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Abstract: Rotating machines are pivotal to the achievement of core operational objectives within
various industries. Recent drives for developing smart systems coupled with the significant
advancements in computational technologies have immensely increased the complexity of this group
of critical physical industrial assets (PIAs). Vibration-based techniques have contributed significantly
towards understanding the failure modes of rotating machines and their associated components.
However, the very large data requirements attributable to routine vibration-based fault diagnosis
at multiple measurement locations has led to the quest for alternative approaches that possess the
capability to reduce faults diagnosis downtime. Initiatives aimed at rationalising vibration-based
condition monitoring data in order to just retain information that offer maximum variability includes
the combination of coherent composite spectrum (CCS) and principal components analysis (PCA) for
rotor-related faults diagnosis. While there is no doubt about the potentials of this approach, especially
that it is independent of the number of measurement locations and foundation types, its over-reliance
on manual classification made it prone to human subjectivity and lack of repeatability. The current
study therefore aims to further enhance existing CCS capability in two facets—(1) exploration of
the possibility of automating the process by testing its compatibility with various machine learning
techniques (2) incorporating spectrum energy as a novel feature. It was observed that artificial neural
networks (ANN) offered the most accurate and consistent classification outcomes under all considered
scenarios, which demonstrates immense opportunity for automating the process. The paper describes
computational approaches, signal processing parameters and experiments used for generating the
analysed vibration data.

Keywords: spectrum energy; machine learning; data fusion; composite spectrum; vibration-based
condition monitoring; rotating machines

1. Introduction

The past few decades have been characterised by very significant population growths (i.e., from
2.53 billion in 1950 to 7.16 billion in 2011 and predicted to reach 14.4 billion within the next 6 decades)
across the world [1]. As a direct consequence of this unprecedented growth, the global primary energy
consumption has correspondingly risen from 3701 Mtoe in the mid-1960s to approximately 13511 Mtoe
in 2017 [1,2]. Besides the strains exerted by current energy demands on existing energy generation and
distribution systems across the world, the sustainability of present scenarios is questionable, owing to
the rapid depletion of primary energy resources such as crude oil, coal, and natural gas (estimated to
be completely depleted in 50.2, 52.6 and 134 years, respectively) [2]. Additionally, the global upsurge
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in initiatives aimed at shifting the energy paradigm towards renewable and more sustainable sources
is gradually increasing the attention on alternative sources including wind, solar, etc. However,
irrespective of energy generation source, the existence of rotating machines is almost inevitable along
the entire supply chain, owing to their versatility and criticality. For instance, wind turbines are basically
rotating machines with bearings, blades, gearbox and rotors accounting for incessant failure modes
due to variable loading. Such rotating components are also associated with more established energy
generation systems such as tidal, geothermal, hydroelectric, wave, etc. Routine health assessment
of these systems is often challenged by high cost of downtime, due to their often remote locations.
Based on this premises, the ability to cost-effectively guarantee the reliability of such critical energy
generating physical industrial assets (PIAs) could be immensely enhanced through the development
of potentially autonomous health monitoring methodologies that reduce human intervention.

The complexity and compactness of modern day industrial rotating machines has soared
significantly over the past decade due to the advent of high power computational technologies
as well as smart design initiatives. On one hand, these smart configurations have in some instances
proven useful for reducing routine human interventions and subjectivity. On the other hand however,
the resulting close proximity of such highly dynamic components (especially rotors, bearings, electric
motors, gears, etc.) require an equally smart faults detection and diagnosis system if operational
reliability of systems is to be sustained. Among most of the popular industrial rotating machinery
health monitoring techniques, vibration analysis, in particular, has offered profound knowledge about
the characteristics of individual components that make up a typical machine train. The guiding
principle of any vibration monitoring system is that all machines offer some sort of warning prior to
failure. Adequate understanding and trending of such warnings allows for the implementation of
commensurate repair/replace actions prior to catastrophic failures.

