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Abstract: By applying the Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM)
to the polyethylene-reflected plutonium (PERP) benchmark, this work presents results for the first-
and second-order sensitivities of this benchmark’s leakage response with respect to the spontaneous
fission source parameters. The numerical results obtained for these sensitivities indicate that the
1st-order relative sensitivity of the leakage response to the source parameters for the two fissionable
isotopes in the benchmark are all positive, signifying that an increase in the source parameters
will cause an increase in the total neutron leakage from the PERP sphere. The 1st- and 2nd-order
relative sensitivities with respect to the source parameters for 2Pu are very small (107* or less).
In contradistinction, the 1st-order and several 2nd-order relative sensitivities of the leakage response
with respect to the source parameters of 4°Pu are large. Large values (e.g., greater than 1.0) are
also displayed by several mixed 2nd-order relative sensitivities of the leakage response with respect
to parameters involving the source and: (i) the total cross sections; (ii) the average neutrons per
fission; and (iii) the isotopic number densities. On the other hand, the values of the mixed 2nd-order
relative sensitivities with respect to parameters involving the source and: (iv) the scattering cross
sections; and (v) and the fission cross sections are smaller than 1.0. It is also shown that the effects
of the 1st- and 2nd-order sensitivities of the PERP benchmark’s leakage response with respect to
the benchmark’s source parameters on the moments (expected value, variance and skewness) of
the PERP benchmark’s leakage response distribution are negligibly smaller than the corresponding
effects (on the response distribution) stemming from uncertainties in the total, fission and scattering
cross sections.

Keywords: polyethylene-reflected plutonium sphere; 1st- and 2nd-order sensitivities; fission source
parameters; fission spectrum; expected value; variance and skewness of leakage response

1. Introduction

In previous works [1-3], the Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM)
conceived by Cacuci [4-6] has been applied to the subcritical polyethylene-reflected plutonium
(acronym: PERP) metal OECD/NEA-benchmark [7], to compute efficiently the exact values of the
1st-order and 2nd-order sensitivities of the PERP’s leakage response with respect to the following model
parameters: (i) 180 group-averaged total microscopic cross sections [1]; (ii) 21,600 group-averaged
scattering microscopic cross sections [2]; and (iii) 120 fission process parameters [3]. This work,
designated as Part IV, presents the results of having applied the 2nd-ASAM to compute the 1st- and
2nd-order sensitivities of the PERP’s leakage response with respect to the PERP benchmark’s 12 source
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parameters. The remaining results obtained by applying the 2nd-ASAM to compute the 1st- and
2nd-order sensitivities of the PERP’s leakage response with respect to the PERP’s 6 isotopic number
densities will be presented in Part V [8]. The overall conclusions drawn from this massive sensitivity
analysis endeavor will be presented in Part VI [9].

Although the physical characteristics of the PERP metal sphere benchmark have been detailed in
Part I [1], it is convenient, for easy reference, to recall the dimensional and material composition of the
benchmark in Table 1.

Table 1. Dimensions and material composition of the PERP benchmark.

. . . Density
Materials Isotopes Weight Fraction (g/cm?) Zones
Isotope 1 (3*Pu) 9.3804 x 1071
Material 1 Isotope 2 (*40Pu) 5.9411 x 1072 196 Material 1 is assigned to zone 1,
(plutonium metal) Isotope 3 (¥Ga) 1.5152 x 1073 ’ which has a radius of 3.794 cm.
Isotope 4 ("1Ga) 1.0346 x 1073
. _ Material 2 is assigned to zone 2
Material 2 Isot: . 1 & ’
atena sotope 5 (C) 8.5630 <10 0.95 which has an inner radius of 3.794 cm

1 -1
(polyethylene) Isotope 6 ("H) 14370 %10 and an outer radius of 7.604 cm.

The PERP benchmark has no delayed neutron or (a, 1) source; the sole source of neutrons is
provided by the spontaneous fissions stemming from 23Pu (Isotope 1) and 24°Pu (Isotope 2). This source
has been computed using the code SOURCES4C [10]. For an actinide nuclide k, where k = 1,2 for
the PERP benchmark, the spontaneous source depends on the following 12 model parameters [10]:
the decay constant Ay, the atom density N, the average number of neutrons per spontaneous fission
vlfF , the spontaneous fission branching ratio F]fF , and the two parameters g; and by used in a Watt’s
fission spectra to approximate the spontaneous fission neutron spectra. The nominal values of these
parameters (except for Nj) are available from a library file contained in SOURCES4C [10], and the
nominal values for Ny are specified from the PERP benchmark. These imprecisely known source
parameters also contribute to the accuracy of the neutron transport calculation. To evaluate the
uncertainties induced in the leakage response by the imprecisely known source parameters, the
1st-order and 2nd-order sensitivities of the leakage response with respect to the source parameters will
be computed by specializing the general expressions derived by Cacuci [6] to the PERP benchmark.

This work is organized, as follows: Section 2 presents the computational results for the 12
first-order sensitivities and 12 x 12 second-order sensitivities of the leakage response with respect to
the benchmark’s source parameters. Section 3 reports the numerical results for the 12 x 180 mixed
2nd-order sensitivities to the source parameters and total microscopic cross sections. Section 4 reports
the numerical results for the 12 X 21, 600 matrix of mixed 2nd-order sensitivities to the source parameters
and scattering microscopic cross sections. Section 5 presents the numerical results for the 12 x 60
mixed 2nd-order sensitivities to the source parameters and fission microscopic cross sections. Section 6
reports the computational results for the 12 x 60 mixed 2nd-order sensitivities to source parameters
and the average number of neutrons per fission of all the fissionable isotopes in the PERP benchmark.
Section 7 reports the numerical results for the 12 X 6 mixed 2nd-order sensitivities to source parameters
and the isotopic number densities of all isotopes in the PERP benchmark. Section 8 presents the impact
of the 1st- and 2nd-order sensitivities on the uncertainties induced in the PERP’s leakage response by
the imprecisely known source parameters. Section 9 offers conclusions based upon the computational
results presented in this work.

2. Computation of 1st- and 2nd-Order Sensitivities of the PERP Leakage Response to
Source Parameters

Asdescribed in PartI[1], the neutron flux is computed by solving numerically the neutron transport
equation using the PARTISN [11] multigroup discrete ordinates transport code. These PARTISN [11]
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computations were performed using the MENDF71X 618-group cross sections [12] collapsed to
G = 30 energy groups, with group boundaries, E¢, as presented in [1]. The MENDF71X library uses
ENDEF/B-VIIL.1 Nuclear Data [13].

For the PERP benchmark under consideration, PARTISN [11] solves the following multi-group
approximation of the neutron transport equation with a spontaneous fission source provided by the
code SOURCESAC [10]:

B¥ ()i (1, Q) = Q%(r), g = 1,...,G, )
@8(r, ) =0,0-n<0, g=1,...,G, (2)

where @8 (r, Q) is the customary “group-flux” for group g, and r; denotes the external radius of the
PERP benchmark, and where:

BS (o)pS (1, Q) £ QVS (r, ) + (1) 931, )

G ! 4 ’ ’ ’ G ’ ’ , , 3
- stg g(r,Q — Q) s (r,Q )dQ -x8(r) X f (vZ)i (r) 8 (r,Q )dQ , ©)
§'=lan §'=l4n

Ny 1 ES
Q8(r) = Z /\iNi,lpfpvl.SF—f dE e E/%sinh /b, (4)

) 10 Eg+1

with:
Sb; ab;

Ip = %e? 5)

21
1

In Equations (4) and (5), the subscript “i” is the number of nuclides with spontaneous fission
source. In Equation (1), the vector & denotes the “vector of imprecisely known model parameters”,

which has been defined in PartI[1] as & = [(rt; 0s;0FV;P;q; N]Jr, with vector-components oy, 05, 07,
v, p, q and N, which comprise the various model parameters for the microscopic total cross sections,
scattering cross sections, fission cross sections, average number of neutrons per fission, fission spectra,
sources, and isotopic number densities, respectively. For convenient reference, the components of the
vector of model parameters « are reproduced in Appendix A.

The total neutron leakage from the PERP sphere, denoted as L(«), will depend (indirectly, through
the neutron flux) on all of the imprecisely known model parameters and is defined as follows:

L(cx)édeZG: f dQ Q-n @é(r,Q), (6)

S $=lanso

where Sy, is the external surface area of the PERP ball. Figure 1 shows the histogram plot of the leakage
for each energy group for the PERP benchmark. The total leakage computed using Equation (6) for the
PERP benchmark is 1.7648 x 10° neutrons/sec. Table 2 summarizes the integrals for the source, fission
source, absorption, in-scattering, self-scattering, out-scattering, and particle balance.
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Figure 1. Histogram plot of the leakage for each energy group for the PERP benchmark.

Table 2. Summary of integrals of neutrons for the PERP benchmark.

Quantity Values (neutrons/s)
Integral source 2.7839 x 10°
Integral fission 2.4584 x 10°

Integral absorption 9.7201 x 10°

Integral in-scattering 8.3842 x 100
Integral self-scattering 1.3558 x 107
Integral out-scattering 8.3842 x 100

Integral net leakage 1.7648 x 10°
Integral particle balance 8.3526 x 107°

The sub-sections to follow will report computational results for the 1st- and 2nd-order sensitivities
of the leakage response with respect to the source parameters for JL(x)/dq and 9*L(«)/dqdq, and
the 2nd-order mixed sensitivities 9°L(«)/dqdoy, d°L(«)/dqdos, I*L(«)/dqdo fr J*L(«)/dqdv and
J?L(ox) /dqoN.

2.1. First-Order Sensitivities dL(a)/dq
In view of Equation (4), the source Q8(r) for the PERP benchmark depends on the vector of model

parameters q, having components defined as follows:
t t
az[a...,q,] 2[AAu T Fan,a000, o viF, vaTi Ny 1, Noa |, T = 12 @)

The nominal values of the source parameters for the PERP benchmark are listed in Table 3 below.
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Table 3. Nominal values of the source parameters for the PERP benchmark [10].

N
SF : : SF | 11
Parameters A1 [1/sec] Fy [-1 ay [-] by [-] vy [-] [atoms/cm®]
Values 9.11029 x 10713 3.0x 10712  0.885247 3.80269 2.16 4.631644 x 102
N
SF [ _ _ SF 1_ 2,1
Parameters Ao [1/sec] F [-] a» [-] by [-] v; [-1 [atoms/cm?]
Values 3.35340 x 10712 575x 1078  0.794930 4.68927 2.16 2.921242 x 10

The first-order sensitivity of the PERP leakage response to the source parameters are computed
from the following particular form of Equation (154) from Reference [6]:

208(qr, Q)
Z‘fdvfL a0 pM2(r, Q) Q(;]]r (g, Q) =1, ®)

(917]

The multigroup adjoint fluxes ¢()8(r, 1), ¢ = 1,..., G appearing in Equation (8) are the solutions

of the following 1st-Level Adjoint Sensitivity System (1st-LASS) presented in Equations (156) and (157)
of [6]:

ADS () V8 (r,0) = Q- nd(r-ry), g=1,...,G, )

Y2y, 0)=0,0-n>0, g=1,...,G, (10

where the adjoint operator A()8(«) takes on the following particular form of Equation (149) from
Reference [6]:

A(l),g(a)¢(1),g(r,0)

G ’ — 0o’ ’ ’ ’
2 -0V (r, 0) + 5 () pV8(r,0) - ¥ [dO'S7 (5,0 5 Q) e (r, Q) a
&'=lurn

_Vzi(f) g fdQ'Xg’ 4,(1)@'(7, Q'), ¢=1,...,G
§'=l4n

Performing the integration over the energy interval in Equation (4) yields the following expression
for the PERP benchmark’s spontaneous fission source:

Q= Q% Z Qi (12)

with:

erf(cp) —erf(c1) +erf(cs) —erf(cs) N e (@) _ (@) _ p=(e3)® 4 p=(ca)®
2 naibi ’

QSFz = AN F z‘SFViSF[ (13)

where:

1= (\/Engl - \/aizb,’/4)/ \/H_j, (14)

c) = (\/E_— \/aizbi/4)/ \a;, (15)
o = ( Es+l 4 a,-zb,-/4)/ N (16)

cs = (VES + a2b;/4)/ \aj. (17)
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The first-order derivatives of the spontaneous fission source with respect to the parameters
gj=1 = Ai=1 and qj—» = A;—; are as follows:

IQ8(q;, Q) QSF SF,,SF 1 (F -E
= N1 F} dE ¢ E/%ginh \/b,E = =1,2. 1
24; o, =N; v; I j}; " e sin (18)

The first-order derivatives of the spontaneous fission source with respect to the parameters
qj=3 = Ffil and gj—4 = Fl.5£2 are as follows:

Q% (q;r, Q) 9% _ Qi
9qj oFst FSFY

i =3,4;i=1,2. (19)
j

The first-order derivatives of the spontaneous fission source with respect to the parameters
j=5 = Ai=1 and qj=6 = aj= are as follows:

r Z Q3
00%(q;r, Q) 8Q§F B (m e 5
aq; = Oa; ou; = AiNj 1 F;"v?" Da(g;a;,b;), j=5,6; i=1,2,  (20)

where:

2 2 2 .2
Dﬂ(g;ﬂi/bi) = zﬂilﬁ[cge—cl — 072" 4 geTB — pe ]

1 - [(1 - 2C1C3)(€_C32 - e‘clz) +(1- 2C2C4)(6_C22 - e‘c42)].

Za,- Ta;o;

(21)

The first-order derivatives of the spontaneous fission source with respect to the parameters
qj=7 = bi=1 and gj—g = b;— are as follows:

QR (qyr, Q) 9Q%s _ (mzlkzl QSPk)
aq] - abl a 8191

= AN FPvEDb(ga;,b;), j=7,8i=1,2, (22)

where:

Db(g, al/ bl) = Alﬂ[e_clz _ e_sz + e_C42 _ e—C32]

ﬂb,’

2 2 2 2 2 2 2 2 (23)
—i—ﬁ[(e—c2 —eT 47D —eT )—i— \/aibi(cle_cl — (™2 4 (367D —cyeT )]
1

The first-order derivatives of the spontaneous fission source with respect to the parameters
gj=9 = 1/155 ,and gj=10 = vf:F , are as follows:

M I
AN, FSF SF 1 dE —E/ak inh \/b )
208(qr0) BQ B (mZIkZ «Nim f+1 e sinh /b, E

‘9‘7]‘ WS SF - 8 SF (24)
= AiNj1 FSF r ngH dE e E/%iginh \/bE = 21;1, j=9,10;i=1,2.

The first-order derivatives of the spontaneous fission source with respect to the parameters
gj=11 = N1,1 and gj—12 = N, are as follows:

M
X z AN FSFvEF L dE ¢"F/%ksinh \/b E
an(q;er) _ anF _ (m 1k=1 k- km qu kE QSFz

aq/ - aN,»,l aN,,l Nz,l 4 (25)
j=11,12; i=1,2.
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Inserting the expressions obtained in Equations (18)—(25) into Equation (8) yields the following
expressions for the 1st-order sensitivities of the leakage response with respect to the source parameters:

; IL(e) V8 (y i1 0.
Forj=1,2: R s Z f avel! (NQ%, i=12; (26)
Forj=3,4: L9 - dv i=1,2 27
] 4 aFSF F;GFng ‘So Qe (27)

. OL(«) , IL(x) SF.SF 1,
Forj=5,6: 71, 8 = AiNj1F; Zdeéo r)Da(g;a;,b;), i=1,2; (28)

For j=7,8: o) , ILlax )_/\NllFSF SFZfdvgo r)Db(g;a;,b;), i=1,2;  (29)

8q] ab;
‘ JL(«x) , ‘
For j=9,10: 0 avsp = ?nglfd%o Qy i=12 (30)
. CIL(«) aL(""QSF 1, _
Forj=11,12: == —0 112 f ave3(nQt, i=12, (31)
where:
30+ [ anyheeo), @)

The 1st-order absolute sensitivities of the PERP’s leakage response with respect to the source
parameters for the PERP benchmark are computed using Equations (26)—(31). It is important to
note that the parameters qj—1 = Ai=1, gj=2 = A=, gj=3 = F>Z 1, Qj=4 = F72 2, j=5 = =1, Jj=6 = Ai=2,
9j=7 = bi=1,qj=8 = bi=2,4j=9 = vSF and gj=19 = vs , appear solely in the expression of the spontaneous
fission source, Q‘gF, for the PERP benchmark. Therefore the expressions provided in Equations
(26)—(30) represent the total 1st-order sensitivities of the leakage response with respect to these
parameters. In contradistinction, however, the isotopic densities Ny 1 and N1 appear not only in the
expression of the PERP’s source Qgp, but also appear as parameters in the definitions of the various
macroscopic cross sections that enter as coefficients of the various terms in the definition of the forward
and adjoint Boltzmann operator (i.e., on the left side of the various forward and adjoint transport
equations). Therefore, the expression shown on the right-most side of Equation (31) represents the
partial 1st-order sensitivity of the PERP’s leakage response with respect to the isotopic densities Ny 4
and N ; appearing solely in the source Qgp' This fact has been emphasized by using the notation
&L(oc; Qgp) in Equation (31).

The sensitivities obtained in Equations (26)—(31) are absolute, as opposed to relative sensitivities,
which makes it difficult to rank the importance of these sensitivities in affecting to the PERP’s leakage
response. Therefore, to facilitate the direct comparison of the importance ranking of the sensitivities
obtained in Equations (26)—(31), the numerical results for these sensitivities will be presented in unit-less
values of the respective relative sensitivities, which are denoted as s(1) (q ]') and are defined as follows:

sW(a;) = (L/90))(ai/L), j="1r- 33)
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Applying Equation (33) to Equations (26), (27), (30) and (31), yields the same expression for the
1st-order relative sensitivities for S()(1;), S(l)(PiSF ), S(l)(va ) and S (N ;) for i = 1,2, namely:

SM(A) = SW(FSF) = s (u3F) = s () LZfdvgo Q4 i=12 (34)

which means that these sensitivities will all have the same relative values, although their absolute
values differ from each other.

The numerical values of the 1st-order relative sensitivities of the PERP leakage response with
respect to the source parameters are presented in Tables 4 and 5, below. All the values obtained for the
1st-order sensitivities, as shown in Tables 4 and 5, have been independently verified with the results
calculated from the central-difference estimates obtained by repeated forward PARTISN computations,
in which the source parameters were individually perturbed by a small amount. These verifications
showed good agreements between the sensitivities computed using the 1st-LASS and the corresponding
ones computed using central-difference methods.

