for S(2)(ai, ai) and S(2)(bi, bi), i = 1, 2. Moreover, the unmixed 2nd-order
relative sensitivity with respect to the Watt’s coefficient a2, namely, S(2)(a2, a2), is about 50% larger
than the corresponding 1st-order one; whereas the value of the 2nd-order relative sensitivity
with respect to the Watt’s coefficient b2, namely, S(2)(b2, b2), is about 1/7 of the value of the
corresponding 1st-order sensitivity S(1)(b2).

(5) For the 2nd-order mixed sensitivities ∂2L(α)/∂q∂σt, among the Jq × Jσt (= 2160) elements of the

matrix S(2)
(
q j, σ

g
t,k

)
, j = q j ; k = 1, . . . , 6; g = 1, . . . , 30, 32 elements have relative sensitivities

greater than 1.0. These large sensitivities involve the total cross sections of isotopes 239Pu
or 1H. However, when the source parameters ai or bi, or the total cross sections of isotopes
240Pu, 69Ga, 71Ga and C are involved, the absolute values of the mixed 2nd-order relative
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sensitivities are all smaller than 1.0. The largest absolute values in the matrix S(2)
(
q j, σ

g
t,k

)
are S(2)

(
λ2, σg=30

t,6

)
= S(2)

(
FSF

2 , σg=30
t,6

)
= S(2)

(
νSF

2 , σg=30
t,6

)
= S(2)

(
N2,1, σg=30

t,6

)
= −9.364. Also,

all the elements in the submatrices S(2)
(
λ2, σg

t,k

)
, S(2)

(
FSF

2 , σg
t,k

)
, S(2)

(
νSF

2 , σg
t,k

)
and S(2)

(
N2,1, σg

t,k

)
have negative values; whereas the elements in submatrices S(2)

(
a2, σg

t,k

)
and S(2)

(
b2, σg

t,k

)
can

have positive or negative values, depending on the energy group as well as the isotope of the
microscopic total cross sections.

(6) For the 2nd-order mixed sensitivities ∂2L(α)/∂q∂σs, the corresponding relative sensitivities are

all smaller than 1.0. The overall largest value in the matrix S(2)
(
q j, σ

g′→g
s,l=0,k

)
is S(2)

(
λ2, σ12→12

s,l=0,5

)
=

S(2)
(
FSF

2 , σ12→12
s,l=0,5

)
= S(2)

(
νSF

2 , σ12→12
s,l=0,5

)
= S(2)

(
N2,1, σ12→12

s,l=0,5

)
= 0.681. All of these (largest)

sensitivities are related to the 0th-order self-scattering cross section for the 12th energy group of
isotope 5 (C). For the 2nd-order mixed relative sensitivities with respect to the source parameters
and the 0th-order (i.e., l = 0) scattering microscopic cross sections, the values of the relative
sensitivities can be positive or negative, but there are more positive values than negative ones.
For the 2nd-order mixed relative sensitivities with respect to the source parameters and the
1st-order (i.e., l = 1) scattering microscopic cross sections, the overall largest (absolute) value
is S(2)

(
λ2, σ12→13

s,l=1,k=6

)
= S(2)

(
FSF

2 , σ12→13
s,l=1,k=6

)
= S(2)

(
νSF

2 , σ12→13
s,l=1,k=6

)
= S(2)

(
N2,1, σ12→13

s,l=1,k=6

)
= −0.104;

these sensitivities involve the 1st-order out-scattering cross section σ12→13
s,l=0,k=6 of isotope 1H. In

addition, for the scattering order l = 1, the values of the relative sensitivities can also be positive
or negative, but there are more negative values than positive ones. The values for the 2nd-order
mixed relative sensitivities of the leakage response with respect to the source parameters of
isotope 240Pu and the higher-order (i.e., l = 2, 3) scattering cross sections for all isotopes in the
PERP benchmark are all very small, in the order of 10−2 or less.