Vibration signals from typical rotation machines is usually measured in the time domain and
subsequently analysed in time [3,4], frequency or time-frequency domains. Central to most of
the universally accepted vibration-based condition monitoring (VCM) is the frequency domain
approach especially amplitude spectrum analysis [3], due to its interpretation simplicity as well
as ease of computation. However, conventional amplitude spectra are often criticised for loss of
phase information during the magnitude squared operation that precedes its generation of diagnostic
features. This is perhaps why research efforts explored the feasibility of using approaches that possess
the capabilities of retaining both amplitude and phase information, including higher order spectra
(HOS) [5–21] and higher order coherence (HOC) [8,22–25]. While HOS and HOC components are
able to retain phase and magnitude information, their predominant applications have been centred
on individualised computation of features from distinct measurement locations. This approach often
leads to heavy data burden especially when dealing with large industrial rotating machines that are
often characterised by numerous bearings, with a knock-on effect on the downtime associated with
fault diagnosis of such critical machines.

Efforts aimed at rationalising vibration-based condition monitoring data (VCM) through sensor
reduction gave rise to the development of data fusion approaches such as coherent composite spectra
(CCS) [26,27] and poly coherent composite spectra (pCCS) [7,18]. The principles guiding each of these
approaches involve combining Fourier transformations (FT) at all measurement locations so as to
generate a single coherent composite spectrum (CCS) [7,18,26–29]. The fundamental merit of this
approach is that the single CCS provides a representation of the entire rotating machine, irrespective
of the number of measurement locations, which significantly eases machine characterisation. While
previous research endeavours on CCS have yielded very promising results, it is fair to highlight
that the characterisation of faults have been manually implemented. The current study therefore
aims to build on existing knowledge around CCS and pCCS data fusion application through two
fundamental premises—(1) exploration of the possibility of automating existing approaches by testing
its compatibility with several machine learning tools (2) incorporation of spectrum energy as a novel
feature so as to account for the overall energy content of the CCS, thereby enhancing machine state
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distinction. This paper therefore describes the computational approaches, signal processing parameters
as well as the description of experiments used for generating the analysed vibration data. Additionally,
the present study provides key observations on the compatibility of earlier developed CCS with machine
learning, through a detailed comparison of the performance of five distinct machine learning tools.

2. Theoretical Background of the Modified Faults Diagnosis Architecture

The proposed faults diagnosis framework is based on a hybrid of various techniques so as to
enable the strength(s) of one technique to compensate for the limitation(s) of others [28,29]. Figure 1
provides a flowchart of the proposed automated fault classification approach. The initial stage of the
architecture is the collection of vibration data from all bearing locations, followed by the fusion of
all such data into a single spectrum using the earlier developed CCS [7,18,26–29]. Once the CCS is
developed, the spectrum energy beneath each of the CCS harmonics is then computed and centralised,
prior to dimensionality reduction through principal component analysis (PCA). Feature sets with
pre-existing labels are then trained through suitable supervised machine learning models. For feature
sets without pre-existing labels, repeat the initial steps up until dimensionality reduction and then
project onto the same linear space as the earlier PCA. Finally, the trained model is then used for routine
fault classification. Full details of the mathematical computations are provided in the remainder of
this section.Energies 2018, 11, x FOR PEER REVIEW  8 of 20 
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Figure 1. Proposed automated fault classification approach flow chart.

2.1. Coherent Composite Spectrum (CCS)

Full details of the computational approach of CCS have been described in several earlier
studies [7,18,26–29]. However, in order for the present study to be independently comprehendible
without necessarily consulting other articles, an abridged form of CCS [26–28] computation is again
provided here. If the number of bearings on a typical industrial rotating machine is b, each of which
has a fitted vibration sensor, the measured time-series signals can be divided into ns equal-length
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segments. The power spectral density (PSD) of the signal xp from the pth bearing at the frequency fk
can be calculated as [26–28]:

Sxpxp( fk) =

∑ns
r=1

(
Xr

p( fk)Xr∗
p ( fk)

)
ns

(1)

where Xr
p( fk) is the discrete Fourier transform (DFT) of the rth segment of the signal xp, and Xr∗

p ( fk) is
its complex conjugate, for p = 1, 2, · · · , b. Similarly, the cross-power spectral density (CSD) for the
signals xp and xp+1 can be calculated as:

Sxpxp+1( fk) =

∑ns
r=1

(
Xr

p( fk)Xr∗
p+1( fk)

)
ns

(2)

The coherence of the signals xp and xp+1 for background noise suppression can be calculated as:

γ2
p(p+1)( fk) =

∣∣∣Sxpxp+1( fk)
∣∣∣2

Sxpxp( fk)Sxp+1xp+1( fk)
(3)