Table 4. First-order relative sensitivities S(1) (q j) for isotope 23?Pu.

sD@y) 5(1)(1:?) sW(ay) sY@®y) S(l)(va) S(U(Nl,l)
values 2252x107%  2252x107%  1.119x 107> 2.801x10°°® 2252x107% 2.252x107°%

Table 5. First-order relative sensitivities $(1) (q j) for isotope 240Pu.

M Ay 5(1)(133‘1:) s (a,) sW(b,) S(l)(ng) S(l)(N2,1)
values 9998 x 1071 9998 x 107! 4372x1072 1.165%x1072 9998 x 1071  9.998 x 107!

The results shown in Table 4 indicate that the 1st-order relative sensitivities with respect to the
source parameters of isotope 2>?Pu are very small, in the order of 107* or less. However, as shown in
Table 5, the 1st-order relative sensitivities with respect to the source parameters A,, F;F , ng ,and Np
of isotope 24°Pu are quite large, with values close to 1.0. Also, it can be seen that the leakage response
is less sensitive to spectrum effects (i.e., to parameters a and b of the normalized Watt’s spectrum) than
to the parameters affecting the magnitudes of the respective sources. Moreover, the 1st-order relative
sensitivities with respect to the Watt’s coefficients a, and b, of isotope 2*°Pu are also much larger than
the ones with respect to the Watt’s coefficients a; and b; of isotope 2**Pu.

As indicated in Table 4, the 1st-order sensitivities of the leakage response with respect to the source
parameters of isotope 29Pu (i.e., Ay, FSF 1F ,a1, by and Nj 1) are all negligibly small by comparison to
the corresponding results shown in Table 5 for 240Pu.

2.2. Second-Order Sensitivities d*L (o) / dgdq

The equations needed for deriving the expression of the 2nd-order sensitivities 9°L( ) /dqdq are
obtained by particularizing Equation (208) from Reference [6] to the PERP benchmark, which yields:

*L(x f f Q¢(q;r, Q)
av | doyMs(r,0 4 Li=1 . ma=1,..., ] (35)
(96/]9%2 Z Y S 90,0m; v !

Computing the unmixed 2nd-order derivatives of the spontaneous fission source with respect to
A, PiSF , vl.SF and N; ; shows that they vanish, i.e.,

90Q8(q;r, Q) IdQ8(q;r, Q)  IQ%(q;r, Q) _ IQ3(qiT, )
AidA; OFF oSt B vt ovst ~ JN;j19Nj,

=0, fori=1,2. (36)
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The mixed 2nd-order derivatives with respect to the source parameters that do not belong to the
same isotope also vanish, i.e.,
2Q8(q;r, Q)
———— =0, if i; # im, (37)
aqj aqmz / J "
where ijand iy, denote the isotope associated with the source parameters g; and gy, respectively.
The expressions of the five non-zero 2nd-order derivatives of the spontaneous fission source with

respect to gj=1, = A; and other source parameters are provided in Equations (38) through (42), below:

FSF SF 1

Q% (q;r, Q) 8(3Q§F/8Ai) ( i Iong+1 dE e E/%ginh \/b; ) QSF,
INOFSE 9FSF JIFSE - NESE

i=1,2; (38)

208(q:r, O aan /3&11‘ 3)\1'1\]1'/ PSFV,SFDQ( ;ai,bi)
Q(arr.0) _ Ao0ie/on) _ ANt Dals ]—Ni,lF?vaFDa(g;ai,bi), i=12 (39)

3/\i&ai o 8/\,» 8/\1.
S , NJ..SF,,SF va h.
Qg Q) _ 9Q%/ ) - AN v Db(g; a3, ) = N1 F5'vFDb(g a;,b;), i = 1,2, (40)
dA;0b; dA; oA A 74i, i), ;45
205(qr ) 00t o) ANuFFvFE [ dE e Fosinh JBE)  Qf
= = : 7 i = 1/ 2; (41)
aAiava 8vl.SF BVZ.SF Aivl.SF
SF,SF 1 —E/a;
Q% (q;1, Q) 9<9Q§p/(9/\i) ( vy quH dE e~E/%isinh \/b; ) QSFl 1, "
AN, Ny N1 =Ny TVE W)

The expressions of the four non-zero 2nd-order derivatives of the spontaneous fission source with

respect to gj—34 = FfP and other source parameters are given in Equations (43) through (46), below:

9Q8(qr, ) 9(0Q%p/0m)  O[ AN F{ v Da(g;a; by)|
OFton;  oFT IFSE

= Al’NﬂViSFDa(g; aj;, bi), i=1,2; (43)

908 (qr, ) 9(9Q5/b;)  O[ AN F{ v Db(g;a;,by)]
oFTop; R IFSF

= AiNjviFDb(ga;,bi), i = 1,2, (44)

E8 _E/a: s
3Qg(q; . Q) a(agglj/aFfP) a(AiNillviSF%ngH dE e E/msmh v biE) Q§F,i ‘ Lo (45)
— o - 7 1= 7 /
S ST VST ST FSF,SF

ES _E/g -
an(q; r, Q) 8((9Q§P/ansF> 8(AiNi,1V;SF%£3g+1 dE e E/azslnh \/biE) QSFI
OF$FoN; 1 - INi1 B IN;1 B FSFN;y

Li=1,2.  (46)

The expressions of the four non-zero 2nd-order derivatives of the spontaneous fission source with
respect to 456 = 4; and other source parameters are provided in Equations (47), (49), (51) and (52),
below:

208 (g7, 2Q%./a; A[AiNit FPEviF Da(gia;,by) .
Clar) _ i S ) _ s i | o AN ESPSFD2 g0 b, i= 1,2, (47)
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where:

1
4a;2\n

_C12(2C1C3 —2c3 — C1) + €_C22(2C4 +c - 2C2C42)
+e7¢3 (2C3C1 —2c1 — C3) + e (2cz +c4— 204022)
2

Da2(¢;a;,b;) = A;N;FSFSE
(g i/ bi) N5 Y (2C3 +2C1 +8C1C3—4C1 CS _ (—C3 1)
++ 2
4a;% \[ma;b )

2

+(2c4% + 207% + 8cpcy — dcr%cy? — 3)((3_C2 —e

aQ8(q;7, Q) a(anP/aai) B Q[AiNﬂFiSFVz‘SFD”(g?”i' bi)]

= NN FoEv?EDab(g;a;,b), i = 1,2, (49)

da;ob; o db; - b
where:
_ _ .
Sl e (e - )
-1 2 ¢ o e
Dab(g;ai/bi):AiNi,lFfFViSF 1, m,-h,-[(l 20103)<e 3 e 1) (1- 26204)( 2’ _p 4)] 50

L (2C1C32 - Cl) e + (2C1 €3 — 03)6
da;bi\m +(C4 — 2C22C4) o’ + (CZ - 2C2C42)

3 SF,,SF )
008(qir, ) A0Q%/da) A AN vEFDa(g;a;, 1) | . |
B - = LiNi1Fy' Da(g;a;,b;), i =1,2; (51
aa,-ava avl,SF aviSF iV 15 (g ai,bi) (51)

908(qyr, Q) 9(0Q%/ ;) AN FFvDa(g;ai,by) |
8al-8N,<,1 o &Ni,l - &Ni,l

= NEEEDa(ga;,b:), i = 1,2, (52)

The three 2nd-order derivatives of the spontaneous fission source with respect to ;-7 = b; and
other source parameters are provided in Equations (53), (55) and (56), below:

an(q‘r Q) 8(§Q§F/8bl) 8[)\1-Nl- ]F‘SFVSFDb(g;Ei bz)]

Tdh = o = —— — = AiNi FRv2EDb2(g; 04, b7), i = 1,2, (53)
where:
4!7,-2_— \a/]:a,b, )(e_clz —e? e — )
Db2(g;a;, bi) = AiNip F7F vt +(8”5bz4})(016“"12—cze‘czz—qe-cf+c3e—%2) ; 54)
T \/_(C12‘2 0 — e — 52 4 o)
S ) NJ.. SF, SF R
Q@ Q) _ 0% /90 _ O\ EF i Db(gia b = AN FSFDb(g;a;,b;), i = 1,2;  (55)
8bi8va avl,SF aviSF (BN AL ;ai,0i), 74y
8 ) NJ.. SF, SF o
208 (qir, ) _ I9Q/9bi) _ O ANinFY v Db(gsai by)| A B 12 5
8biaNi,1 (9Nl-,1 &Ni,l i Vi 8:4i,Yi), s

The 2nd-order derivatives of the spontaneous fission source with respect to gj—919 = va and
q9j=11,12 = N are as follows:

—E/a; \/bi
Q8 (q;r, Q) a(anF/ aV;SF) (/\ NiaF' ng* 1dE e/ isinh ) Qe
ovFON; B INi1 - INij vENi

,i=1,2. (57)

Inserting the 2nd-order derivatives obtained in Equations (38)—(57) into Equation (35), yields
the following expressions for the 2nd-order sensitivities of the leakage response with respect to the
source parameters:
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Forj=1my=30rj=2mp =4

PL(x) L f
v Li=12;
99i9qm, A aPSP FfF gzl 000,

Forj=1my;=50rj=2,m =6:

PL(x)  JI’L(e) SF 5F ,
5o~ T —NllP zfdvgo r)Da(g;a;,b;), i =1,2;

Forj=1my=7o0orj=2,my =8

PL(x)  ’L(w) S S |
T TV Z f Avey S (r)Db(g;ai by), i =1,2;

Forj=1,my; =9orj=2,mp = 10:

PL(x)  I°L(« f .
av g ;
8‘7]‘9%12 dA; &vSP A VSP Z <o QSPZ

Forj=1my =11orj=2,mp = 12:
PL() 9 *L(o Q) Zfdws =12,
9499m,  OAdN,  ANi 0 Qe ;

Forj=3,my=50rj=4,m =6:

L(e)  °L(x) o |
94;0qm; 8F5F8a = AiNiv; Z f ave (r)Da(giay by), i =1,2;

Forj=3my=70rj=4m =8

PL(x) P L(x) S f
= AN, dv r)Db(g;a;,b;), i = 1,2;
90,99, aFSFab i Z “ (g5, bi).

Forj=3,my=9orj=4m = 10:

?L(cx) PL(x .
0;0m; 3PSF8VSF PSF vSF gzlf e ()0, i =12

Forj:3,m2 =11 orj:4,m2 =12:

2 .
PL)  PL( Q) Z fdvg L
30]@%2 (9Fl.5F¢9N 1 FSFN11 0 sp i’ 145

Forj=5my;=50rj=6,m =6

2L 2L
3 ((x) _ a ( )—/\NllFSF SszdVEO DaZ(g,gl, l) l:1,2,

299qm, da;da;
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Forj=5my=70rj=6m =8

L(a)  *L(w) SE, S ,
59~ b = \iNj i FS Z f avelVR (r)Dab(g;a;, b)), i = 1,2; (68)

Forj=5my;=9orj=6m = 10:

PL(x) L) Sr f
= AN FS dv r\Da(g;a;, b;), i = 1,2; 69
quaqu da; 8VSF ! Z‘ 50 a(giai bi), i (69)

Forj:5,m2 =11 Orj:6,m2 =12:

(92[,(0() J L(cx, QSF SF,SF .
T P T o = AiF; Z f avelV2 (rnDa(gai b)), i =1,2; (70)

Forj=7my=70rj=8m =8

PL(x)  J’L(ex)
quaqu - 3b,‘abi

G
= MN PPy fv avelE (no2(gaby), i = 1,2; (71)
=1

Forj="7,my=9orj=8,m = 10:

PL(x) L)
= AN FF fdv r)Db(g;a;,b;), i =1,2; 72
0190m;  JoovF ! Z & 4 (rDb(g;a b), ¢ 72

Forj=7my=11orj=8,mpy =12:

BZL(O() BZL(OL; QgP) SE. SF & (1), .
T P T T = NFSES gZ_l fv avel8(r)Db(g;a;, b)), i =1,2; (73)

Forj=9,my=11orj=10,mp = 12:

PL()  PL(o Q% f
- av i=1,2. 74
a%alhnz aV?FaN 1 SPNI 1 Z é SFz (74)

The 2nd-order absolute sensitivities of the leakage response with respect to the source parameters
for the PERP benchmark are computed using Equations (58)—(74). The corresponding relative
sensitivities are defined as follows:

S®(q1,qm,) = (PL/90;00m, )@j0ma /L), jim2 =1,..., Jy. (75)

It is noteworthy that the 2nd-order relative sensitivities for s2) (/\i, Ff‘F ), 5(2)(/\1-, viSF ), s2) (Ai,Ni1),
S (2)(FZ.SF ,va ), 5(2) (FfP , Ni,l)/ and S (2)<VI.SF , Ni,l) for i = 1,2 all have the same expression, namely:
S@(A;, FoF) = S@)(A;, v5F) = S (A, Nj1) = S@(FSF,v5F) = SO(FSF,N; 1) = S (v5F, N 1)

3 : | 76
=1L frave"f (g, i=1.2. (76)
g:
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Furthermore, the right side of Equation (76) is the same as rightmost side of Equation (34). Hence,
the respective mixed 2nd-order relative sensitivities have the same values as the 1st-order sensitivities

of the leakage response with respect to the source parameters A;, FiSF , va ,and N; 1, for i = 1,2, namely,

S@(A;, F3F) = S@)(A;, v5F) = @) (A;,Njy) =
=sM(x;) = 5(1)(pi5F) — 5(1)(VZ$F) = SW(N;y)

5(2)<FSF SF) _ 5(2)( FSF Nil) _ 5(2)(1’1‘5F

Z foave"f (g, i=1.2.

,Ni,l)
(77)

Similarly, the following relations hold for the 2nd-order sensitivities with respect to the Watt’s
spectrum coefficients a; and b;:

SP (A a1) = 5(2)<F5F i) = $@(a;, v¥) = S?(a;,N;1) = SV (ay)
— M Z fvdvé(l 8 )Da(g;ai, bl'), i=1,2; (78)

S@ (A, b)) = <2)(F5F bi) = S®(b;, vF) = S® (b, Niy) = SO (by)
AiN; FSFySF (79)

_ MNaRh 3 £ favesopngan), i=12

The computations which were performed to obtain the numerical values of the corresponding
2nd-order sensitivities of the PERP leakage response with respect to the source parameters for 2>°Pu
have yielded results that are several orders of magnitude smaller than the corresponding 1st-order
sensitivities shown in Table 4. Therefore, the 2nd-order sensitivities of the leakage response with respect
to the source parameters for 2*Pu will not be presented in this work, since they are inconsequential for
applications to uncertainty quantification and/or predictive modeling. Hence, the remainder of this
work will present only the 2nd-order sensitivities of the leakage response with respect to the source
parameters (i.e., Ay, FSE, ng , a2, by and N3 1) for isotope 240py,

The numerical results obtained for the 2nd-order relative sensitivities to the source parameters of
isotope 240pPy are presented in Table 6. Since the matrix s (q]-, qmz), jym2 =1,..., ], is symmetrical
with respect to its main diagonal, only the results for the elements of the upper triangular segment of
this matrix are shown in Table 6.

Table 6. 2nd-order relative sensitivities S<2)(qj,qm2), jyma =1,...,]; of the leakage response with

respect to the source parameters of isotope 24'Pu.

Az 3 2 by vyt Ny
Ao S@ (A2, 1) @12, F5F) S (Ay,a2) @ (A2, by) 5@ (12,15") 512, Naz1)
=0 =9.998 x 101 =4.373x 1072 =1165x1072  =9998x10"!  =9.998 x 10~!
2 SF 2 SF 2 SF ., SF 2 SF
S S (ESF, ESF) S@)(FSF,a0) S@(F5F, o) SAESF,vsT)  SO(ESE, Ny )
2 =0 =4.373x1072 =1.165 x 1072 =9.998 x 107! =9.998 x 107!
a S (ay, a2) S12)(ay, by) S@(avsf) 8 (ar, Noy)
2 =6.594 x 1072 =3.179 x 1072 = 4373 %1072 =4.373 x 1072
S
by S by, bZ)_e. S(2>(h2’V2F) S(z)(bz'Nz'l)
=1571x 10 =1.165 x 1072 =1.165 x 1072
2)(,,SF
vsF S(Z)(VSF,VSF) -0 s )(Vz ,N2,1)
2 2772 =9.998 x 107!
2
Noq st )(N_z,é,Nz/l)
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The results shown in Table 6 indicate that the 2nd-order relative sensitivities of the leakage
response with respect to the source parameters are all positive. The unmixed 2nd-order
sensitivities, i.e., the elements on the main diagonal in Table 6, are mostly zero, except for
S@(ay,ay) and S@ (by,by). The largest 2nd-order sensitivities are s (Az, FgF ) = 52 (Az,ng ) =
S(z)(/\z,Nz/l) 25(2)(F§F, vgp) = S(z)(ng,Nzrl) = 5(2)(1/;F,N2,1) = 0.9998 which are the same as the
1st-order sensitivities S(M)(1,) = S(l)(PgF ) = S(l)(ng ) = SM(Ny1) = 0.9998. Furthermore, the
2nd-order sensitivities $) (15, a;) = S (FgF, az) = S(Z)(az,ng) = 5@ (a2,Np1) = 0.04373 have the
same values as the Ist-order relative sensitivity of S(!) (a;), which was presented in Table 5. Similarly, the
2nd-order sensitivities $(2)(A,,b;) = S (F;F, bz) = 5(2)(b2,V§P) = 5(2)(b2,N2/1) = 0.01165 have the
same values as the 1st-order relative sensitivity of S (by). The unmixed 2nd-order relative sensitivity
s2) (ap, a) with respect to the Watt’s coefficient a,, is about 50% larger than the corresponding 1st-order
sensitivity. However, the value of the 2nd-order relative sensitivity S(2) (b, by) with respect to the
Watt’s coefficient by is about 1/7 of the value of the corresponding Ist-order sensitivity S (b,).

3. Mixed Second-Order Sensitivities of the PERP Total Leakage Response with Respect to the
Benchmark’s Source Parameters and Total Cross Sections

This Section presents the computation and analysis of the numerical results for the 2nd-order
mixed sensitivities 9°L (&) /dqd oy, of the PERP’s leakage response with respect to the source parameters
and group-averaged total microscopic cross sections of all isotopes of the PERP benchmark. As has
been shown by Cacuci [6], these mixed sensitivities can be computed using either one of two distinct
expressions, involving distinct 2nd-level adjoint systems and corresponding adjoint functions, by
considering either the computation of 9?L(«)/dqdo; or the computation of 9°L(«)/dotdq. These two
distinct paths will be presented in Sections 3.1 and 3.2, respectively. The corresponding end results
produced by these two distinct paths must be identical to one another, thus providing a mutual
“solution verification”, ensuring that the respective computations were performed correctly.