(7) For the 2nd-order mixed sensitivities ∂2L(α)/∂q∂σ f , it has been found that the values of the
corresponding relative sensitivities are all smaller than 1.0. The single largest relative value

is S(2)
(
λ2, σg=12

f ,1

)
= S(2)

(
FSF

2 , σg=12
f ,1

)
= S(2)

(
νSF

2 , σg=12
f ,1

)
= S(2)

(
N2,1, σg=12

f ,1

)
= 0.882. All elements

in the submatrices S(2)
(
λ2, σg

f ,k

)
, S(2)

(
FSF

2 , σg
f ,k

)
, S(2)

(
νSF

2 , σg
f ,k

)
and S(2)

(
N2,1, σg

f ,k

)
have positive

values, and the element with the maximum absolute value in each of these submatrices relates
to the microscopic fission cross sections for the 12th energy group of isotopes 239Pu and 240Pu

(namely, σg=12
f ,k , k = 1, 2). For the submatrices S(2)

(
a2, σg

f ,k

)
and S(2)

(
b2, σg

f ,k

)
, the values of the

elements can be positive or negative., and the element with the maximum absolute value in each

of the submatrices S(2)
(
a2, σg

f ,k

)
and S(2)

(
b2, σg

f ,k

)
relates to the microscopic fission cross sections

for the 7th energy group of isotopes 239Pu and 240Pu (i.e., σg=7
f ,k , k = 1, 2).

(8) For the 2nd-order mixed sensitivities ∂2L(α)/∂q∂ν, the corresponding relative sensitivities
are mostly smaller than 1.0; only 4 elements with absolute values greater than 1.0, which are
S(2)

(
λ2, νg=12

k=1

)
= S(2)

(
FSF

2 , νg=12
k=1

)
= S(2)

(
νSF

2 , νg=12
k=1

)
= S(2)

(
N2,1, νg=12

k=1

)
= 1.214. Similarly, all

elements in the submatrices S(2)
(
λ2, νg

k

)
, S(2)

(
FSF

2 , νg
k

)
, S(2)

(
νSF

2 , νg
k

)
and S(2)

(
N2,1, νg

k

)
for k = 1, 2

have positive values, and the element with the maximum absolute value in each of these
submatrices relates to the average number of neutrons per fission for the 12th energy group of the
isotopes (namely, νg=12

k , k = 1, 2). The elements in submatrices S(2)
(
a2, νg

k

)
and S(2)

(
b2, νg

k

)
have

positive values for g = 1, . . . , 10, and have negative values for g = 11, . . . , 30. The elements having
the maximum absolute value in each of the submatrices S(2)

(
a2, νg

k

)
and S(2)

(
b2, νg

k

)
pertain to the

average number of neutrons per fission for the 7th energy group of the isotopes 239Pu and 240Pu
(namely, νg=7

k , k = 1, 2). The reason that the maximum absolute value in each of submatrices
mostly relates to energy groups 7 and 12 is because those groups have high leakage, as shown in
Figure 1. The high leakage in those groups is due to the fission spectrum of the isotopes 239Pu
and 240Pu, as illustrated in Figure 4 from Part III [3], where most of the spectrum is concentrated
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in the energy region g = 7, . . . , 14, with the largest portion contained in group 12, and the next
largest contained in group 7.

(9) For the 2nd-order mixed sensitivities ∂2L(α)/∂q∂N, it has been found that among the 60

elements in the relative sensitivity matrix S(2)
(
q j, Nk,m

)
, there are 9 elements having values greater

than 1.0; these are: S(2)(λ2, N1,1) = S(2)
(
FSF

2 , N1,1
)
= S(2)

(
νSF

2 , N1,1
)
= 5.967; S(2)(λ2, N2,1) =

S(2)
(
FSF

2 , N2,1
)
= S(2)(λ2, N2,1) = 1.219; and S(2)(λ2, N6,2) = S(2)

(
FSF

2 , N6,2
)
=S(2)

(
νSF

2 , N6,2
)
=

1.001. The elements S(2)
(
λ2, Nk,m

)
, S(2)

(
FSF

2 , Nk,m
)
, and S(2)