The coherent CSD of the signals from the pth and (p + 1)th bearings can then be defined as:

Sr
xpγ2

p(p+1)
xp+1

( fk) =
[
Xr

p( fk)γ2
p(p+1)( fk)Xr∗

p+1( fk)
]

(4)

Therefore, each of the rth segments from each signal can be fused into a single component,
Xr

CCS( fk), thus:

Xr
CCS( fk) =

√√(
Sr

x1γ
2
12x2

( fk)Sr
x2γ

2
23x3

( fk) · · · Sr
x(b−1)γ

2
(b−1)b

xb
( fk)

) 1
(b−1)

(5)

The CCS for the entire machine can then be calculated as:

SCCS( fk) =

∑ns
r=1 Xr

CCS( fk)Xr∗
CCS( fk)

ns
(6)

The SCCS( fk) is a sequence of complex numbers that allows for the computation of the single-sided
amplitude spectrum of the CCS generated from Equation (6):

ACCS( fk) =
∣∣∣∣∣ 2
N

SCCS( fk)
∣∣∣∣∣, (k = 1, 2, · · · , N/2) (7)

2.2. Feature Extraction

Earlier CCS based diagnoses have only applied maximum amplitude values of each harmonic
during classification. In the current study however, we explore the use of an entirely new
feature—spectrum energy (SE). Just as root mean square (rms) gives a representation of the energy
content of the time waveform, SE provides information about the energy content of the measured
vibration signal in the frequency domain. Considering that the CCS represents several time waveforms
becomes evident [30]. SE is particularly useful because it is a universal indicator capable of showing
changing trends in vibration data either due to the dynamic characteristics of the machine of interest
or emergence of incipient faults. For a typical ACCS( fk) computed as per Equation (7) at a frequency



Energies 2020, 13, 1394 5 of 20

fk, where fk = (k− 1)d f , k = 1, 2, · · · , N/2, N is the number of data points and d f is the frequency
resolution, the SE between the selected harmonics at intervals of d f can be defined as:

ASE( fk) =
k+l∑

i=k−l

ACCS( fi) × d f , (k = 1, 2, · · · , N/2; l = 10, 15, 20) (8)

2.3. Dimensionality Reduction

The complexity of industrial rotating machines makes typical vibration data non-linear and
highly dimensional. This dimensionality often makes diagnosis difficult, owing to the interference of
redundant data points with core information that actually indicates variability. In this study, PCA was
used to reduce data dimensionality, while still retaining the data points that aid the differentiation
of various machine states [31–33]. This is particularly useful because it helps rationalise the amount
of data that needs to be analysed, thereby reducing the amount of time required to implement the
necessary repair/replace decisions. The implementation of PCA in this study was performed in 2 stages.
The former stage involved centralising the datasets while the latter stage involved performing the
singular value decomposition (SVD) on the aforementioned centralised data.

2.3.1. Data Centralisation and Standardisation

For a real matrix A ∈ Rm×n, where m is the number of samples and n is the number of features
(dimensions), PCA requires the centralisation of each column. In the matrix, A ∈ Rm×n, ai j represents
typical elements of the matrix, while xi j on the other hand is a corresponding element of the centralised
matrix X.

To centralise the matrix A, the element xi j of the centralised matrix X is defined as:

xi j = ai j −A j (9)

where A j is the sample mean of the elements of the jth column of matrix A, which can be computed as:

A j =
1
m

m∑
i=1

ai j (10)

It is vital to note that the centralised data is of a column-wise zero mean form, which is essential
for the subsequent computations.

To standardise the matrix A, the element xi j of the standardised matrix X is defined as:

xi j =

(
ai j −A j

)
S j

(11)

where S j is the sample standard deviation of the jth column of A, which is mathematically represented as:

S j =

√∑m
i=1

(
ai j −A j

)2

m− 1
(12)

The standardised data is column-wise mean zero with standard deviation that equals unity, while
still retaining the shape properties of the original data.

2.3.2. Singular Value Decomposition (SVD)

SVD here was used to perform PCA on the centralised/standardised data, where the SVD of
matrix X is defined as:

X = UΣVT (13)
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where the matrix Σ ∈ Rm×n is a rectangular diagonal matrix of positive numbers σi, called the singular
values of X. The columns of the matrix U ∈ Rm×m are orthogonal unit vectors, and referred to as the
left singular vectors of X. Similarly, the columns of the matrix V ∈ Rn×n are orthogonal unit vectors
and are referred to as the right singular vectors of X.