3.1. Computing the Second-Order Sensitivities d*L(at) / dgdo;

The equation needed for deriving the expression of the 2nd-order sensitivities 9°L () /dqdo; is
obtained by particularizing Equation (204) from Reference [6] to the PERP benchmark, which takes on
the following form:

*L(x) & ). IZA(t)
= - K (1)rg ] — . —
aq]'atmz gz_lfvdVLn aQ hl,j (r,Q)y (r,Q) T j=1..J4; my=1,....]6t, (80)

where the 2nd-level adjoint functions th.)’g ,i=1,...,Ju, §=1,...,G, are the solutions of the

following 2nd-Level Adjoint Sensitivity gystem (2nd-LASS) presented in Equations (200) and (202)
of [6]:

2), Q8 (q;1, Q) .
hf]?'g(rd,n):o,Q-n<o,~j:1,...,]n,- ¢=1,...,G. (82)

The derivatives appearing on the right-side of Equation (81) have been defined previously in
Equations (18)—(25) for each of the respective source parameters.
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8my
t,,z

the subscripts in,, gm, and m,;, denote the isotope, energy group and material associated with the
parameter t,,,, respectively. The following relation holds:

In Equation (80), the parameters t,;, correspond to the total cross sections, i.e., t;;, = 0,.> , where

L ¥ N

IXE(t)  IZLS(t) (m 1o s N 3
- 8m - 8m — Y&my & Vlmy My 1

81‘7112 do tlrjz do “;2

where 6g,, ¢, denotes the Kronecker-delta functional (6g,,,¢ = 1 if gm, = & 0g,,¢ = 0if gm, # )
Inserting the result obtained in Equation (83) into Equation (80) yields:

PL()

gm2 (l)'gm ] — M =
aq]atmz ZmZ’m"’zf dVLT[ dQ) ]’l )yb 2(1’,0), ] 1,.. .,]q , mp 1,...,]51} . (84)

3.2. Alternative Path: Computing the Second-Order Sensitivities 9*L(a) / d619q

The equation needed for deriving the expression for 9*L(cx) /do;dq is obtained by particularizing
Equation (162) from Reference [6] to the PERP benchmark, which yields:

P’L(x 2Q8(q;1, Q)
av ao 7, ,i=1,..., ] =1,...,], 85
L, aqm Zf f4 ST e T Jot7 2 Jo 89

where the adjoint functions 1/)52.)’57 ; j=1,...,Jos § =1,...,G; are the solutions of the 2nd-Level
Adjoint Sensitivity System (2nd-LASS) presented in Equations (34) and (40) of Part I [1], which are
reproduced below for convenient reference:

A(l)rg((xo)lpéi)'g(r, Q) = _6g]gN1]/m]¢}(1)fg(rl Q), ] — 1, L /]Ut; g _ 1’ o G, (86)
¢£2]?'g(rdrn) = 0, Q-n> O, ]I 1/"'I]Ut; g: 1[_”’G_ (87)

The parameters ¢; and g, in Equation (85) correspond to the total cross sections and source
parameters, respectively. Inserting the results obtained in Equations (18)—(25) into Equation (85),
and performing the respective angular integrations, yields the following simplified expressions for
Equation (85):

P*L(x) ?’L(x) 1 &
Forj=1,...,Jo;my = 1,2 = = deé F(NQ5; i (88)
o &t]aq;nz aa‘tgrija/\imz iy gz=l 2,j,0 SF,im,
. P*L(x) P*L(x
Forj=1,...,Jot;mp =3,4: ETE = agg BFSF = FfF ; f dV(Sz]O anmz (89)
le

9’L(x) ’L(x)

= Aiy,, N, 1F5F vF z o dvesS(ra(g;ai,,,by,,); - (90)

Forj=1,...,Jo;ma=5,6: ot = ggfv da; ) iy 1m2
,,]. m
P e _mg. QL) PLle) _ FSF S

FOI'] - 1/~ . -/]Ut/ mz - 7/8 . 91‘]3%2 - 90‘?. abl‘ ) /‘lmZNlmz irf F Z fv dngjo ( )Db(g, almz blmz) (91)

,;]- m

P’L(x) L«

Forj=1,...,Jst;mp =9,10: = = av ; 92
/ Jot; m2 H0qm, 90, aVSF SF Z f E2 0 ( Qi iy 02

£ iy zng 1
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PLa) _ PUQE) 1

Forj=1,...,[Js;my =11,12:
] Jot; m2 90m, BUg BN

G
Y, [avelsocs,. o9

lmzr 17”2’1 g=1

where:

SO O] (o4

and where the subscripts i j=1...,6 and iy, = 1,2 denote the isotopes associated with the parameters
tj and gm,, respectively.

3.3. Numerical Results for 9*L(a) /dqdo;

The second-order absolute sensitivities of the leakage response with respect to the source
parameters and the total cross sections for all isotopes of the PERP benchmark, d*L(c)/dqdoy,
have been computed using Equation (84), and have been independently verified by computing
J?L( ) /do1dq using Equations (88)-(93). Computing d°L(cx) /dqdo requires 12 forward PARTISN
transport computations for obtaining the 2nd-level adjoint functions hi/zj)’g J=1...]p8=1,...,G,
needed in Equation (84). In contradistinction, computing 0°L( ) /dodN would require Jo = G X I =
30x 6 = 180 adjoint PARTISN computations for obtaining the adjoint functions ¢§2])g gJ=1.. 0o, §=

.,G, which are needed in Equations (88)—(93). It is thus evident that computing ¢’L () /dqdo;
using Equation (84) is 15 times more efficient than computing 9°L(«) /do;dq using Equations (88)—(93).

The matrix 32L/(9qj8tm2, j=1,...,]5 my=1,...,]o has dimensions J; X Jo+ (= 12 x 180). The
corresponding matrix for the 2nd-order relative sensitivities is defined as follows:
2L (EI j tmz

S(z)(qjltmz)ém T ), jZl,...,]q,' m2:1,...,]gt. (95)

Applying Equation (95) to Equations (88), (89), (92) and (93) yields the following relations:

S@(ohy M) = SO0} ) = B0}, ") = SO(ofp Nia) = 1 &

for i=1,2k=1,...,6;9=1,...,30.

0ﬁ[\’lm

2),
ka dvég,] (Sg( )QSFZ (96)

Therefore, the mixed 2nd-order relative sensitivities S(z)(/\i, ag ) S(2>(F5F 8 k) (2>(V;.9F tg k) and

5@ (NZ 1,0 ) of the PERP’s leakage response with respect to the total cross section parameter Gf . and
the source parameters Ai, FfP N;1, have the same value, which can also be confirmed by using
Equation (84) together with Equation (95).

To facilitate the presentation and interpretation of the numerical results, the matrix s (q jr th)
has been partitioned into J; X I = 12 X 6 submatrices, each of dimensions 1 X G = 1 X 30. The summary
of the main features of these submatrices involving the source parameters of isotope 24°Pu is presented
in Table 7 in the following form: when a submatrix comprises elements with relative sensitivities
having absolute values greater than 1.0, the total number of such elements is shown in the shaded
cells of the table. Otherwise, if the relative sensitivities of all the elements of a submatrix have values
that lie in the interval (-1.0,1.0), only the element having the largest absolute value in the submatrix
is listed in Table 7, together with the phase-space coordinates of that element. The submatrices in
Table 7, which comprise components with absolute values greater than 1.0, will be discussed in detail
in subsequent sub-sections of this Section.
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Table 7. Summary presentation of the matrix S(z)(qj, G‘fk), j=246810,12; k=1,...,6;,g =
1,...,30, for 2nd-order relative sensitivities of the leakage response with respect to the source parameters
of isotope 24'Pu and total cross sections for all isotopes.

k=1 ®*Pu) k=2(*Pu) k=3 (¥Ga) k=4 ('Ga) k=5 (C) k=6 (‘H)
2 8 2 8 2 g 2 8 2 8 2 8
SA(aa0f)  SP(haof)  sP(he)  sP(hdf)  SP(ia0f) P10
Ao 2 elements with Min. value Min. value Min. value Min. value 6 elements with
absolute values ~ =-836x1072  =-376x10"°  =-255x10"  =-7.85x10""  absolute values
>1.0 atg=12 atg=12 atg=12 atg =30 >1.0
2)(pSF & 2)(pSF 8 2)(pSF & 2)(pSF & 2)(rSF -8 2)(pSF 8
! )(Fz ’Ut,l) 8! )(Fz "’t,z) ! )(Fz '“t,s) s )(Fz 'Ut,4) s )(Fz 'Ur,s) ! )(Fz ’Ut,é)
£SF 2 elements with Min. value Min. value Min. value Min. value 6 elements with
2 absolute values =-8.36 x 1072 =-3.76 x 1073 =-255x10"3 =-7.85x 1071 absolute values
>1.0 atg=12 atg =12 atg =12 atg =30 >1.0
2 3 2 8 2 g 2 g 2 3 2 8
s )(ﬂzrff“) sl )(az, Gt,Z) sl )(112, am) s >(”2’Ut,4) s )(112,(7125) sl )(az, Gr,s)
. Min. value Min. value Min. value Min. value Max. value Max. value
=-254x10"1  =-160x102 =-679x107*  =-450x10"* =347x1072 =414x1071
atg=7 atg=7 atg=7 atg=7 atg =30 atg =30
2 g 2 3 2 g 2 g 2 g 2 3
s )(bZ’Gt,l) s )(bzfgf/z) o )(bz' 6f,3) s >(b2/ Gt,4) s )(bZ'Ut,s) s )(bZ'Ut,s)
by Min. value Min. value Min. value Min. value Max. value Max. value
=-6.72x 1072 =-422x1073 =-1.79 x 107* =-1.19x10™* =1.24x1072 =148 x 107!
atg=7 atg=7 atg=7 atg=7 atg =30 atg =30
2)(,,SF & 2)(,,SF -8 2)(,,SF & 2)(,,SF -8 2)(,,SF -8 2)(,,SF &
s )(Vz ’Gt,l) S )(Vz ’Ot/Z) s )(Vz ’Ut,S) s )(Vz 'Gr,4) s )(Vz ’Gt,S) s )(Vz ’Ut,é)
VSF 2 elements with Min. value Min. value Min. value Min. value 6 elements with
2 absolute values ~ =-836x1072  =-376x10"° =-255x10"  =-7.85x10""  absolute values
>1.0 atg=12 atg =12 atg=12 atg =30 >1.0
SANorofy)  SP(Naray)  SP(Nanay)  SP(Naofy)  SP(Nanefs)  SP(Na, o)
Ny s 2 elements with Min. value Min. value Min. value Min. value 6 elements with
absolute values =-8.36 x 1072 =-3.76 x 1073 =-255x10"3 =-7.85x 1071 absolute values
>1.0 atg =12 atg =12 atg =12 atg =30 >1.0

As shown in Table 7, the absolute values of most elements in the matrix s(2) (q i otg, k) are smaller
than 1.0; but there are 32 elements with absolute values greater than 1.0, as indicated in the shaded
submatrices. All of the elements in the submatrices S(Z)()\z,afk), s (FgF , Uf,k)’ S(Z)(VgF , Gf,k) and
S(Z)(Nzll,ofk) have negative values. In these submatrices, the absolute values of the 2nd-order
sensitivities involving the microscopic total cross sections of isotopes ?*°Pu, #*Ga, 7'Ga and C are
all smaller than 1.0. In particular, the element having the maximum absolute value in each of

these submatrices involves the microscopic total cross sections for the 12th energy group (namely,
g=12
tk 7
submatrices S(z)<a2, Of, k) and S(Z)(bz, Of, k) can be positive or negative, depending on the energy groups
and/or the total cross sections of the respective isotopes; and the absolute values of these elements

are all smaller than 1.0; moreover, the element having the maximum absolute value in each of these

o k =1,2,3,4) or the 30th energy group (e.g., af:k:%, k = 5,6). The values of the elements of the

submatrices involves the microscopic total cross sections for the 7th energy group of isotopes 23?Pu,
240py, ®¥Ga, and "'Ga, or the 30th energy group of isotopes C and 'H. The largest absolute values
in Table 7 are 5(2)()\2,0§6:30) = S(z)(FEP,atg’ZB’O) = S(Z)(ng, 0‘56:30) = 5(2)(N2,1,0§6:30) = —9.364. The
largest sensitivities all involve the energy 30th group of H. It maybe because of the highest neutron
leakage from that group, as shown in Figure 1. In addition, the 12th and 7th energy groups also exbibit
higher neutron leakage, which may explain that the maximum absolute value in each of submatrices
mostly relate to those energy groups.
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3.3.1. Second-Order Relative Sensitivities S(2) ()\2, otg, 1), s(2) (FSF ,0 tl) 5(2)( gF , af 1) and
s<2)(N2,1,a§1), g=1,...,30

Table 8 lists all the component values for the 2nd-order mixed relative sensitivities in the
submatrices S(z)(/\z, ofl), S(z)(FgF, ofl), s )(VSF 8 ) and S )(Nz 1,0 ) It has already been noted
that the corresponding elements in these four submatrlces have the same values. The 2 elements that
have values greater than 1.0 in each of the submatrices are shown bold in Table 8; these large 2nd-order
mixed relative sensitivities involve the total cross sections of isotope 2*?Pu for the energy groups g = 12
and g = 13, respectively. The largest negative values in these submatrices are attained by the 2nd-order
relative sensitivities S(2 )(Az crg 12) = 5(2)(1:51-“ 8= 12) 5(2)(V§F,G§1:12) =5 )(Nz 1,0 g 12) = -1.320
of the leakage response with respect to source parameter A, F;F , ng ,Na1, respect1vely, of 2°Pu and
the 12th energy group of the total cross section for 23?Pu.

Table 8. Second-Order Relative Sensitivities S(z)(/\z,o‘fl), s2 )(FSF ‘fl) S<2)(V§F o ) and

SP(Npy,05,),8=1,...,30.
g Relative Sensitivities g Relative Sensitivities
1 -0.0003 16 -0.779
2 —-0.0006 17 -0.364
3 -0.002 18 -0.227
4 -0.009 19 -0.181
5 —-0.046 20 —-0.155
6 -0.135 21 -0.137
7 -0.789 22 -0.099
8 —-0.725 23 —0.081
9 —-0.843 24 —-0.051
10 —-0.845 25 -0.060
11 -0.775 26 -0.063
12 -1.320 27 -0.017
13 -1.154 28 -0.003
14 —0.952 29 -0.035
15 —-0.690 30 —0.462

3.3.2. Second-Order Relative Sensitivities $(2) (Ag, a‘f 6), s(2 )(FSF ‘f 6) s (VSF a‘tg 6) and
s(z)(Nz,l,a§6), g=1,...,30

Table 9 shows the results obtained for the 2nd-order mixed relative sensitivity of the leakage
response with respect to the source parameters (A5, F;F , ng ,Ny 1) of isotope 2 (240Pu) and the total cross

sections of isotope 6 (1H). These submatrices are denoted as S(z)(/\z, U‘E 6)’ S(z)<1-"§lC , 0§ 6)’ S(z)( ;F , af )

and S (Nz,l, atg 6), respectively. As has been shown in Equation (96), the corresponding elements in
these four submatrices have the same values. In each submatrix, 6 elements (shown in bold) have
relative 2nd-order sensitivities with absolute values greater than 1.0; these large mixed 2nd-order
relative sensitivities involve the total cross sections of isotope 'H for energy groups ¢ = 16,...,20 and
g = 30, respectively. The most negative value in the respective submatrix is attained by the elements
S(Z)(/\Lafé:u) = 5(2)(1:31-“, 0‘36:12) = 5(2)(V§F, 0‘36:12) = 5(2)(N2,1,o§:12) = —9.364, involving the 30th
energy group of the total cross section of isotope 'H.
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Table 9. Second-Order Relative Sensitivities S(2>(/\2,a§6), S(z)(ng ,0‘56), S<2)(V§F ,0‘56) and
SP(Np1,05), 8 =1,...,30.

g Relative Sensitivities g Relative Sensitivities
1 —4.440 x 107 16 -1.164
2 -1.169 x 105 17 -1.173
3 —4.108 x 105 18 -1.141
4 —2.555 x 1074 19 —1.094
5 -1.735x 1073 20 -1.032
6 —-7.360 x 1073 21 —-0.969
7 -0.067 22 -0.892
8 -0.085 23 -0.826
9 -0.128 24 —-0.749
10 -0.158 25 -0.709
11 -0.183 26 —-0.653
12 —0.437 27 —-0.584
13 -0.523 28 —-0.547
14 -0.576 29 —-0.544
15 -0.582 30 —9.364

4. Mixed Second-Order Sensitivities of the PERP Total Leakage Response with Respect to the
Parameters Underlying the Benchmark’s Source Parameters and Scattering Cross Sections

This Section presents the computation and analysis of the numerical results for the 2nd-order
mixed sensitivities 9°L () /dqdos of the leakage response with respect to the source parameters and
group-averaged scattering microscopic cross sections of all isotopes contained in the PERP benchmark.
The 2nd-order mixed sensitivities 9°L () /dqd o can also be computed using the alternative expressions
for ’L(ex)/dosdq. These two distinct paths will be presented in Sections 4.1 and 4.2, respectively.
As will be discussed in detail in Section 4.3, the pathway for computing 9°L(cx) /dqdo;s turns out to be
about 590 times more efficient than the pathway for computing ¢°L(«)/d059q.

4.1. Computing the Second-Order Sensitivities 9*L () / 9o

The equations needed for deriving the expressions of the 2nd-order sensitivities 9>L/dq j0Smy , ] =
1,....J;; ma = 1,...,Jss, will differ from each other depending on whether the parameter s,
corresponds to the Oth-order (I = 0) scattering cross sections or to the higher-order (I > 1) scattering
cross sections, because the Oth-order scattering cross sections contribute to the total cross sections while
the higher-order scattering cross sections do not. Therefore, the Oth-order order scattering cross sections
must be considered separately from the higher order scattering cross sections. As described in [1-3]
and Appendix A, the total number of Oth-order scattering cross sections comprised in o; is denoted
as |5 =0, where J;; -0 = G X G X I, while the total number of higher order scattering cross sections
comprised in o is denoted as ] 1>1, Where J;5151 = G X G XIXISCT, with J51=0 + Jss1>1 = Jos, where
ISCT is the total number of Legendre moments in the finite expansion of the scattering cross sections.
There are two distinct cases, as follows:

(1) %) , j=1,..., ] m2=1,...,]51—0, where the quantities g; refer to the source

(S:US,I:O)
parameters while the quantities s, refer to the parameters underlying the Oth-order (I = 0) scattering

microscopic cross sections; and

2 ( P L )
@75, (5=0551)

parameters while the quantities sy, refer to the parameters underlying the I"-order (I > 1) scattering
microscopic cross sections.