(
νSF

2 , Nk,m
)
, k = 1, . . . 6; m = 1, 2, have

identical values. Also, all of the mixed 2nd-order sensitivities of the leakage response with respect
to the source parameters and the isotopic number densities are positive, except for S(2)(a2, N6,2)

and S(2)(b2, N6,2), which have negative values.
(9) By considering typical values for the standard deviations for the uncorrelated source parameters,

it has been found that the effects of both the first- and second-order sensitivities on the
expected response value, its standard deviation and skewness are negligible. However, many
mixed 2nd-order sensitivities in matrices ∂2L(α)/∂q∂σt, ∂2L(α)/∂q∂ν and ∂2L(α)/∂q∂N are
significantly larger than the unmixed 2nd-order sensitivities of the leakage response with respect
to the source parameters. Therefore, it would be very important to obtain correlations among
the various model parameters, since the correlations among the source parameters and other
model parameters (e.g., total cross sections, average number of neutrons per fission, and isotopic
number densities) could provide significantly larger contributions to the response moments than
the standard deviations of the source parameters.
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Appendix A Definitions of PERP Model Parameters

As presented in Part I [1], the components of the vector of 1st-order sensitivities of the leakage
response with respect to the model parameters, denoted as S(1)(α), is defined as follows:

S(1)(α) ,

[
∂L(α)
∂σt

;
∂L(α)
∂σs

;
∂L(α)
∂σ f

;
∂L(α)
∂ν

;
∂L(α)
∂p

;
∂L(α)
∂q

;
∂L(α)
∂N

]†
. (A1)
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The symmetric matrix of 2nd-order sensitivities of the leakage response with respect to the model
parameters, denoted as S(2)(α), is defined as follows:

S(2)(α) ,



∂2L(α)
∂σt∂σt

∗ ∗ ∗ ∗ ∗ ∗

∂2L(α)
∂σs∂σt

∂2L(α)
∂σs∂σs

∗ ∗ ∗ ∗ ∗

∂2L(α)
∂σ f ∂σt

∂2L(α)
∂σ f ∂σs

∂2L(α)
∂σ f ∂σ f

∗ ∗ ∗ ∗

∂2L(α)
∂ν∂σt

∂2L(α)
∂ν∂σs

∂2L(α)
∂ν∂σ f

∂2L(α)
∂ν∂ν ∗ ∗ ∗

∂2L(α)
∂p∂σt

∂2L(α)
∂p∂σs

∂2L(α)
∂p∂σ f

∂2L(α)
∂p∂ν

∂2L(α)
∂p∂p ∗ ∗

∂2L(α)
∂q∂σt

∂2L(α)
∂q∂σs

∂2L(α)
∂q∂σ f

∂2L(α)
∂q∂ν

∂2L(α)
∂q∂p

∂2L(α)
∂q∂q ∗

∂2L(α)
∂N∂σt

∂2L(α)
∂N∂σs

∂2L(α)
∂N∂σ f

∂2L(α)
∂N∂ν

∂2L(α)
∂N∂p

∂2L(α)
∂N∂q

∂2L(α)
∂N∂N



. (A2)

As defined in Equation (1), the vector α ,
[
σt;σs;σ f ;ν; p; q; N

]†
denotes the “vector of imprecisely

known model parameters”, with vector-components σt, σs, σ f , ν, p, q and N, comprising the various
model parameters for the microscopic total cross sections, scattering cross sections, fission cross sections,
average number of neutrons per fission, fission spectra, sources, and isotopic number densities, which
have been described in Part I [1]. For easy referencing, however, the definitions of these model
parameters will be provided in the remainder of this Appendix.