, J=1,...,]5 ma=1,...,0451,, where the quantities q; refer to the source
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4.1.1. Second-Order Sensitivities ( QL i=1,... ,]q,' my =1,...,Jss1=0

24j5my )(S_Gs,zo)

The equations needed for deriving the expression of the 2nd-order mixed sensitivities

(aqa%)( : are obtained by particularizing Equations (204) and (205) from Reference [6] to
G

the PERP benchmark. The expression obtained by particularizing Equation (204) from Reference [6] in
PL 9my 2L ITS(t) Itmy _ ITS(t)

conjunction with the relations 5 ot G = g and =gt = yields:
] le I’Ilz ] le le mz m2
( Cill )(1) =¥ [av [ a0 n®s(, a)ps(r, 0) 2,
W% J(s=o0) =1V M %5y 97)

for j=1,.... ] mx=1,..., ] =0,

where the 2nd-level adjoint functions h( )8 ,j=1...,Jn; g =1,...,G, are the solutions of the

2nd-Level Adjoint Sensitivity System presented in Equatlons (81) and (82). In Equatlon (97), the
g my gmz
S, lmy =0,im,
the subscripts im,, Im,, §’,,, and gm, refer to the isotope, order of Legendre expansion, and energy
groups associated with s;,,, respectively. It therefore follows that:

parameter s;,;, corresponds to the Oth-order microscopic total cross sections, i.e., s, = 0 , where

| AT Mot e o § o5 0s)
o N; o im U +(7 + o2, 9 (s
82(? (t) — mzlzg v “( )_ _ m=1i=1 g'=1 s1=0
(957;12 g "y —8my I'd my —8my
Sy =Vjiny aos,lmZ =0,imy 98
M 1 (98)
g—¢
9| L Z Z‘ N "’(Ts 1=0,i (s)
m=1i=1g’=1 | 6 N
‘Z my ~ 81y - g/ng Ty My *
slm2 =0,i iy

Inserting the result obtained in Equation (98) into Equation (97) yields the following relation:

2 (1) ( )g m 4 .
(aq‘?a—st) = Ny, Jy @V [ a2 (1, )V (r,0), =1, 0y ma =1, 0. (99)

(5 =05,1=0 )

Using Equation (205) from Reference [6] to the PERP benchmark yields the following contributions:

) g-g (. '
2L 2),g % (s;00-Q)
(52 )<s—as,,0> z v [ a0k, 0 Z Jmaoys () m ol
fOT ]: 1,...,]q, 1112 = 1,...,]0-511:0.
The right side of Equation (100) can be simplified by first noting that:
82;2_)‘?,(5;0—)0/) o az§"g’ (S;Q—)Q’) - [m):l,zl N; ma (S;Q_)Q )]
asmz - Gglmz —8myp - 03 my —8My
Slmy im slmy /im
M 1 ISC s 22 (101)
) Y, ): Niu(241)0% S’P,(n 0)]
m=1i=1 I= ’
- — = 8¢/, 08y Niy iy (2l + 1P, (0-Q)
Sflmzfimz

Inserting the result obtained in Equation (101) into Equation (100), using the addition theorem for
spherical harmonics in one-dimensional geometry, performing the respective angular integrations, and
setting I;,, = 0 in the resulting expression yields the following simplified end-form for Equation (100):

82L (2) (1),gm2 (2)’glm2 .
( % ‘95'"2)@—05,10) = N, i, fv Avey S (H, g () = g me =1, Josimg, (102)
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where:

(2)7 A (2)/
Hl,j;og (r) = f4 ) dQhy’; $(rqy). (103)

Collecting the partial contributions obtained in Equations (99) and (102), yields the following
result:

(5, - ),
9q;9Smy (s=05, 1=0) aq/‘as’"?z)(s:as/lzo) 9995y (s=041=0) 2
/g/”lz ’g, Wl2

1 , ’m (1)'gm
= Ny, Jy Y [y 40 1y (1, )V (1,0) Ny, [ dVES ™ (1)H 7 (),
for ]: 1,...,]q}1’l12 = 1,-~-r]o's,l:O .

(104)

4.1.2. Second-Order Sensitivities ( oL gJ=1 0 gmy=1,...,0551

;95 )<s—os,1>1)

L )
90;5my (s=05151)

For the 2nd-order sensitivities ( , j=1,... ,],7 ; mp=1,...,04 51, the quantities qj

’
g my _)gmz

correspond to the isotopic source parameters while the parameters s,;,, = o_, .
2 S,lmz smy

correspond to the

L )
Mjo5m2 ) (=0, 151)
particularizing Equation (205) from reference [6] to the PERP benchmark, which yields,

I"-order (I > 1) scattering cross sections. In this case, the expression for ( is obtained by

2 G 2), G , , , 82§_)gl ;Q_>n/
(9(?95": ) =¥ f,av[, d0nPE(r0) Y [ d0yp0s(,q) )
1%m2 J(s=04151)  g=1 Z =1 )

for j= Lo Jpma=1,..., Jss 1

(105)

Inserting the results obtained in Equation (101) into Equation (105), using the addition theorem for
spherical harmonics in one-dimensional geometry and performing the respective angular integrations
yields the following expression:

BZL — (1)rgm (2)'g’m . . _
(aq,-as,,,2 )(n:le:UM) = Niyy oy 2y + 1) [, dVE S (H 20, f =1, Jypma =1, Jogpr, (106)

lmz

where:

él(l),gmz (r) s f a0 P[(Q)l][)(l)/g/ (1’, Q), (107)
4m
0+ ], a0 P oo), 09
2 4n &

4.2. Alternative Path: Computing the Second-Order Sensitivities d*L(a) /dosq

The results computed using the expressions for 9°L()/dqdos obtained in Equations (104) and
(106) can be verified by obtaining the expressions for ¢°L(ex)/dosdq, which also requires separate
consideration of the zeroth-order scattering cross sections. The two cases involved are as follows:

2
1 ( J°L )
( ) asj'aﬂhnz (s:US,IZO)
parameters underlying the Oth-order scattering cross sections while the quantities g;,, refer to the

source parameters; and

2 QZ—L)
( )(aSjaqmz (5:0'5,]21)

underlying the ["-order (I > 1) scattering cross sections while the quantities g, refer to the
source parameters.

;7 =1, esi=0sm2 = 1,...,];, where the quantities S refer to the

, j=1,...,05151;,m2 = 1,..., ]J;, where the quantities s i refer to the parameters
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4.2.1. Second-Order Sensitivities ( QL dJ=1 . esi—sm2 =1,..., ],

7%y )(S_Gs,zo)
The equations needed for deriving the expression of the 2nd-order mixed sensitivities

8sj(9qu

(‘ﬂ—L)( : are obtained by particularizing Equations (162) and (171) from Reference [6] to
5=05,=0
the PERP benchmark, which yield:

G
L _ ()8 9Q8(qi,Q2)
(85j8q,,,2 )(s—ds,z=0) a g§1 fv de;m 40 lpz'j (r) Py

S ) 908 (g Q) (109)
8 q7, L . —
+g§1 [, dv],_do 0, (1) S for j=1, Jaspgim =1, ]y

In Equation (109), the adjoint functions gbéz].)’g J=1,...,Jss1=0; § = 1,...,G are the solutions of
the 2nd-Level Adjoint Sensitivity System presented in Equations (32) and (37) of Part II [2], which are
reproduced below for convenient reference:

<1>fg(a0)¢§,2]?'g (r,Q) = =0g Ni ¥ VE(r,Q), j=1,... Jos0; § = 1,..,G, (110)

2), .
lpg,]?g(rd,n) =0,0n>0j=1,...,Jp1—0; §=1,...,G. (111)

( )8 0 =1,...,Jss;=0; § = 1,...,G, which also appear in
Equation (109), are the solutions of the an Level Adjoint Sensitivity System presented in Equations
(48) and (52) of Part II [2], which are reproduced below for convenient reference:

The 2nd-level adjoint functions, 6

A<1>/g(a0)9§]> (r, ) = 8¢ Ny (21 +1)P, (Q)(Sl(] $1(r),i=1,... Jos; g =1,...,G; 1=0,...,ISCT, (112)

2’ .
e;]?g(rd,n) =0,0n>0j=1...,Jm g=1...,G. 113)

The expressions of the derivatives , which appear in Equation (109), have been derived

Q8 (qmﬂ)
IMmy

in Equations (18)—(25). Inserting the results obtained in Equations (18)—(25) into Equation (109),

and performing the respective angular integrations yields the following simplified expressions for

Equation (109):

Forj=1,...,Jss1=0;m2 = 1,2

P L ) P L 1 < f g
- - dv[éz 5+ 0y ]QSF a1
(as]aqmz (S:Us,l:(]) a g]l _(;gi 8/\ Aingz_l \% /] lm
j
For ] =1,.. '/]O‘S,IIO; my = 3,4:
) = ),
= e = av| 2 S0, 19)
(asjaqu (s=0y0) o g]l gi OFSF FSF Z 2,j;0 2]0 SF,im,
= 1y
Forj=1,...,]Jss1=0;m2 = 5,6:
P L _ L _ FSF ,SF ()8
(3Sjaq"12 )(S:o‘s, 0) o a(Igg _)(f] oa: /\lmZNIWQ ”"2 l"”Z Z fV dVI:EZ]O + ®2]O ( )]Dﬂ(g, almz lmz) (116)
s1j=0,i Ty
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Forj=1,...,]5s1—0;m2 = 7,8:

G
2L _ 2L _ SF . SF (2).g 2)g ] )
(85]3%,2 )(52051 0) 3of§fjog,-f.8b- = ing Nlmz'lFimz Vi’”Z gél fv dv[gz'f?o (r) + ®2rf?0 (r) Db(g'a""Z' b""Z )' (117)
1j=0j

iy

Forj=1,.. -1]05,1:0} my =9,10:

L J’L 028
(asjaqmz)(s_g o) - o0 gl —gj o SF SF Zfdv ,]O 2]0( )]QSF1”,2 (118)

s,l i =0, ij zmz

Forj=1,...,J51=0;m2 = 11,12:

’L ) BzL((x;Qgp) 1 Gf (2) (2)
=— = V]l +elsm]et, . a1
(asf""mz manime) 005 ) N1 ierlg; v L0 20 = SEiny
where:
08 (r) = f4 40 0} (r00). (120)

4.2.2. Second-Order Sensitivities ( QL gJ=1..,0um=1,..., ],

950m )<s—o5,121>

For this case, the parameters s; correspond to the I"-order (I > 1) scattering cross sections, denoted

assj = og ;. 81 Since the I"*-order (I 2 1) scattering cross sections are not part of the total cross sections,

]’]

the expression of ( is obtained by particularizing Equation (171) from Reference [6] to

% quz )(S—Us,z>1)
the PERP benchmark, which yields,

L @)z, I (qyr, Q) . .
(asjaqmz) _zdeLRdQG )T’ ]:1/"'/]5,121/7”2:1,...,Iq. (121)
(s=a; [>1

The 2nd-level adjoint functions, Qéz.)’g, j=1,...,]s>1; § = 1,...,G, which appear in Equation

(121), are the solutions of the 2nd-Level Adjoint Sensitivity System presented in Equations (48) and (52)
of Part I [2], as have been presented previously in Equations (112)—(113). Inserting the results obtained
in Equations (18)—(25) into Equation (121), and performing the respective angular integrations, yields
the following expressions:

Forj=1,...,Js1>1,m2 = 1,2

*L ) RL 1 & f
T %4, A dV@ ( Q% (122)
(&S]aqmz (5=05,21) do fj 1g1&AZmz AimZgZ_l 74 SE iy
ity
Forj=1,...,Jss1>1,m2 = 3,4
82L ) 32 f
= o avels(nas. . ; (123)
(8Sjaqmz (s=0521) dos HgjaI:SF anll: gZ{ 20 SE/imy”

it tmy
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FOI‘j =1,.. '/]US,IZl;mZ =5,6:

2L *L
( ———— = A, Nj, 1F fmF SFX f dV@zj/ Da(g,almz b,,,,z) (124)

9590 m, )(s_%l) 80g’l p PREI

Forj =1,.. -/]as,lzl;mZ =78:

PL ) L
— = = A, N, A FESE de@ r)Db(g; a;, ,b;, (125)
(351&7'"2 (s=0511) 9O sg/l Tg/3blmz e iy l”’zz 2,j;0 ( Ty 7 ’2)
it

Forj=1,...,Jss1>1,m2 = 9,10:

L 3 (2
A dV@ . 126

s,l; 1] zm2

Forj = 1, .. '/]US,IZl;mZ = 11’ 12.:

9L azL((X' Qg ) 1 G
= = ave 127
(as]-&qm)(s sen) & g’ ~8igN. Zf 2]0( )QSFWZ (127)

imy, 1 O
sl],z] iy, 1 277 g=1

4.3. Numerical Results for 9*L(at) / dqdos

The second-order absolute sensitivities, 9°L( ) /dqdos, of the leakage response with respect to
the source parameters and the scattering cross sections for all isotopes of the PERP benchmark have
been computed using Equations (104) and (106), and have been independently verified by computing
’L(a)/dosdq using Equations (114)~(119) and (122)-(127). For the PERP benchmark, computing
the second-order absolute sensitivities, d°L( ) /dqdos, using Equations (104) and (106), requires 12
forward PARTISN computations to obtain all the required adjoint functions. On the other hand,
computing the alternative expression P*L(x)/ dosdq using Equations (114)-(119) and (122)-(127),
requires 7101 adjoint PARTISN computations to obtain the needed second level adjoint functions. As
has been discussed in Part III [3], the reason for needing “only” 7101, rather than 21600, PARTISN
computations is that all of the up-scattering and some of the down-scattering cross sections are zero for
the PERP benchmark. Therefore, computing 9°L(«) /dqdos using Equations (104) and (106) is about
590 (~7101/12) times more efficient than computing d*L(cx) /dosdq by using Equations (114)~(119) and
(122)—(127).

The dimensions of the matrix 82L/z9qjasm2, J=1.. g ma=1,...,]ssis Jg X Jos (=12x21,600),
where J;s = GXG X (ISCT 4+ 1) XI = 30x30x4x6 = 21,600. The matrix of 2nd-order relative

sensitivities corresponding to *L/ quasmz, j=1,...,]g ma=1,...,]ss, denoted as s(2) (q], =g ) is
defined as follows:

88

( )( g —>g) 92L q]os,l,k

q]’ s,Lk a &O_g —g L 4
s,k

1I>

j=1,...,121=0,...,3; k=1,...,6; ¢,g=1,...,30. (128)

Applying Equation (128) to Equations (114), (115), (118), (119), (122), (123), (126) and (127), yields
the following expressions:
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(i) for the mixed 2nd-order relative sensitivities of the leakage response with respect to the
zeroth-order scattering cross sections:

-8 1) §58 pSF 88 | SF g8
5(2)( 5= Ok’A) 5(2)( si=ok Fi ) s )(Usl 0k Vi ) 5(2)( 1= Ni, )
(129)

s,1=0,kJV 2,5;0 2,j;0

:%z o878 dV[g” (r) + @28 ()] Q% for i=1,2k=1,..,6¢,g=1,..30;

(ii) for the mixed 2nd-order relative sensitivities of the leakage response with respect to the higher
order (i.e., | = 1,2,3) scattering cross sections:

g8 §' =8 pSF 88 | SF ‘=g
S )( Is 1k ’A) 5(2)( ook Fi )_S( )( Isik Vi ) s )( Is 1k ’Nirl)

G . (130)
2%2 o, ngdV@ F(NQee, for i=12 k=1,...,6; 1=1,23; g’ ,g=1,...30.
g:

As expected, the results obtained in Equations (129) and (130) are the same as have been previously
obtained in Equations (104) and (106), together with Equation (128).
To facilitate the presentation and interpretation of the numerical results, the J; X Jss (=12x

21,600) matrix S(z)(q]-, af;;g ) has first been partitioned into 4 submatrices, namely, S s )(q], f - (‘)g k)

S(Z)(qj, osg,:fk), S(z)(Ni/m,af,:f’k) and S >(q/, i 3k) for the scattering orders I =0,/ =1,/ =2 and

I = 3, respectively; then each of them is further partitioned into ]q X I = 12 X 6 smaller submatrices,
each of dimensions 1 X (G - G) = 1x900. The results are summarized below, in Sections 4.3.1-4.3.4.

4.3.1. Results for the Relative Sensitivities S(z)(q i of:l:é;’ k)

The matrix S? )(q], of Ok) j=246,810,12; k=1,...,6; ¢,¢=1,...,30, comprises the
mixed 2nd-order relative sensitivities of the leakage response with respect to the source parameters
of isotope 2*°Pu and the Oth-order scattering microscopic cross sections for all isotopes in the PERP
benchmark. Table 10 presents the summary of the numerical results obtained for these mixed 2nd-order
relative sensitivities. ,

As shown in Table 10, the absolute values of all elements in the matrix s(2) (q jr Of, l:(‘i k) are

smaller than 1.0. The overall largest value in the matrix s )(q 9 1= k) is attained by the sensitivities
12512 _ g(2)(pSF 41212 12-12) _ 12-12) _ :
s )(/\ 2,0, 05) = Sl )(F2 ,05,120,5) = s )( vy 0 0,5) = s )<N2f1’0s,l:0,5) = 0.681, all of which

involve the Oth-order self-scattering cross section for the 12th energy group of isotope 5 (C). The

values of the mixed 2nd-order relative sensitivities $(2) (Az, ng,:g, k)’ s(2 )(FSF 3 l—>0g k) s2 )( gp , af 1_)0g k)

and S(Z)(Nz 1,05, ok) for k = 1,...,4, with respect to the source parameters Ay, FSF SF ,Np1 of

isotope 24°Pu and the Oth-order scattering cross sections of isotopes 2Pu, 24°Pu, ®Ga and "1Ga,
can be positive or negative, but there are more positive values than negative ones. For instance,
§'=8

s,1=0,k=1
87 elements have negative values, while the remaining elements are zero. On the other hand, the
nonzero Values of the mixed 2nd-order relative sensitivities with respect to the source parameters

Ay, F vy
[i.e., s2 )(Az, ag 8 ),S( )(FSF g8 ) s2 )(ng,aflzgk),S( )(Nz 1,00, Ok) for k = 5, 6] are all positive.

among the 900 elements in the submatrix S(z)()\z, o ), 251 elements have positive values and

SF N, 1 of isotope ?*°Pu and the Oth-order scattering cross sections of isotopes C and 'H

s5,1=0,k sI1=0k)
As also shown in Table 10, the values of all of the largest elements of each of the respective sub-matrices
are positive; most of these elements involve the Oth-order self-scattering cross sections for the 12th
energy group of isotopes 2Py, 2Py, “Ga, "!Ga and C, while the others involve the Oth-order

out-scattering cross section 61217 for isotope 'H
$,1=0,k=6
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Table 10. Summary presentation of the matrix s (q jr95 -0 k) for 2nd-order relative sensitivities of

the leakage response with respect to the source parameters of isotope 24°Pu and the Oth-order (I = 0)
scattering cross sections for all isotopes in the PERP benchmark.

k=1 **Pu) k=2(*"Pu) k=3 (°Ga) k=4 ('Ga) k=5 (C) k=6 ("H)
Aa, Az, Az, Az, Aa, Az,
5(2)[ e ] 5(2)( ¢ 5g ] 5(2)( gog s(? S8 () S8 s e
5,1=0,1 sl 0,2 sl 0,3 51 0,4 5,1=0,5 sl 0,6
A2 Max. value Max. value Max. value Max. value Max. value Max. value
=134 %1071 =8.89x1073 =514x107* =330x107* =6.81x1071 =1.26 x 1071
g =12,g=12 g =12,g=12 g =12,g=12 g =12,g=12 g =12,g=12 g =16,g=17
FSF FSF FSF FSF FSF FSF
2 2 2 2 2 2
S<>[ B, ] 5<>( B, ] S<>[ B, ] s<>[ 5. ) 5<>( B ] 5<>[ B, ]
SF sI 0,1 al 0,2 sl 0,3 ‘:l 0,4 sI 0,5 sl 0,6
F 2 Max. value Max. value Max. value Max. value Max. value Max. value
=1.34x 1071 =8.89x1073 =5.14x107* =330x107* =6.81x1071 =126 x 1071
g =12,g=12 g =12,g=12 g =12,g=12 g =12,g=12 g =12,g=12 g =16,g=17
az, ﬂzx ﬂzr ﬂzr az, az,
5(2)( g ] 5(2)[ pod ] 5(2)[ e ] 5(2)[ e ] 5(2)( g ] 5(2)[ 588 ]
sI 0,1 sl 0,2 Gl 0,3 sl 0,4 sI 0,5 5,1=0,6
az Max. value Max. value Max. value Max. value Max. value Min. value
=343x1072 =2.00x%x1073 =8.67x107° =543 x107° =835x1073 =-922x1073
g =7g=7 g =7g=7 g=7g=7 g =7g=7 g =7g=7 g =16,g=17
by, by, by, by, by, by,
5(2)( g ] 5(2)[ 588 ] 5(2)[ prd s2 S8 s R s 588
sl 0,1 5,1=0,2 Gl 0,3 sl 0,4 sl 0,5 5,1=0,6
by Max. value Max. value Max. value Max. value Max. value Min. value
=9.10x 1073 =532x107* =2.30%x107° =144 x107° =219x1073 =-334x103
g =7g=7 g =7g=7 g=7g=7 g =7g=7 g =7g=7 g =16,g=17
»SF »SF VSE gF »SF »SE
2 ’ 2 ’ 2 ’ 2 ’ 2 ’ 2 ’
sl )( g,2_>g ] sl )[ gﬂqg ] sl )[ gfz_)g ] sl )[ S8 ] sl )( g,2_>g ] sl )( 82_>g ]
Sr 95,1=0,1 O41=0,2 O1=0,3 5,1=0,4 95,1=05 051=0,6
vy Max. value Max. Value Max. Value Max. value Max. value Max. Value
=134 %1071 =8.89x1073 =514x107* =330x107* =6.81x1071 =1.26 x 1071
g =12,g=12 g =12,g=12 g =12,g=12 g =12,g=12 g =12,g=12 g =16,g=17
Nay, Ny, Nag, Nag, Nay, Ny,
s<2>[ i ] s<2>[ ) s W) s ) osof B} sef B
95,1=0,1 O51=0,2 95,1=03 Os,1=0,4 95,1=05 O51=0,6
No1 Max. value Max. value Max. value Max. value Max. value Max. value
=134 %1071 =8.89x1073 =514x107* =330x107* =6.81x1071 =1.26 x 1071
g =12,g=12 g =12,g=12 g =12,g=12 g =12,g=12 g =12,g=12 g =16,g=17

The mixed 2nd-order relative sensitivities with respect to the source parameters ay, by of isotope
88 ) 5(2) §'—g
Gs,l:O,k) (b Is1=0 k)

6, are small, having absolute values of the order of 1072 or less. As shown in Table 10, the
1617
s,l:O,k:6)

) which have small negative values; these elements involve (most of the time)

240Py and the Oth-order scattering cross sections for all isotopes, namely, $(2) (az,

fork=1,...,
values of the largest elements of the respective sub-matrix are all positive, except for 5@ (aZ, o

2 1617
and S( )(b 2,0 0k—6)

either the Oth-order self-scattering cross sections for the 7th energy group of isotopes 2Pu, 24Py,

%Ga, 7'Ga and C, or (occasionally) the Oth-order out-scattering cross section o;?:()lzz , for isotope H.

4.3.2. Results for the Relative Sensitivities S(Z)(q i of;:f k)

Table 11 presents the summary of the results for the mixed 2nd-order relative sensitivities of the
leakage response with respect to the source parameters of isotope 2°Pu and the 1st-order scattering cross
sections for all isotopes in the PERP benchmark; these 2nd-order sensitivities are elements of the matrix

s )(q], i 1k) j=2,4,6,8,10,12; k=1,. 6; ¢’,9=1,...,30. As shown in Table 11, the absolute

values of all elements in the matrix S )(q 19011 k) are smaller than 1.0. The overall largest (absolute)

) =5 (FgF' 513:11,2:6) = -0.104.

gl2—13

un Ogi=1k= 6) = 5(2)<N2/1’0

oy Gs,l:l,k:fi) s )(

e a2
value is S )(/lZ/ I51=1k=6
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Table 11. Summary presentation of the matrix s (q 0

s,l= 1k)
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for 2nd-order relative sensitivities of

the leakage response with respect to the source parameters of isotope 24°Pu and the 1st-order (I = 1)

scattering cross sections for all isotopes in the PERP benchmark.

k=1 **Pu) k=2(*"Pu) k=3 (°Ga) k=4 ('Ga) k=5 (C) k=6 ("H)
Aa, Az, Ao, A2, Aa, Az,
s<2>[ &2 ] s<2>[ o2 ] s<2>[ e ] s<2>[ o ] s<2>( 22 ] s<2>( el ]
Os1=1,1 Os1=12 Os1=13 Oi=14 O51=15 Os1=16
A2 Min. value Min. value Min. value Min. value Min. value Min. value
=-872x1072 =-524x1073 =-176 x 107 =-1.07 x 107 =274 %1072 =-1.04x 107!
g =7g=7 g=7g=7 g=7g=7 g =7g=7 g =12,g=12 g =12,g=13
FSF FSF FSF FSF FSF FSF
S<2>[ B, ] 5<z>( B, ] S<z>[ B, ] s<z>[ 5. ) 5<2>( B ] 5<2>[ B, ]
SF sI 1,1 al 1,2 sl 1,3 ‘:l 14 sI 1,5 sl 1,6
F 2 Min. value Min. value Min. value Min. value Min. value Min. value
=-872x1072 =-524x1073 =-1.76 x 10™* =-1.07 x10™* =-2.74x 1072 =-1.04x 107!
g =7g=7 g =7g=7 g =7g=7 g =7g=7 g =12,g=12 g =12,g=13
s<2>( & ] s<2>[ & ] s<2>[ & ] s<2>[ & ] s<2>( & ] s<2>[ & ]
O5)=1,1 Os1=12 O51=13 O51=1,4 951=15 Os1=156
az Min. value Min. value Min. value Min. value Min. value Max. value
=-291x1072 =-1.75x 1073 =-588x 107 =-357x107° =-736x1073 =746 x1073
g =7g=7 g =7g=7 g=7g=7 g =7g=7 g =7g=7 g =16,g=16
by, by, by, by, by, by,
5(2)( g ] 5(2)[ 588 ] 5(2)[ prd s2 S8 s R s 588
sl 1,1 s,1=1,2 Gl 1,3 sl 1,4 sl 1,5 s,1=1,6
by Min. value Min. value Min. value Min. value Min. value Max. value
=-773x1073 =-465x107* =-1.56 x 107 =-9.48 x 107 =-1.93x 1073 =271x1073
g =7g=7 g =7g=7 g/:7g:7 g =7g=7 g =7g=7 g =16,g=16
vF, vSE ] gF’ vF, vSE
5(2)( Gg&g ] 5(2)[ gﬂqg ] 5(2)[ gﬂ_)g ] 5(2)[ S ] 5(2)( ag;_’g ] 5(2)( 82_@ ]
SF s,1=1,1 b 1=1,2 s =13 sl=14 s1=15 s 1=1,6
vy Min. value Min. Value Min. Value Min. value Min. value Min. Value
=-872x1072 =-524x1073 =-176 x 107 =-1.07 x 107* =274 %1072 =-1.04x 107!
g =7g=7 g =7g=7 g=7g=7 g =7g=7 g =12,g=12 g =12,g=13
Nay, Ny, Nag, Nag, Nay, Ny,
s<2>[ i ] s<2>[ ) s W) s ) osof B ) sef B
Os1=1,1 Os1=12 Os1=13 Osi=14 O51=15 Os1=16
No1 Min. value Min. value Min. value Min. value Min. value Min. value
=-872x1072 =-524x1073 =-176 x 107 =-1.07 x 107* =-2.74x 1072 =-1.04x 107!
g =7g=7 g =7g=7 g=7g=7 g =7g=7 g =12,g=12 g =12,g=13
) 8- 2)(pSE 88 @)(,SF 588 (2)
The elements of S'“/(A,, T 1k ) S F2 Ok ) S vy 001k ) S¥INyq,0 1 1 r for k =

.,5, namely the mixed 2nd-order relative sensitivities with respect to the source parameters
/\2, FSF SF ,Ny 1 of isotope 24°Pu and the 1st-order scattering cross sections of isotopes 23?Pu, 24Py,
69Ga and 71Ga and C, can have either positive or negative values. For example, of the 900 elements of

. (2) g8
the submatrix S (/\2, O 11 k=1

and the remaining elements are zero. Table 11 also indicates that all of the nonzero values of the
. 2 g'—g SE 5878 SF 8 -8 g8
elements of the matrices S' )(AZ’Us,l:Lkze)’S( )(F Of 1 fe 6) s(2 )( Vo 00 e 6),5( )(Nz 100 1 pe 6),

which comprise the mixed 2nd-order relative sensitivities with respect to the source parameters A,

), 263 elements have negative values, 75 elements have positive values,

FSF , v2 ,Ny 1 of isotope 24°Pu and the 1st-order scattering cross sections of isotope 'H, are negative.
The results presented in the Table 11 also reveal that the largest elements of the respective sub-matrix
are all negative, involving either the 1st-order self—scattering cross sections for the 7th energy group of

isotopes 22Pu, 24Py, ®*Ga and "'Ga (i.e., 07_’71 w k=1,...,4) or the 12th energy group of isotope C

12-12 12—13 : 1
(ie., Gs,l:O,k:S)’ or the Ist-order out-scattering cross section O 1=0k=6 of isotope "H.
As also shown in Table 11, the elements of S(Z)(az, o‘jl:lgk) S(z)(b agl fk) fork=1,...,6|[ie., the

mixed 2nd-order relative sensitivities of the leakage response with respect to the source parameters
a, by of isotope ?*°Pu and the 1st-order scattering cross sections for all isotopes] are all small and
can have either positive or negative values. The value of the largest elements of these submatrices
are generally negative, except for S(zl(az, a;?:ll,,f: 6) and 5(2)(172, ag,?:lllg: 6), which have positive values.
The majority of these elements involve the 1st-order self-scattering cross sections for the 7th energy
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: 239py, 240p,, 69, 71 77
group of isotopes ~°"Pu, “*'Pu, ©’Ga, " Ga and C (namely, Gs,l—;O,k’
1616y

s,]=1,k=6

k=1,...,5) while a minority involve

the 16th energy group of isotope 'H (namely, o

4.3.3. Results for the Relative Sensitivities S(z)(q i Of,z:zg k)

The matrix S (qf"jf,,l:gk)’ j=246810,12; k =1,...,6; ¢,¢=1,...,30, comprises the
2nd-order mixed relative sensitivities of the leakage response with respect to the source parameters
of isotope 24°Pu and the 2nd-order scattering cross sections for all isotopes in the PERP benchmark.
As expected, based on the work previously performed in Part II [2], these 2nd-order mixed relative
sensitivities with respect to the higher-order scattering cross sections are very small, of the order of

1072 or less. The overall largest element in this matrix is S (2)(/\2,02%:21]%: 6) = S(Z)(FgF , Ug;’zl]%: 6) =

S (2)(1/;1: , 053:21,]%: 6) = s (N2,1, 05221,]%: 6) = 2.70 x 1072. Due to the small values of its elements, the

detailed features of S(?) (q i of [:5 k) are not presented in work.

4.3.4. Results for the Relative Sensitivities S(z)(q i of,l::f k)

The matrix 5(2)(qj,g§;:§k), j=246,810,12; k =1,...,6; ¢,¢=1,...,30, comprises the
2nd-order mixed relative sensitivities of the leakage response with respect to the source parameters
of isotope 2%'Pu and the 3rd-order scattering cross sections for all isotopes in the PERP benchmark.
The elements 51%)(15, N 5he) = s@ (5 ) =S 23", N 5he) = 5(2)(N2'1’03:31,§:6) =
—5.35 X 1073 have the largest absolute values; the remaining elements are even smaller and will
therefore not be discussed further.

5. Mixed Second-Order Sensitivities of the PERP Total Leakage Response with Respect to the
Benchmark’s Source Parameters and Fission Cross Sections

This Section presents the computation and analysis of the numerical results for the 2nd-order
mixed sensitivities 9°L(«)/dqdo t, of the leakage response with respect to the source parameters
and group-averaged fission microscopic cross sections of all isotopes of the PERP benchmark. These
2nd-order mixed sensitivities can also be obtained by alternatively computing the matrix 9’L(«) /do £09.
As illustrated in Sections 5.1 and 5.2, respectively, these two distinct paths use distinct 2nd-level adjoint
functions and therefore provide an intrinsic verification of the accuracy of the respective computations.

5.1. Computing the Second-Order Sensitivities 9°L (o) / dqoo s

The equations needed for deriving the expressions of the 2nd-order sensitivities 9°L(«)/dqdo f
are obtained by particularizing Equations (204) and (206) from Reference [6] to the PERP benchmark.
Specifically, the expression obtained by particularizing Equation (204) from Reference [6], in conjunction

. . 9L atmz _92L 9%8(t) atmz _I%E(1) . . . .
with the relations T0,9bm; e — 0y and D s = Ofmy , yields the following relation:

(1) G
L _ _ (2.8 1).g 9L (8)
("qf"fmz )(f—crf) 5 Jo Vi 30 7 0)9 5, Q) TR, (131)

for j=1,...,]5 m :1,...,]01:,



Energies 2020, 13, 1431 29 of 49

where the 2nd-level adjoint functions h( )8 ,i=1...,Ju, §=1,...,G, are the solutions of the
2nd-LASS presented previously in Equatlons (81) and (82). Noting that

&Zf [mzllzl Nlmotl] [mzl zZl sza ]
Bfmz - aagmz - 80ng = 63m2gNi
flmz flmz

(132)

iy My 7
and inserting the result obtained in Equation (132) into Equation (131) yields the following expression:

ey
L _ ) (2),gm 1),
(Q‘Jjafmz )(f_gf) - _Nlmzxmmz fV dVLn dQ hl,]‘ 2 (1’, Q)’j[}( Sy (7’/ Q),

fO?’ jzl,...,]q; mzzl,...,fgf.

(133)

Specializing Equation (206) from Reference [6] to the PERP benchmark yields the
following expression:

) G

P _ (), I (v=4)%( Q

(aq‘ajem ) = ; fvdvﬁmdﬂ h1,jg(" ) o Z Lndn X8 Pt ( )'
] 2 g—l 2

(f=0y) (134)
for j=1,... ]y ma=1,..., ],
where:
g Y Z Nimlve } [ Y Z N; v o ]
qmy) AEENol] AEEwerg)
0 - 8my - 8my — Y8&my& Vimy, mmz 12
fina do o do oh
Inserting the result obtained in Equation (135) into Equation (134) yields the following expression:
(2) G ,
PL S8m 2),8my g8
(aﬂﬂfw )(f— £) = Ny 1, Vi, deVHlJO ()gfzzl)( " ) (136)

for j=1,....]5 my=1,..., Jf.