The total cross section Σg
t for energy group g, g = 1, . . . , G, is computed for the PERP benchmark

using the following expression:

Σg
t =

M=2∑
m=1

Σg
t,m; Σg

t,m =
I∑
i

Ni,mσ
g
t,i =

I∑
i

Ni,m

σg
f ,i + σ

g
c,i +

G∑
g′=1

σ
g→g′

s,l=0,i

, m = 1, 2, (A3)

where m denotes the materials in the PERP benchmark; σg
f ,i and σg

c,i denote, respectively, the tabulated
group microscopic fission and neutron capture cross sections for group g, g = 1, . . . , G. Other nuclear
reactions are negligible in the PERP benchmark. As discussed in Part I [1], the total cross section
Σg

t → Σg
t (t) will depend on the vector of parameters t, which is defined as follows:

f ,
[

f1, . . . , fJσ f ; fJσ f +1, . . . , fJσ f +Jν ; fJσ f +Jν+1, . . . , fJ f

]†
,

[
σ f ;ν; N

]†
, J f = Jσ f + Jν + Jn, (A4)

where:
N ,

[
n1, . . . , nJn

]†
, [N1,1, N2,1, N3,1, N4,1, N5,2, N6,2]

†, Jn = 6, (A5)

σt ,
[
t1, . . . , tJσt

]†
,

[
σ1

t,i=1, σ2
t,i=1, . . . , σG

t,i=1, . . . , σg
t,i, . . . , σ

1
t,i=I, . . . , σ

G
t,i=I

]†
,

i = 1, . . . , I = 6; g = 1, . . . , G = 30; Jσt = I ×G.
(A6)

In Equations (A4) through (A6), the dagger denotes “transposition,” σg
t,i denotes the microscopic

total cross section for isotope i and energy group g, Ni,m denotes the respective isotopic number density,
and Jn denotes the total number of isotopic number densities in the model. Thus, the vector t comprises
a total of Jt = Jσt + Jn = 30× 6 + 6 = 186 imprecisely known “model parameters” as its components.

The scattering transfer cross section Σg′→g
s

(
Ω
′

→ Ω
)

from energy group g′, g′ = 1, . . . , G into
energy group g, g = 1, . . . , G, is computed using the finite Legendre polynomial expansion of order
ISCT = 3:

Σg′→g
s

(
Ω
′

→ Ω
)
=

M=2∑
m=1

Σg′→g
s,m

(
Ω
′

→ Ω
)
,

Σg′→g
s,m

(
Ω
′

→ Ω
)
�

I=6∑
i=1

Ni,m
ISCT=3∑

l=0
(2l + 1) σg′→g

s,l,i Pl
(
Ω
′

·Ω
)
, m = 1, 2,

(A7)



Energies 2020, 13, 1431 47 of 49

where σg′→g
s,l,i denotes the l-th order Legendre-expanded microscopic scattering cross section from

energy group g′ into energy group g for isotope i. In view of Equation (A7), the scattering cross
section Σg′→g

s

(
Ω
′

→ Ω
)
→ Σg′→g

s

(
s; Ω

′

→ Ω
)

depends on the vector of parameters s, which is defined
as follows:

s ,
[
s1, . . . , sJs

]†
,

[
s1, . . . , sJσs ; n1, . . . , nJn

]†
, [σs; N]†, Js = Jσs + Jn, (A8)

σs ,
[
s1, . . . , sJσs

]†
,

[
σ

g′=1→g=1
s,l=0,i=1 , σg′=2→g=1

s,l=0,i=1 , . . . , σg′=G→g=1
s,l=0,i=1 , σg′=1→g=2

s,l=0,i=1 , σg′=2→g=2
s,l=0,i=1 , . . . , σg′→g

s,l,i , . . . , σG→G
s,ISCT,i=I

]†
,

l = 0, . . . , ISCT; i = 1, . . . , I; g, g′ = 1, . . . , G; Jσs = (G×G) × I × (ISCT + 1).
(A9)

The expressions in Equations (A7) and (A3) indicate that the zeroth order (i.e., l = 0) scattering
cross sections must be considered separately from the higher order (i.e., l ≥ 1) scattering cross sections,
since the former contribute to the total cross sections, while the latter do not. Therefore, the total number
of zeroth-order scattering cross section comprise in σs is denoted as Jσs,l=0, where Jσs,l=0 = G×G× I;
and the total number of higher order (i.e., l ≥ 1) scattering cross sections comprised in σs is denoted as
Jσs,l≥1, where Jσs,l≥1 = G×G× I × ISCT, with Jσs,l=0 + Jσs,l≥1 = Jσs. Thus, the vector s comprises a total
of Jσs + Jn = 30× 30× 6× (3 + 1) + 6 = 21, 606 imprecisely known components (“model parameters”).

The transport code PARTISN [10] computes the quantity
(
νΣ f

)g
using directly the quantities

(νσ)
g
f ,i, which are provided in data files for each isotope i, and energy group g, as follows

(
νΣ f

)g
=

M=2∑
m=1

(
νΣ f

)g

m
;

(
νΣ f

)g

m
=

I=6∑
i=1

Ni,m
(
νσ f

)g

i
, m = 1, 2. (A10)

In view of Equation (A10), the quantity
(
νΣ f

)g
→

(
νΣ f

)g
(f; r) depends on the vector of parameters

f, which is defined as follows:

f ,
[

f1, . . . , fJσ f ; fJσ f +1, . . . , fJσ f +Jν ; fJσ f +Jν+1, . . . , fJ f

]†
,

[
σ f ;ν; N

]†
, J f = Jσ f + Jν + Jn, (A11)

where:

σ f ,
[
σ1

f ,i=1, σ2
f ,i=1, . . . , σG

f ,i=1, . . . , σg
f ,i, . . . , σ

1
f ,i=N f

, . . . , σG
f ,i=N f

]†
,

[
f1, . . . , fJσ f

]†
,

i = 1, . . . , N f ; g = 1, . . . , G; Jσ f = G×N f ,
(A12)

ν ,
[
ν1

i=1, ν2
i=1, . . . , νG

i=1, . . . , νg
i , . . . , ν1

i=N f
, . . . , νG

i=N f

]†
,

[
fJσ f +1, . . . , fJσ f +Jν

]†
,

i = 1, . . . , N f ; g = 1, . . . , G; Jν = G×N f ,
(A13)

and where σg
f ,i denotes the microscopic fission cross section for isotope i and energy group g, νg

i denotes
the average number of neutrons per fission for isotope i and energy group g, and N f denotes the
total number of fissionable isotopes. For the purposes of sensitivity analysis, the quantity νg

i , can
be obtained by using the relation νg

f ,i = (νσ)
g
f ,i/σ

g
f ,i, where the isotopic fission cross sections σg

f ,i are
available in data files for computing reaction rates.

The quantity χg in Equation (3) quantifies the material fission spectrum in energy group g, and is
defined in PARTISN [10] as follows:

χg ,

N f∑
i=1

χ
g
i Ni,m

G∑
g′=1

(
νσ f

)g′

i
f g′

i

N f∑
i=1

Ni,m
G∑

g′=1

(
νσ f

)g′

i
f g′

i

, with
G∑

g=1

χ
g
i = 1, (A14)



Energies 2020, 13, 1431 48 of 49

where the quantity χg
i denotes the isotopic fission spectrum in energy group g, while the quantity f g

i
denotes the corresponding spectrum weighting function.

The fission spectrum is considered to depend on the vector of parameters p, defined as follows:

p ,
[
p1, . . . , pJp

]†
,

[
χ

g=1
i=1 ,χg=2

i=1 , . . . ,χG
i=1, . . . ,χg

i , . . . ,χG
N f

]†
, i = 1, . . . , N f ; g = 1, . . . , G; Jp = G×N f . (A15)

The source Qg(r)→ Qg(q; N) depends on the vector of model parameters q, which is defined as
follows:

q ,
[
q1, . . . , qJq

]†
,

[
λ1,λ2; FSF

1 , FSF
2 ; a1, a2; b1, b2; νSF

1 , νSF
2

]†
, Jq = 10. (A16)

In view of Equations (A4)–(A16), the model parameters characterizing the PERP benchmark can
all be considered to be the components of the following “vector of model parameters:”

α ,
[
α1, . . . ,αJα

]†
,

[
σt;σs;σ f ,ν; p; q; N

]†
, Jα = Jσt + Jσs + Jσ f + Jν + Jp + Jq + Jn. (A17)
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