Collecting the partial contributions obtained in Equations (133) and (136) yields the following
result:

2 (1)
PL _ PL - N (2),gm 1),8m
(("’f"f’"z)u o) Z(aqiaf"fz)(f o) “Nivy Jy 4V Ji 40 g ) (137)
G , , )
+Niy i, ij"vadVH 2 (y )gélxg VW), for j=1,0 0 ma=1 T

5.2. Alternative Path: Computing the Second-Order Sensitivities 9°L (o) / dosdq

The equations needed for deriving the alternative expression of the 2nd-order mixed sensitivities
PL(x)/dqdo ¢ are obtained by particularizing Equations (162) and (181) from Reference [6] to the
PERP benchmark, which yields:

qmy

S y Q8 (g1,
(), = E vl a0 g8.0) 20
1m ) (f=of)  g=1 ! (138)

G
2), 208 (q;r,Q2 .
+ZlfvdVLndQué].)g(r,ﬂ)_Qa(q?n:_)' for j=1..,opma=1,...,]p
g=
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In Equation (138), the adjoint functions ¢§2]?/g J=1...Js5; 8=1,...,Gare the solutions of the
2nd-Level Adjoint Sensitivity System presented in Equations (35) and (40) of Part III [3], which are
reproduced below for convenient reference:

A(1),g(“0)¢£,2]),g(rlﬂ) = _6gf8Nij,m]"vb(1)'g(”/Q)f j=LJopp 8=1-.,G (139)
W%, 0) =0, Qn> 0 j= 1o g=1,...,G. (140)

Furthermore, the 2nd-level adjoint functions u( )8 =175 8 ., G are the solutions of
the 2nd-Level Adjoint Sensitivity System presented in Equatlons (21) and (30) of Part III [3], which are
also reproduced below for convenient reference:

G
A(l),g(ao)uf}'g(r,n) = 68]’8Nijfm]’v§ Z Xg,é(()l)'g ), j=b.Jop;i g =1.0,G, (141)
g=1
2), .
ué,]»)g(rd,ﬂ) =0,Qn>0j=1,.... /55 8=1...,G (142)

Inserting the results obtained in Equations (18)—(25) into Equation (138) and performing the
respective angular integrations yields the following simplified expression for Equation (138):
For j = 1,...,]0f;m2 =1,2:

2L ) 2L 1 O f
__ oL _ 1 dV[é $(r )]Q : (143)
(&fj&‘hﬂz (f=o) 3U§{ij&Aim2 Ay, gzzl 20 2]0 SFiimy”

FOI‘j = 1,...,]Gf;m2 = 3,4:

G

L ) L 1 f @),
== — av|é& ()—I—U ()]Q ; (144)
) g SF Z [ 2,j;0 2,j0 SE i
(9f]9qmz (f=op)  doy, OFF  Fy = d d !
For j = 1,...,]Uf;m2 =5,6:
P L _ 32 FSF /SF (2).8
(afjaq;nz )(f:U ) (Q(Tf a{llmz /\lmz N1m2 im lm2 Z f dV[ ) + u2 ] 0 ]Da g/ almz lmZ) (145)

For j = 1,...,]0f;m2 =78:

AL _ 92 FSF /SF 2).8
(9)‘19%2 )(fz‘ff) 951, ob; A””ZNl”’Z Z fV dV[ 2,5;,0 ( ) + UZ WE 0 ]Db & al”’z 1"12) (146)

lmz 1n12
f iy

For j = 1,...,]Uf;m2 =9,10:

L _ 2).8 :
(8fjaqmz)(f_g ) aaji/ 3VSF - SF Zde[sz]o 2]0( )]QSFzmz (147)

my

For j = 1,...,]Gf;m2 =11,12:

) 9*L( e Q% -
R T
f—()‘

fi%m, ) 5— o ff ONj, 1 Niny 15
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where:

ul’ ])Og(r) L a0 u( )8 (1,0). (149)

5.3. Numerical Results for d°L(e) /9qdo s

The second-order absolute sensitivities, ’L(«)/dqdo +, of the leakage response with respect
to the source parameters and the fission cross sections for all isotopes of the PERP benchmark
have been computed using Equation (137), and have been independently verified by computing
PL(x)/do £dq using Equations (143)—(148). For the PERP benchmark, computing the second-order
absolute sensitivities, °L(«)/dqdo s, using Equation (137) requires 12 PARTISN computations (using
the forward transport equation with a modified source) to obtain all the adjoint functions needed in
Equation (137). On the other hand, computing the alternative expression 9°L(«)/do £0q by using
Equations (143)—(148) requires 120 adjoint PARTISN computations to obtain the second level adjoint
functions needed in Equations (143)—(148). Thus, computing 9°L(c)/dqdo £ using Equation (137) is 10
(=120/12) times more efficient than computing 0’L(«)/do £9q by using Equations (143)-(148).

The matrix 82L/8qj8fm2, j=1....]Jp ma=1,...,];s has dimensions J; X J;¢ (=12 x60), where
Jof = GX Ny = 30x%2 and where Ny = 2 denotes the total number of fissionable isotopes in the
PERP benchmark. The matrix of 2nd-order relative sensitivities corresponding to 9°L/dq 0 fmy, ] =

g ma=1,..., ], will be denoted as S(z)(qj, of; k) and is defined as follows:

2L 1%k

2 A 4 P . _ . —

sl )(q/’ai,k) & —8q]~80g [ T ], i=1,...,12, k=12, ¢=1,...,30. (150)
fk

Applying Equation (150) to Equations (143), (144), (147) and (148) yields the following result:

5(2)(fk/ )_5()(fk,FSF)_S()(fk, )_su(fk, )

151)
2), ' (
_LZ Gfkfvdv[ézjég 2,].;(;?( )] SFlfor i=12 k=12 ¢g=1,...,30.

As indicated by Equation (151), the mixed 2nd-order relative sensitivities with respect to the

microscopic fission cross section 0% and the source parameters /\I,FSF , v.SF ,N;1, namely, S (2 )(/\1, o 7, k)

fk

SF .8 SF 58
5711, 5. v )
by using Equation (137) together with Equation (150).

) have the same value. This resulthas also been confirmed

Table 12 summarizes the results for the J; X J;¢ (= 6 x 60) matrix S(z)(qj, a}g(’k), j =
2,4,6,8,10,12; k = 1,2;¢ = 1,...,30, which comprises the 2nd-order relative sensitivities of
the leakage response with respect to the source parameters of isotope 2*°Pu and the fission cross
sections for all isotopes in the PERP benchmark. To facilitate the presentation of the numerical results,

the matrix S(?) (q iy, k) has been partitioned into J; X N¢ (= 6 X 2) submatrices, each of dimensions

1xG = 1x30. It has been found that the absolute values of all elements of S as ) are all

(‘“' fk
smaller than 1.0. Of the sensitivities summarized in Table 12, the single largest relative value is

5012, 08712) = SCI(FSF, 061%) = 5 (v5F, 0571%) = 5N, 08 ") = 0.882. Al elements of the

submatrices S(z)(/\z Gfk) (2)(F§F, f;k) s(2 )( gF, f;k) and S(Z)(Nz 1,0 fk) have positive values, and
the element with the largest value in each of these submatrices involves the microscopic fission cross
sections for the 12th energy group of isotopes 2*Pu and 2*°Pu (namely, oijlz, k =1,2). On the
other hand, the elements of the submatrices s )(az, f k) and S )(bz, f k) have positive values for
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g =1,...,10, and negative values for g = 11,...,30. Furthermore, the element having the largest

8
fk
cross sections for the 7th energy group of isotopes 2*Pu and 24°Pu, respectively.

absolute value in each of the submatrices S(?) (az, ai k) and S(Z)(bz, %) ) involves the microscopic fission

Table 12. Summary of the matrix S(2>(qj,a;€ k)’ j=2,4,6810,12;k=1,2;,¢=1,...,30, for 2nd-order

relative sensitivities of the leakage response with respect to the source parameters of isotope 24°Pu and

fission cross sections for all fissionable isotopes.

k=1 k=2
(33%Pu) (340py)
2 g 2 8
» s( )(/\Z’af,l) sl )(/\Z/Uf,z)
Max. value = 8.82 x 1071, at g=12 Max. value = 4.57 x 1072, at g=12
2 SF 8 2 SF 8
s sC)(E5F, 08 ) S@(F5F, ¢,
Max. value =8.82 x 10!, atg =12  Max. value = 4.57 x 1072, at g = 12
o) o)
o S az,Gf,1 S az,af,z
Max. value = 1.90 x 1071, at g=7 Max. value = 1.07 x 1072, at g=7
2 8 2 8
b, sl )(bzlgf,l) s( )(bz,aﬁz)
Max. value = 5.02 x 1071, at g=7 Max. value = 2.84 x 1073, at g=7
2)(,,SF & 2)(,,SF &
o#(7.4, o)
Max. value =8.82 x 10!, atg =12 Max. value = 4.57 x 1072, at g = 12
2 8 2 8
Ny 4 s )(Nz'llaf'l) S( >(N2’1’Uf/2)

Max. value =8.82 x 107}, at g = 12

Max. value =4.57 x 1072, at g = 12

6. Mixed Second-Order Sensitivities of the PERP Total Leakage Response with Respect to the
Benchmark’s Source Parameters and the Average Number of Neutrons per Fission

This Section presents the computation and analysis of the numerical results for the 2nd-order
mixed sensitivities d*L(cx) /dqdv of the leakage response with respect to the source parameters and the
average number of neutrons per fission of all isotopes in the PERP benchmark. These 2nd-order mixed
sensitivities can also be computed by using the alternative expression 9°L(x)/dvdq, which requires
adjoint functions that are distinct from those required for computing 6°L(«)/dqdv. These two distinct
paths are illustrated in Sections 6.1 and 6.2, respectively, as follows.

6.1. Computing the Second-Order Sensitivities d*L(et) / dgov

The equations needed for deriving the expressions of the 2nd-order sensitivities 9°L( ) /dqdv are
obtained by particularizing Equation (206) from Reference [6] to the PERP benchmark, which yields
the following expression:

G 8
_J*L _ (2).8 o (vrs)E(f)
(«%ajafmz )( fe) g§1 oV [0 hy°(r Q) —=5p—

G ’ ’ ’ ’
Iy i 4O xS O (r, 00),
g'=1
fOI” j:1,...,]q; m2:]0f+1/~~-/]af+]1//

(152)
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where the 2nd-level adjoint functions h( )8 ,i=1...,Ju, §=1,...,G, are the solutions of the
2nd-LASS presented previously in Equatlons (81) and (82). Noting that

foeyf] AL BN AE Nt

m=1i=1 _ Im=1i=1 _ g
I fm, a nim - Hm 6gm2gsz2 My 9 £ (153)

tmy lmz

and inserting the result obtained in Equation (153) into Equation (152) yields the following simplified
expression for Equation (152):

2L SO gy ) o (8 - =
(quBfmz )(f: ) Nlmz My flil deVHl]O 2( )gélxg 'SO (T), ] = 1""’1’7' my = ]Uf + 1,-~~/I(;f+]V : (154)

6.2. Alternative Path: Computing the Second-Order Sensitivities 9*L(a) /dvdq

The equations needed for deriving the alternative expression of the 2nd-order mixed sensitivities
9?L(ex) /dvdq are obtained by particularizing Equation (181) from Reference [6] to the PERP benchmark.
This procedure yields:

]:]Gf+1,...,](,f+jv;m2:1,...,]q, (155)

G
P L _ (2).8 9Q8 (g1 Q2)
(af,ﬁqmz )(f:v) a gZ::l fV dVﬁm aQ "2 (rQ) Py

where the 2nd-level adjoint functions, u( )8 =17 8= 1,...,G, are the solutions of the
2nd-Level Adjoint Sensitivity System presented in Equations (118) and (125) of Part III [3], which is
reproduced below for convenient reference:

G
A5 (1, Q) = b N0l D 1€ (1), = Tap + L Jop + i g =10, G, (156)
g—l

ugj)’g(rd,ﬂ) =0,Q0>0; j=Jys+ 1L oy + i g=1...,G (157)

Inserting the results obtained in Equations (18)-(25) into Equation (155) and performing the
respective angular integrations yields the following particular expressions for Equation (155):
FOI‘j = ]O‘f + 1/"'/]Uf +]V;m2 =1,2:

9’L ) A L f
(8fj8qm2 (f=v) 8vg] dA; ,], SF Jimy”

1,,, 17”2 g=1

Forj:]0f+1/‘-~/]af+]v;m2 =3,4

L
(&fff&qmz)u—v) 8vg’8F5F TR Zf VU (0%, (159)
lj

Forj:]6f+1/--~/]df+]v;m2 :5/6:

L PL FSF |/SF ,g
(ijgqu )(f—V) o 81/18]&”1”1 - Aimz lnlzl lm lm Z f dvu ,]’ Da(g/ almz lmZ) (160)
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Forj:]6f+1/-~'/]0f+jv;m2 = 7/8:

9’L 9*L ESE S
(af]aqmz )(fv) avgjab — Al lmZ’ lWl2 lmZ 2 f Db(g/ almz lm2 )l (161)

my

Forj=Jor+1,...,]Jof + Jv;ma = 9,10:

J*L
(3fj3qmz )(f—v) 31/g]8 SE SF ZdeUZJO QSF1m2 (162)

1 tmy

Forj:]0f+l,...,]0f+]v;m2:11,12;

2L ) (92L(¢x'Qg ) 1 G f
dVLI 163
(afjaqmz (f=v) avg]QN Z 1% 210 ( )QSF vy | (163)

lmz lmz/l g:1

6.3. Numerical Results for 9*L(ec) / dgov

The second-order absolute sensitivities, d°L(«)/dqdv, of the leakage response with respect
to the source parameters and the average number of neutrons per fission for all isotopes of the
PERP benchmark have been computed using Equation (154) and have been independently verified
by computing d°L(«)/dvdq using Equations (158)~(163). Computing the second-order absolute
sensitivities 9°L(cx) /dqdv using Equation (154) requires 12 forward PARTISN computations to obtain
all the required 2nd-level adjoint functions. On the other hand, computing the alternative expression
d’L(a) /dvdq using Equations (158)-(163), requires 60 adjoint PARTISN computations to obtain the
required second-level adjoint functions. Thus, computing 9°L(«) /dqdv using Equation (154) is 5 times
more efficient than computing 9°L () /dvdq by using Equations (158)—(163).

The matrix (92L/8qjo7fm2, =10y ma=Jor+ 1, o + v has dimensions J; X (=
12x60), where J, = G x N¢ = 30 x 2. The matrix of 2nd-order relative sensitivities corresponding
to 82L/(9qj8fm2, j=1....Jp ma=]sr+1,...,Jof +]v, will be denoted as S(Z)(qj, vi) and is defined
as follows:

5)(g;, %) 2 ajaLv [q] ) i=1,..,12k=1,2¢=1,...,30. (164)

Applying Equation (164) to Equations (158), (159), (162) and (163) yields the following relation:
SO Ai) = SO FT) = SO ) = S Nin) = 1

for i=1,2 k=12, g=1,...,30.

H Mn

8
fV dvuz /5 0 SF i’ (165)

As indicated in Equation (165), the mixed 2nd-order relative sensitivities S(?) (/\,», Vf ), 52 (FfF , vf ),
5@ (va , vl‘f ) and 52 (N il vi ) of the leakage response with respect to the average number of neutrons per
fission vf and the source parameters A;, F ;.SF , vl.SF ,Nj 1, respectively, are all equal to each other. The relation
expressed by Equation (165) has also been confirmed independently by using Equation (154) together
with Equation (164).

Table 13 summarizes the results for the 12 submatrices, each of dimensions 1 X G = 1 x 30, of
the matrix S(z)<qj,vf), j=2,46,810,12; k=1,2;, g=1,...,30, comprising the 2nd-order relative
sensitivities of the leakage response with respect to the source parameters of isotope *°Pu and the
average number of neutrons per fission of all fissionable isotopes of the PERP benchmark.



Energies 2020, 13, 1431 35 of 49

Table 13. Summary results for s >(q], ) j=246810,12;k =1,2;¢ =1,...,30, for 2nd-order
relative sensitivities of the leakage response with respect to the source parameters of isotope 24°Pu and
the average number of neutrons per fission for all fissionable isotopes.

k=1 *¥Pu) k=2(*"Pu)
2 2 g
Ay 5@ (A2,v%_)) $@ (2, v,)
1 element with absolute value >1.0  Max. value = 6.31 x 1072, at g=12
SF 8
FSF S(Z) (FSF g . S( )(F Vi 2)
2 1 element with absolute value >1.0 Max. value = 6.31 x 1072, at g=12
2 g 2 8
a s! )(‘12' Vi= 1) s >(”2'Vk=2)
Max. value = 2.47 x 1071, at g=7 Max. value =140 x 1072, at g=7
2 g
by s )(bz' Vi= 1) ! )(bz'vkzz)
Max. value = 6.53 x 1072, at g=7 Max. value=3.70 x 1073, at g=7
2)(,,SF ,,8
JSF S (viF,ve_ SCI(v3F v L,)
2 1 element with absolute value >1.0  Max. value = 6.31 x 1072, at g=12
2
Ny s )(N2/1’V§:1) s )(Nz 1V 2)

1 element with absolute value >1.0  Max. value = 6.31 x 1072, at g=12

As shown in Table 13, most of the elements of s(2 )(q iV ) have absolute values smaller than
1.0. Only 4 elements in the shaded submatrices have absolute values greater than 1.0. All elements
of the submatrices S(Z)(/\z,vf), s(2) (F;F, vf), S(Z)(ng, vf) and S(Z)(Nzll,vf), k = 1,2, have positive
values. In each of these submatrices, the element having the largest absolute value involves the
average number of neutrons per fission for the 12th energy group of the isotopes (i.e., vf:lz, k=

1,2). For the submatrices 5(2)(112, vf) and S (bz,vf ), the values of the mixed 2nd-order relative
sensitivities are positive for ¢ = 1,...,10, and negative for g = 11, ..., 30; the largest elements in these
submatrices involve the average number of neutrons per fission for the 7th energy group of the two
fissionable isotopes 2?Pu and ?*°Pu, respectively. Table 14 presents the Values of the components
of submatrices S(?) ()\2, Vi:l)’ S(z)(FgF , Vi:l)’ 8(2)(V§F , vl‘f:l) and S )(Nz Vi 1) which are shaded in
Table 13. As shown (in bold) in Table 14, the only elements that have absolute values greater than 1.0
are S(2 )(/\2 vg 12) = 5(2)(F§F,v8 12) 5(2)( gp,vf 112) s )(Nz L 12) = 1.214, i.e., the 2nd-order
relative sensitivities of the leakage response with respect to the source parameters A, FSF SF yN21,
respectively, for isotope ?4°Pu and the average number of neutrons per fission for isotope 239Pu in the

12th energy group.
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Table 14. Second-Order Relative Sensitivities S<2)()\2,vf:1), S(z)(FgF ’Vlle)’ S(z)(ng ,vle) and
SP(Np1,v§_,) g =1,...,30.

g Relative Sensitivities g Relative Sensitivities
1 5.265 x 1074 16 0.297
2 1.069 x 1073 17 0.117
3 3.064 x 1073 18 0.068
4 0.014 19 0.060
5 0.067 20 0.065
6 0.169 21 0.071
7 0.762 22 0.063
8 0.658 23 0.064
9 0.802 24 0.042
10 0.842 25 0.055
11 0.786 26 0.051
12 1.214 27 0.026
13 0.847 28 0.012
14 0.555 29 0.034
15 0.321 30 0.461

7. Mixed Second-Order Sensitivities of the PERP Total Leakage Response with Respect to the
Benchmark’s Source Parameters and Isotopic Number Densities

The 2nd-order sensitivities of the leakage response with respect to the source parameters

. . . ) PL(Q8
Ai, Fl.SF ,a;, b; ,va and the fissionable isotope number densities N;;, i = 1,2 , namely a/ng\%le)’
i i,

PL(QF) PL(QG)  PL(xQ) and PL(Q%r)
OFFON;y 7 daidN;j1 7 dbidN;; 7 IEON;
(70)l, (73) and (74), respectively, and the reépective numerical results have been presented in Table 6.
As denoted by the presence of QéF in the argument of the leakage response L(cx; Q‘EF), only the
contributions stemming from the spontaneous fission source were considered in the computation of

, have been computed using Equations (62), (66),

these mixed 2nd-order sensitivities.

In order to account for the partial contributions stemming from the macroscopic total, scattering
and fission cross sections, as well as the source, this Section presents the computation and analysis of
the numerical results for the 2nd-order mixed sensitivities 9°L()/dqdN of the leakage response with
respect to the source parameters and isotopic number densities of all (including the non-fissionable)
isotopes of the PERP benchmark. Note that the 2nd-order mixed sensitivities 9*L( o) /dqdN can also be
computed using the alternative expressions for 9°L( o) /dNdq. These two distinct paths are illustrated
in Sections 7.1 and 7.2, respectively.

7.1. Computing the Second-Order Sensitivities d*L (o) /dgoN

The equations needed for deriving the expressions of the 2nd-order sensitivities 9L () /dqdN
are obtained by particularizing Equations (204), (205), (206) and (208) from Reference [6] to the PERP
benchmark. Specifically, the contribution stemming from the macroscopic total cross sections is
obtained by particularizing Equation (204) from Reference [6], which yields:

ey) G
_PL ) | L - _ (2).8 (1).8 IZA (1)
(‘9‘71"9”"12) B [aqjatlct+m2]t:N B g§1 Jy @V a0 " T Q) IMimy * (166)

for j=1,...,10, my=1,..., ],
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where the 2nd-level adjoint functions hgz],)’g, i=1,....,Ju; §=1,...,G,arethesolutions of the 2nd-LASS

presented previously in Equations (81) and (82), and where the parameters n,,,, mo =1,..., J, are the
components of the vector N as defined in [1] and reproduced in Appendix A, namely:

A + A
N = [HL.--,ﬂjn] 2 [N11,Np1,N31,Ny1,Nso,Neol', o =6. (167)
Noting that:
N; .0
ILE(t)  ITE(t) (}15 v “) o 168)
anmz B aNimz,mmz - aNimz,mmz B O-t,imzl

and inserting the result obtained in Equation (168) into Equation (166) yields the following simplified
expression for Equation (166):

(1) G
P L _ PL _ g (2).g 1
(3‘1j9”mz) - [911;‘9f10t+mz ]t:N - g§1 v Wi Ji 3015, Q)95 ),

fOT’ ]:1,,10, myo :1’_“,]71.

(169)

The contribution stemming from the macroscopic scattering cross sections is obtained by
particularizing Equation (205) from Reference [6] to the PERP benchmark, which yields:

2
- ]
19%371",2 aq/asfm+m2 s=N

3-8 (.00 (170)
- z v [0 0) Z S d 0 pOF (@) B =110 =1,
Noting that:
7 (5;0-0) ¥ (s0-0) RE 5
= 21+ 1)0%, 3 o P Q-0 171
s Ny ;( ol S P’ 0), (171)

inserting Equation (171) into Equation (170) and performing the respective angular integrations yields
the following simplified expression for Equation (170):

@ R
(aqf;—gmz) ;1 120 Zl+1)deVH1]l (r) 2 flij;gf”'g 1), j=1,...00m="1,...J. (172

The contribution stemming from the macroscopic fission cross sections is obtained by
particularizing Equation (206) from Reference [6] to the PERP benchmark, which yields:

( 2L )“): 2L
9q;m, R N

173
_ ¥ 8 1, ) ALZ) O . o) i o (173)
_ Zlfvdvﬁmdnhllj (r0) == Z f a0 xS pOE (nQ), j=1,..,10, ma=1,...,Ju.
g:
Noting that:
s d Z Z N;ml\vo d Z Z N; 1508
&(sz) (f) _ m=li=1 zm( f) _ m=li= A —vg gg (174)
81’17;12 - aNi’"Z’m"’z - aNZmQﬂ“mz a iy~ foimy!
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inserting Equation (174) into Equation (173) and performing the respective angular integrations, yields
the following simplified expression for Equation (173):

2L \Y ¢ EYTIR S
(811 on ) - Z fvdvvifzaiimzHLj;bg(r) Z X&), j=1,...,10;my=1,..., ], (175
J7m g=1 g'=1

Finally, the contribution stemming from the source term is obtained by particularizing Equation
(208) from Reference [6] to the PERP benchmark, which yields:

(4) G .
PL | L _ 1), 9Q4(qr,Q)
(aqjanm) - [aqj L—N - gglfvdvﬁm A0y (r, Q) prrTm—

9qjq-+my (176)
for j=1,...,10, my=1,..., ],
where the derivatives % have been derived previously in Equations (42), (46), (52), (56) and

(57), respectively. The simplified expression in Equation (176) has been obtained and solved previously
in Equations (62), (66), (70), (73) and (74), respectively.

Collecting the partial contributions obtained in Equations (169), (172), (175) and (176) yields the
following expression:

4 (i) G
PL AL _ g ()8 1),
prE 7z(aq_&nm ) =-X deVat,im [, 402 hy; (r, )YV (r, Q)
] 2 i ] 2 g=1 2

G IsCT G N G G ,
20+1) f,dv HS $28 g()g dvd oS H®S gelle
+g§1 IEO( " )fv Lit (T)gél s Lim, &0 +g§1fv Vi 7 fimy 11,0 (T)gél)( % () (177)

G 1), Q8 (q;r, Q2
+3 faves (e,
g:1 ] 2

for j=1,...,10, mp=1,..., ]

7.2. Alternative Path: Computing the Second-Order Sensitivities 9*L(ec) /INOq

The equations needed for deriving the alternative expression of the 2nd-order mixed sensitivities
d?L(a) /INJq are obtained by particularizing Equations (162), (171), (181) and (208) from Reference [6]
to the PERP benchmark. The combined expression obtained by particularizing these equations takes
on the following form:

2 G 2), 908 (qr) | & 2), 908 (g0
‘9”(]?9;":2 - gX::l fv dVL” a0 I’Déff) g(r’ 0) Qf’(q?n: ) - gél fv dvﬁl” a0 6;].) 8(,,/ Q) Qa(q?n: :

(178)

G 2), Q8 (g1, 2 § Q8 (q;r, 02
+L v, do u;]?g (r,0)22 ;q‘;: ) 4 X favf,_dyp®s(r, ) gnqu;z ),
8= g=

for j=1,...,Jum=1,...,10.
The adjoint functions gbéz,)’g, j=1,...,Ju;, §=1,...,G, which appear in Equation (178), are the
solutions of the 2nd-Level Adljoint Sensitivity System presented in Equations (165)—(166) of [6] and
reproduced below, for easy reference:

ITS ()

A(l),g(“o)wéi),g(r/m = —pW3(r, Q) =

Y i1 Jwg=1...G, (179)
]

P8(r,0) =0, Q-n>0; i=1,...,J; g=1,...,C. (180)
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(2).8

The 2nd-level adjoint functions 6, ;
2nd-Level Adjoint Sensitivity System presented in Equations (174)—(175) of [6] and reproduced below,

,j=1,...,]u; §=1,...,G, are the solutions of the following

for easy reference:

G , ~¢ (s, N}
AVS()l5r,0) = L [, 40y (r,0) BP0 o1 gy =1G (18)
7. g/:1
081, 0) =0, Qn>0; j=1,..., ]y g=1,..,G. (182)

The 2nd-level adjoint functions u( )8 =15 8= 1,..., G are the solutions of the 2nd-Level
Adjoint Sensitivity System presentec{ in Equatlons (184)—(185) of [6], and reproduced below for
convenient reference:

VZ
A8 (1,0) = f Zf 20y OF (W, =1, s g =1,...,G, (189)
4
ugj)fg(rd,ﬂ) =0,0n>0;j=1,...,Jug=1,...,G. (184)
Noting that:
08 (qir, ) |
W_O];émzand]qtl,z (185)

inserting the results obtained in Equations (18)—(24), (42), (46), (52), (56) and (57) into Equation (178),
and performing the respective angular integrations yields the following expression for Equation (178):
Forj=1,...,Ji;ymy =12

AL _ P 2).8 (2).g ()8
anjasmz = an,-aLAk = /\k Z fvdv[ 2]0( )+®2]0( )+ Uy (r )]Qspk

c (186)
+6jk71]'1_/\k 21 fvdvéo “(r )QSFk’ k=12
g=
Forj=1,...,Jyymy =34
G
AL _PL 1 (2).8 ()8 (2).8
anja%nz - an'aFSF - Fﬁ Z fvdv[gz,j,-o ( )+®2]0( )+ UZJ’ ( )]QSFk
(187)
_HS]k g Z fvdvé E(r )QSFk’ k=12
Forj=1,...,Js;my=05,6:
RPL L SF,, sp 2),3 ()8 (2).8 .
I dqm,  Injoay = MeNg1Fy Z fvdv[ézjo "'@2]0( r)+ u2]0( r) |Da(g; ax, br)
(188)
1),
+5jkAkP,§Fv,§Fg§1 [, avells (r)Da(g; aby), k=12
Forj=1,...,Ji;my=7,8:
RPL _ _PL S, SF ()¢ ()8 .
ondqm, 8nj3bk Aka 1F Z‘ fV dV[ 2]0 ( ) +®2]0 ( ) + u2]0 ( ) Db(g’ak’ bk)
(189)

+0MER Ve Z‘l Jy aves (Y)Db(gf' a,by), k=12
g:
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Forj=1,...,J,;my=09,610:

G
AL L 1 (2)g (2).8 (2).8 g
Fiding = o = L v dV[EZ,j;O (1) + 05 55 (r) + Uy ;5 (1) | Qs
g k8= (190)

G
1),
Fojizr L fydvEy S QG k=12
g:

7.3. Numerical Results for 9’L(et) / dgON

The second-order absolute sensitivities, 9°L( o) /dqoN, of the leakage response with respect to the
source parameters and the isotopic number densities for all isotopes of the PERP benchmark have been
computed using Equation (177), and have been independently verified by computing 9°L(«)/dNdq
using Equations (186)—(190). The matrix %L/ (9qj8nm2, j=1,...,10; my =1,..., ], has dimensions
10 x 6. The matrix of 2nd-order relative sensitivities corresponding to *L/ aq ]0an, ji=1,...,10, my =
1,..., ], will be denoted as S(z)<q jr Nl-,m) and is defined as follows:

5(2)(%,]\],(,"1) 4

2 iN,
9*L (q] k,m)’ i=1,...,10;, k=1,...,6; m=1,2. (191)

8qj&Nk/m L

Table 15 summarizes the results for the elements of the matrix S(2) (q i N, k,m), j=2,4,68,10; k=
1,...,6; m = 1,2 of 2nd-order relative sensitivities of the leakage response with respect to the source
parameters of isotope >*’Pu and the isotopic number densities for all isotopes in the PERP benchmark.

Table 15. Results for the elements of S(Z)(qj,Nk,m), j=2,46,810; k=1,...,6;, m=1,2.

k=1 k=2 k=3 k=4 k=5 k=6
(29Pu) (240py) (®Ga) ("'Ga) © (‘H)
2 $@ (A2, Ny ) $@ (A2, Ny ) 5@)(12,N3,1) (12, Ny1) 5@ (12,Ns2) 5@ (A2, Nep)
2 = 5.967 =1.219 =2228 x 1073 =1.364 x 1073 =6.310%x 107! =1.001
e SOFFN)  SO(EENy)  SOFFNs)  SP(EFNL) SO(EFNsy)  SCI(FSF,N,)
2 =5.967 =1.219 =2228 %1073 =1.364 x 1073 =6.310x 107! =1.001
o 5<2)(ﬂ2, Nl,l) 5(2)(512, N2,1) 5@ (HZeri/l) 5(2)(02, N4,1) 5@ (ay,Ns ) $@)(az, Ng )
=3065x10"1  =2592x1072  =7758x10°  =7537x1075  =1078x1072  =-1709x 1072
by 5(2)(h2,N1/1) 5@ (bZ/NZ,l) 5(2)(172,1\]3,1) 5<2)(521N4/1) 5@ (by, Ns ) S@) (b, N )
=8202x1072  =7.648x1073 =1934x 1075  =2083x1075  =2386x10° =-6.788x1073

SF 5<2)(V§F,N1,1) s (vi’i NZ,I) 5(2)(V§F’N3/1) 5(2>(V§F'N4/1) S<2)(V§F'N5r2) s viP, Ne,z)
2 =5.967 =1.219 =2228%x1073 =1.364 x 1073 =6.310 x 107! =1.001

As shown (in bold) in Table 15, the values of 9 elements in the matrix S(z)(q jr Nk,m) are greater
than 1.0. The elements 5(2)(A2,Nk/m), S(z)(ng,Nklm) and 5(2)(1/31:, Nk,m), k=1,...6;m = 1,2, have
identical values. Of the sensitivities presented in Table 15, the largest relative sensitivities are
S@(Az,Ny) = S@(FSF,N11) = SP(vSF,N11) = 5967. Adding 2*Pu will considerably affect the
sensitivity of other parameters. Also, all the mixed 2nd-order sensitivities of the leakage response with
respect to the source parameters and the isotopic number densities are positive, except for $() (as, N )
and S (b2, Ne2), which have negative values.

8. Quantification of Uncertainties in the PERP Leakage Response due to Uncertainties in
Source Parameters

Correlations between the source parameters or correlations between these source parameters and
other cross section parameters are not available for the PERP benchmark. As discussed in [1-3], when
such correlations are unavailable, the maximum entropy principle (see, e.g., Ref. [14]) indicates that
neglecting them minimizes the inadvertent introduction of spurious information into the computations
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of the various moments of the response’s distribution in parameter space. Considering the PERP leakage
response 1st- and 2nd-order sensitivities with respect to the PERP benchmark’s source parameters, the
formulas for computing the expected value, variance and skewness of the leakage response distribution
are as follows:

1) The expected value, [E(L)],, of the leakage response L(ex) has the following expression:

[E(L)], = L(a?) + [E@W)IFY, (192)

where the superscript “U” indicates contributions solely from the uncorrelated source parameters, and

where the term [E (L)](z,u)

g ', which provides the 2nd-order contributions, is given by the following

expression:

[E(L))S 22 e aq J, = 12. (193)

In Equation (193), the quantity s;; denotes the standard deviation associated with the imprecisely
known model parameter g;, i = 1,..., ],
2) Taking into account contributions solely from the uncorrelated and normally-distributed source
parameters (which will be indicated by using the superscript “(U,N)” in the following equations), the
. . . (UN)
expression for computing the variance, denoted as [var(L)],
following form:

, of the PERP leakage response has the

[Var(L)]L(]u N = [var (L)]L(Il’u’N) + [var (L)],SZ’U’N), (194)
) o (LU,N) . (UN) . )
where the first-order contribution term, [var (L)], , to the variance [var(L)], is defined as
follows: |
e [, 2
[var (L) = Y [%] (), Jp=12, (195)
1

i=1

while the second-order contribution term, [var (L)] (2UN)

g , to the variance [Var(L)]‘gu’N) is defined as

follows:

o s 192,

P
S =12. 1
3) Considering contributions solely from the uncorrelated normally-distributed source parameters,
the third-order moment, [u3(L )] (UN) of the leakage response for the PERP benchmark takes on the
following form:

2
o™ _3;[ o ] aaquaql)(S V. =12 (197)

As Equation (197) indicates, if the 2nd-order sensitivities were unavailable, the third moment

(us (L)];U’N) would vanish and the response distribution would by default be assumed to be Gaussian.

4) The skewness, [y1 (L)};U’N), due to the variances of source parameters in the leakage response,

L, is defined as follows:

3/2
@I = [ @I A war @V} (198)

The effects of the first- and second-order sensitivities on the response’s expected value, variance and
skewness are quantified by considering typical values for the standard deviations for the uncorrelated
source parameters, using these values together with the respective sensitivities computed in Section 2
in Equations (192) through (198). The results thus obtained are presented in Table 16, considering
uniform parameter standard deviations of 1%, 5%, and 10%, respectively. These results indicate that
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the effects of both the first- and second-order sensitivities on the expected response value, its standard
deviation and skewness are negligible, which is expected in view of the small values for the first- and
second-order sensitivities presented in Tables 4 and 5.

Table 16. Comparison of Response Moments Induced by Various Relative Standard Deviations
Assumed for the Source Parameters g;.

Relative Standard Deviation 10% 5% 1%

(o) 1.7648 x 10° 1.7648 x 10° 1.7648 x 10°
E(L))> 5.9586 x 102 1.4897 x 102 5.9586 x 100
[E(L)], = L(a®) + [E@) 1.7654 x 10° 1.7649 x 10° 1.7648 x 10°
[var (L)) 1.2459 x 101 3.1147 x 1010 1.2459 x 10°
[var (L)) 6.7741 x 10° 42338 x 10* 6.7741 x 10!

[var(L)} ") =
var (L))" + 1.2459 x 1011 3.1147 x 1010 1.2459 x 10°

2,UN

[var (L))
[u3(L)) ) 2.0825 x 1011 1.3016 x 1010 2.0825 x 107

UuNnN

b @] =

3/2 47356 x107° 2.3678 x 107° 4.7356 x 1077

The relative effects of uncertainties in the source parameters can be compared to the corresponding
effects stemming from the total and scattering cross sections, respectively, by considering standard
deviations of 10% for all of these parameters and by comparing the corresponding results shown in
Table 16 with the corresponding results presented in Table 25 from Part I [1] and Table 19 from Part
II [2]. This comparison reveals that the following relations hold:

.U

7 = 45980 x 10°,

[E(L)]F =5.9586 x 10 < [[E(L)]Y| = 13473 x 10* < [E(L)

(LUN)

N = 12450 x 101 < [var (L))" = 3.4196 x 1072,

var (L)]{"*N) = 12379 x 101 < [var (L)]

[var (L)]\” = 6.7741x 10° < [var (L)]{*) = 43207 x 107 < [var (L)]\*) = 2.8789x 10",

UN)

L)) = 47356 x 107 < ‘[yl (L)] §”'N)' — 35595 x 107 < [1(L)]\"") = 0.3407.

The above relations indicate that the contributions to the expected value, second-order variance and
skewness stemming from the uncorrelated source parameters are much smaller than the corresponding
contributions stemming from the group-averaged uncorrelated microscopic scattering and total cross
sections. However, the contributions to the first-order variance stemming from uncorrelated source
parameters are larger than those stemming from the uncorrelated microscopic scattering cross sections
but are much smaller than those stemming from the uncorrelated microscopic total cross sections.

Correlations between the source parameters are not available in the literature. Hence, the results
presented in Table 16 consider only illustrative values for the standard deviations of the source
parameters and unmixed 2nd-order sensitivities, in addition to the 1st-order sensitivities. On the
other hand, the results presented in Sections 3-7 indicated that several mixed 2nd-order sensitivities in
matrices °L(«)/dqdot, d*L(ex) /dqdv and 9*L(cx) /dqoN, have large values, as follows:

(a) 32 elements of the matrix $®)(qg;,0%,), j = 2,4,6,8,10,12; k=1,..,6;¢ =1,...,30,
presented in Table 7; ’
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(b) four elements of the matrix S(Z)(qj, Vf), j=2,46,810,12;k=1,2,¢=1,...,30, presented in
Table 13.

(c) nine elements of the matrix S(2)<qj,Nk,m), j=2,4,6,810;k=1,...,6;m = 1,2, presented in
Table 15.

It would be very important to establish if correlations among the model parameters mentioned
in items (a)—(c), above, since such correlations could contribute, in conjunction with the respective
mixed second-order sensitivities, to the values of the response moments. Since the mixed second-order
sensitivities of the leakage response to the source parameters and group-averaged total microscopic
cross sections are significantly larger than the unmixed second-order sensitivities of the leakage
response to the source parameters, it is likely that the correlations among the respective source
parameters and the total cross sections could provide significantly larger contributions to the response
moments than just the standard deviations of the source parameters.

9. Discussions and Conclusions Related to the Sensitivities and Uncertainties to the
Source Parameters

This work has presented results for the first-order sensitivities, dL(«)/dq, and the second-order
sensitivities 9°L () /dqdq of the PERP total leakage response with respect to the source parameters.
In addition, this work has also presented the results for the mixed second-order sensitivities
PL(a)/dqdoy, *L(e)/dqdos, I*L(ex) /dqdoy, L()/dqdv and J*L(«)/dqdN. The following
conclusions can be drawn from the results reported in this work:

(1) The 1st-order relative sensitivities of the PERP leakage response with respect to the source
parameters for the fissionable isotopes are all positive, signifying that an increase in the source
parameters will cause an increase in the total neutron leakage from the PERP sphere.

(2) The Ist-order relative sensitivities for S()(A;), S (1)(FI.SF ), S (1)(VZ.SF ) and SM(N; 1) fori = 1,2 have
the same value, although their absolute sensitivities differ from each other. The 1st-order relative
sensitivities with respect to the source parameters of isotope 23*Pu are very small, of the order of
107 or less. However, the 1st-order relative sensitivities with respect to the source parameters A,,
F;F , ng ,and Ny 1 of isotope 24°Pu are quite large, with values close to 1.0.

(3) The following relations hold for the 1st- and 2nd-order sensitivities to the source parameters:

SW(A) = SH(FSF) = sW(v5F) = SD(N;y) = S@(A, FSF) = $@)(A;,v5F) = SD(A;,N;y) =
(FSF,voh)= S@(FF,Nj1) = SP(vF N1) SD(a) = SP(A,a) = SO(FF,q) =
(a;,v5F) = S@(a;,N;1); and SV (b)) = SP(A,b) = SA(FT, b)) = SO(b;,v5F) =
(

(4) The 2nd-order sensitivities 9°L( ) /dqdq are all positive. The 2nd-order relative sensitivities of
the leakage response with respect to the source parameters of isotope 2>?Pu are very small, of
the order of 10~* or less. However, several mixed 2nd-order relative sensitivities of the leakage
response with respect to the source parameters of isotope 24°Pu are quite large, having values
close to 1.0. The unmixed 2nd-order sensitivities in the matrix S(Z)(q jr Gy ), om2=1,...,],
are mostly zero, except for s2) (a;,a;) and S (2) (b;, b;), i = 1,2. Moreover, the unmixed 2nd-order
relative sensitivity with respect to the Watt’s coefficient ay, namely, S (2) (ap,a7), is about 50% larger
than the corresponding 1st-order one; whereas the value of the 2nd-order relative sensitivity
with respect to the Watt’s coefficient b, namely, 5(2)(172, by), is about 1/7 of the value of the
corresponding 1st-order sensitivity S(1)(b,).

(5) For the 2nd-order mixed sensitivities 9°L(ex) /dqdot, among the J; X Jo¢ (= 2160) elements of the
matrix S(z)(qj,o‘f,k), j=4qj; k=1,...,6,¢g=1,...,30,32 elements have relative sensitivities
greater than 1.0. These large sensitivities involve the total cross sections of isotopes 2°Pu
or 'H. However, when the source parameters a; or b;, or the total cross sections of isotopes
20py, 9Ga, 71Ga and C are involved, the absolute values of the mixed 2nd-order relative
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(6)

7)

®)

sensitivities are all smaller than 1.0. The largest absolute values in the matrix S(Z)(qj,o‘;g k)

are $@)(1, 0%, ) = sO(FF, ofy ) = s<2)(v§F,o§6:3°) = S®(Nyy,0f ") = -9364. Also,

all the elements in the submatrices S )(Az, otg,k), s(2) (FgF, afk), s(2 )( SF 58 ) and S )(Nz 1,o§k)
have negative values; whereas the elements in submatrices s(2 )(112, ) and S )(bz, 0y k) can
have positive or negative values, depending on the energy group as well as the isotope of the
microscopic total cross sections.

For the 2nd-order mixed sensitivities 9°L( ) /dqdos, the corresponding relative sensitivities are

all smaller than 1.0. The overall largest value in the matrix s )(q], g -8 ) is 52 )(/\2, 03:0%) =

s )(FSF, g_)ol,é) = s >( ag_’olg) = 5@ (Nz,l, agzolg) = 0.681. All of these (largest)
sensitivities are related to the Oth-order self-scattering cross section for the 12th energy group of
isotope 5 (C). For the 2nd-order mixed relative sensitivities with respect to the source parameters
and the Oth-order (i.e., I = 0) scattering microscopic cross sections, the values of the relative
sensitivities can be positive or negative, but there are more positive values than negative ones.
For the 2nd-order mixed relative sensitivities with respect to the source parameters and the

1st-order (i.e., | = 1) scattering microscopic cross sections, the overall largest (absolute) value

s SO01i5) = S0 ) = SO ol L) = PN o) = 0108

these sensitivities involve the 1st-order out-scattermg cross section 077 ¢ of isotope 'H. In
addition, for the scattering order I = 1, the values of the relative sensitivities can also be positive
or negative, but there are more negative values than positive ones. The values for the 2nd-order
mixed relative sensitivities of the leakage response with respect to the source parameters of
isotope 24°Pu and the higher-order (i.e., | = 2, 3) scattering cross sections for all isotopes in the
PERP benchmark are all very small, in the order of 1072 or less.

For the 2nd-order mixed sensitivities 9°L (o) /dqdo £, it has been found that the values of the
corresponding relative sensitivities are all smaller than 1.0. The single largest relative value

is 5(2)(/\2, U§:u) = 5(2)(F5F, U§:lz) = 5(2)(1/2 , ? 12) 52 )(Nz 1,0 fl ) = 0.882. All elements

in the submatrices S(z)(/\z, fk) S(2>(F§F, ?k) s(2 )( ;F, ?k) and S )(NZ,L fk) have positive
values, and the element with the maximum absolute value in each of these submatrices relates
to the microscopic fission cross sections for the 12th energy group of isotopes 2*?Pu and 24°Pu
fk , k = 1,2). For the submatrices s(2 )(112, oik) and S )(bz, fk) the values of the

elements can be positive or negative., and the element with the maximum absolute value in each

(namely, ¢

of the submatrices S(?) (az, a;gr k) and S )(bz, o, k) relates to the microscopic fission cross sections

for the 7th energy group of isotopes 2°Pu and 2**Pu (i.e., 0% k=1, 2).

f K
For the 2nd-order mixed sensitivities 9°L(cx)/dqdv, the corresponding relative sensitivities
are mostly smaller than 1.0; only 4 elements with absolute values greater than 1.0, which are

5(2)(/\2, vf:lu) = 5(2)(1:;1:, vf;u) = S(2>(V§P, vf;lz) = 5(2)(N2/1, vf;u) = 1.214. Similarly, all
elements in the submatrices S(z)</\2,v§), 3(2)(1:51?, vf), S(Q)(ng, vf) and S(Z)(Nz,l,vf) fork=1,2
have positive values, and the element with the maximum absolute value in each of these
submatrices relates to the average number of neutrons per fission for the 12th energy group of the
isotopes (namely, V=12 , k =1,2). The elements in submatrices S(z)<a2, vf ) and S(Z)(bz, vi ) have
positive values for g = 1, ..., 10, and have negative values for g = 11, ..., 30. The elements having
the maximum absolute value in each of the submatrices S(?) (az, vf ) and S(z)(bz, vi ) pertain to the
average number of neutrons per fission for the 7th energy group of the isotopes 2*Pu and 24°Pu
(namely, 1/5:7, k = 1,2). The reason that the maximum absolute value in each of submatrices
mostly relates to energy groups 7 and 12 is because those groups have high leakage, as shown in
Figure 1. The high leakage in those groups is due to the fission spectrum of the isotopes 2*Pu
and 2Py, as illustrated in Figure 4 from Part III [3], where most of the spectrum is concentrated
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in the energy region g =7, ...,14, with the largest portion contained in group 12, and the next
largest contained in group 7.

(9) For the 2nd-order mixed sensitivities 9°L()/dqoN, it has been found that among the 60
elements in the relative sensitivity matrix s (q "N k,m)/ there are 9 elements having values greater
than 1.0; these are: S()(A,, Nijp) = 8(2)(1:;1:, Nl,l) = 5(2)(V§F, Nl,l) = 5.967; S (A2, Npq) =
S@(FSF,Np1) = S@ (A2, Nay) = 1.219; and S (A2, Ng) = SP(FSF, Ne2) =SP(v5F, Ne) =
1.001. The elements S(Z)(Az,Nk,m), 52 (F;F, Nk,m), and S$(2) (ng,Nk,m), k=1,...6;, m=1,2, have
identical values. Also, all of the mixed 2nd-order sensitivities of the leakage response with respect
to the source parameters and the isotopic number densities are positive, except for $() (az, Ny )
and S (b,, Ng2), which have negative values.

(9) By considering typical values for the standard deviations for the uncorrelated source parameters,
it has been found that the effects of both the first- and second-order sensitivities on the
expected response value, its standard deviation and skewness are negligible. However, many
mixed 2nd-order sensitivities in matrices 9°L(«)/dqdoy, d°L(«)/dqdv and ¢°L(«x)/dqoN are
significantly larger than the unmixed 2nd-order sensitivities of the leakage response with respect
to the source parameters. Therefore, it would be very important to obtain correlations among
the various model parameters, since the correlations among the source parameters and other
model parameters (e.g., total cross sections, average number of neutrons per fission, and isotopic
number densities) could provide significantly larger contributions to the response moments than
the standard deviations of the source parameters.
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Appendix A Definitions of PERP Model Parameters

As presented in Part I [1], the components of the vector of 1st-order sensitivities of the leakage
response with respect to the model parameters, denoted as S (), is defined as follows:

dL(o) dL(ox) dL(ox) JL(ex) JL(ex) JL(ex) JL(ex) ¥

ey 2
™ (e) Jor ' 9o, ' doy ' ov ' dp ' 9q ' oN

(A1)
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The symmetric matrix of 2nd-order sensitivities of the leakage response with respect to the model
parameters, denoted as $?) («), is defined as follows:

[ PL(x)
(90'[30‘[
PL(a)  PL(x)
00300} 0000
PL(x) L) PL(x)
80']«90} 80'f30'5 80'fz90'f
) R PL(x) PL(x) PL(x)  ’L(x) . . .
S (“) = 9vdo; dvdos dvdoy vV . (A2)
L) L) PL(x)  ?L(x) 9*L(x)
dpdo dpdos dpdoy dpdv Ipdp
?L( ) ?L( ) PL(x) L) L(x) L)
dqdoy dqdos dqdoy dqdv dqdp dqdq
L) L) PL(a) L) ?L(a) ?L(x) L)
INdo; dNdos JNdo ¢ INJv JINJp JdNJdq JINON

* * * * * *

* * * * *

* *

*

As defined in Equation (1), the vector &« = [O‘t ;05 05V,psq; N]Jr denotes the “vector of imprecisely
known model parameters”, with vector-components o}, o5, o v, P9 and N, comprising the various
model parameters for the microscopic total cross sections, scattering cross sections, fission cross sections,
average number of neutrons per fission, fission spectra, sources, and isotopic number densities, which
have been described in Part I [1]. For easy referencing, however, the definitions of these model
parameters will be provided in the remainder of this Appendix.

The total cross section Zf for energy group g, ¢ =1,...,G, is computed for the PERP benchmark
using the following expression:

Zz‘tm; ZN””GH ZNlmel+GCl+Z s 1= 01 ,m=12 (A3)

where m denotes the materials in the PERP benchmark; ¢4 Fi and af ; denote, respectively, the tabulated
group microscopic fission and neutron capture cross sections for group g, ¢ = 1,..., G. Other nuclear
reactions are negligible in the PERP benchmark. As discussed in Part I [1], the total cross section

Zf - Z‘tg (t) will depend on the vector of parameters t, which is defined as follows:

A + A +
f£ [fl/~- "f]af;f]5f+1" ..’f]0f+IV;f]C7f+]V+1’...’fIf] = [Gf/V/N] ’ ]f = ]Uf +]V +]‘Vlr (A4)

where: R
A A +
N = [711,-.-,7’1]"] £ [N1,1,N2,1,N31,Ny1,N52,Ng»o]', Ju =6, (A5)
+
A a1 2 G 8
ot—[tl,...,t]m] _[Ut,i:l’at,izl"”’Ot,izl""’Ot,i’ . “ PO 1] (A6)

i=1,...,1=6 ¢g=1,...,6=30; Jo: =IXG.

In Equations (A4) through (A6), the dagger denotes “transposition,” af ; denotes the microscopic
total cross section for isotope i and energy group g, N;,, denotes the respective isotopic number density,
and J,; denotes the total number of isotopic number densities in the model. Thus, the vector t comprises
a total of J; = Jot + J» = 30 X 6 + 6 = 186 imprecisely known “model parameters” as its components.

The scattering transfer cross section ¢ ¢ (Q’ - Q) from energy group g’, ¢’ =1,...,Ginto
energy group g, § = 1,...,G, is computed using the finite Legendre polynomial expansion of order
ISCT = 3:

=780 - 0) = z *¢ 3 - ),
m=
1:6 ISCT=3 , (A7)
' fc ~ , §—g a _
%5, 50 - 0)= LN L (2+1) 08 P(Q'-0), m=1,2,
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where of ;g denotes the I-th order Legendre-expanded microscopic scattering cross section from
energy group g’ into energy group g for isotope i. In view of Equation (A7), the scattering cross
section & ¢ (Q' - Q) -y (s; a - Q) depends on the vector of parameters s, which is defined

as follows:

+ t +
A A A
sz [sl,...,s]s] = [51,...,5105;711,...,71]”] 2 [o5;N]', Js = Jos + Jn, (A8)
t =1o¢=1 ¢ =2-¢=1 '=G—g=1 ¢'=1-9=2 ¢'=2—9=2 . *
s s [ g=1-g=1 g=2-¢ §=Gog=1 g'=1-g=2 ¢'=2-¢ g8 GG
US_[Slf s]m] = [Gs,lzo,izl Osi=0i=1 77 9si=0i=1 " Tsi=0i=1 ’Isi=0i=1 """ %s1i 7 IsiscTi=1| © (A9)

1=0,...,ISCT; i=1,....,I, §¢ =1,...,G; Jos = (GxG)xIx (ISCT +1).

The expressions in Equations (A7) and (A3) indicate that the zeroth order (i.e., I = 0) scattering
cross sections must be considered separately from the higher order (i.e., [ > 1) scattering cross sections,
since the former contribute to the total cross sections, while the latter do not. Therefore, the total number
of zeroth-order scattering cross section comprise in o is denoted as [ —o, Where J;5;—0 = GX G X [;
and the total number of higher order (i.e., | > 1) scattering cross sections comprised in o5 is denoted as
Jos,>1, Where [ 151 = G X G XIXISCT, with [51=0 + J5s,1>1 = Jos- Thus, the vector s comprises a total
of Jos + Jn =30%x 30X 6 X (34 1) + 6 = 21,606 imprecisely known components (“model parameters”).

The transport code PARTISN [10] computes the quantity (VZ f)g using directly the quantities

(vo)3 i which are provided in data files for each isotope i, and energy group g, as follows
g M=2 g
(vZf) = 2 (vZf)m; vZf Z‘Nlm vof m=1,2. (A10)

m=1

In view of Equation (A10), the quantity (VZ f)g - (vZ f)g (f;7) depends on the vector of parameters
f, which is defined as follows:

A 1— A +
f [f1,---,f]gf;f]gfﬂ,.--/fIJf+Jv;fIaf+]v+1,---,fjf] = [Uf; v; N] c Jp=Jop+ T+ n, (A11)

where:
o= 01 02 OG Og 01 OG A[f f :|+
f =\ ri=v O iz O iz Opir O fi=Ngs U fi=Ng | T e Jap | (A12)
i=1,...,Nf,' g=1,...,G; ]UfZGXNf,
s [1 2 G g 1 ¢ 1. *
v = [Vi:l’vi:l”'"Vizl""’vi’” ’Vl Nf SV i:Nf] :[f](7f+1/""f]uf+]‘/] ’ (A13)
i:l,...,Nf; g=1...,G ]V:GXNf,

and where 0? denotes the microscopic fission cross section for isotope i and energy group g, v; v$ denotes
the average number of neutrons per fission for isotope i and energy group g, and Ny denotes the
total number of fissionable isotopes. For the purposes of sensitivity analysis, the quantity vl , can
be obtained by using the relation V?i = (va)?i/ a?i, where the isotopic fission cross sections aii
available in data files for computing reaction rates.

The quantity x8 in Equation (3) quantifies the material fission spectrum in energy group g, and is

defined in PARTISN [10] as follows:

are

R S 8 g
.Z Xi Ni/mg?; (Vof)i f;

G
X = = ;o with Y xS =1, (A14)
G g

Z Nl,m Z (Vaf) fg/

’
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. g . c e . . . g
where the quantity x7 denotes the isotopic fission spectrum in energy group g, while the quantity f;
denotes the corresponding spectrum weighting function.
The fission spectrum is considered to depend on the vector of parameters p, defined as follows:

N L[ g=1 ¢=2 L
p:[pl,...,p]p] :[)(f;l,)(le,...,)(le,...,)(f,...,)(f]f ,i=1,...,N;; ¢=1,...,G; J,=GxNry. (A15)

The source Q3(r) — Q8(q;N) depends on the vector of model parameters q, which is defined as
follows:
A T, SE pSF sF . sF]’
q= [171,~-,t7]q] = [/\1,/\2;1:1 JF5 a1, a0; b1, b;v)" ,v3 ] , Jqg=10. (Al6)

In view of Equations (A4)—(A16), the model parameters characterizing the PERP benchmark can
all be considered to be the components of the following “vector of model parameters:”

+ +
atlay,..,ap] 2lovosonviB N, Je=Jot+Jes+ o+ I+l +Ig+Tn (A7)
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