The covariance matrix C ∈ Rn×n can thus be computed as:

C =
1

m− 1
XTX =

1
m− 1

(
UΣVT

)T
UΣVT =

1
m− 1

VΣTΣVT =
1

m− 1
VΣ̂

2VT (14)

where UTU = E, and Σ̂
2 is defined as:

Σ̂
2
= ΣTΣ =


σ2

1
σ2

2
. . .

σ2
n

 (15)

By comparing this to the factorisation of the eigenvectors of the covariance matrix C, it can be
seen that the right singular vectors V of X are in fact equivalent to the eigenvectors of C. A relationship
between the eigenvalues λi of C and the singular values σi of X can also be derived thus:

λi =
σ2

i
m− 1

(16)

The SVD therefore enables the calculation of the score matrix (result) T ∈ Rm×n for a PCA, which
can be mathematically represented as:

T = XV = UΣVTV = UΣ (17)

By considering only the first L largest singular values and their corresponding singular vectors,
the truncated score matrix TL ∈ Rm×L can be defined as:

TL = ULΣL = XVL (18)

where UL ∈ Rm×L, ΣL ∈ RL×L, and VL ∈ Rn×L.

2.4. Supervised Learning

Supervised learning is a specific machine learning category, whereby an algorithm can either
learn a pattern or build a model (function) using labelled training data, and subsequently infer new
instances based on such earlier learned patterns or models [33–39]. Solving a specific supervised
learning problem requires the following various steps including; data type determination, training
dataset collection, input features determination, learning algorithm determination, adjustment of
the learning algorithm parameters and learning accuracy evaluation. Considering that this study
represents the first application of machine learning to CCS-based faults diagnosis, the authors found
it useful to explore a wide range of machine learning algorithms [40,41], so as to compare their
performance under each of the considered scenarios and then select the most appropriate with regards
to ease of deployment and accuracy. Based on this premise, the five different classes of supervised
learning algorithms considered for this study are k-Nearest Neighbours (k-NN), Naïve Bayes classifier,
linear support vector machine (SVM), Gaussian SVM, artificial neural networks (ANN) and K-fold
cross-validation. The justification for selecting these particular learning techniques is mainly their
reasonably straightforward computational approach and verifiable success with non-linear datasets
including vibration data.
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2.4.1. k-Nearest Neighbours (k-NN)

k-NN is an instance-based learning algorithm that assumes that instances in a dataset are in
the vicinity of other instances, in feature space, with similar properties [40]. The classification of an
object is determined by a “majority vote” of its neighbours, and each object is assigned to the most
common class of its k nearest neighbours, where k is minimally small integer. In the case k = 1, the
class of the object is solely determined by its nearest neighbour. If we define a set of training data
with labels, T =

{
(x1, y1), (x2, y2), · · · , (xN, yN)

}
, where xi is the feature vector of each instance and

yi = c1, c2, · · · , cK, i = 1, 2, · · · , N is the corresponding label. For a test sample (x, y), the k instances
nearest to x are considered by the k-NN algorithm based on a given distance measure. The set of
k nearest neighbours of x is written as Nk(x). The label of test sample x can thus be decided by the
following decision function:

y = arg max
c j

∑
xi∈Nk(x)

I
(
yi = c j

)
, i = 1, 2, · · · , N; j = 1, 2, · · · , K (19)

where I is the indicator function.

2.4.2. Naïve Bayes Classifier

The Naïve Bayes classifier is a probabilistic classifier based on Bayes’ Theorem, under the
assumption of conditional independence between features [40,42]. For the same training set
T =

{
(x1, y1), (x2, y2), · · · , (xN, yN)

}
with labels yi = c1, c2, · · · , cK, i = 1, 2, · · · , N, the number of the

possible values for xl (l = 1, 2, · · · , n) is given by Sl and the number of the possible values for Y
is given by K. Firstly, the assumption of conditional independence implies that the joint probability
distribution P(X, Y) of the input and output can be calculated by the Naive Bayes classifier, using the
conditional probability distribution displayed in Equation (20):

P
(
X = x

∣∣∣Y = c j
)
= P

(
X(1) = x(1), · · · , X(n) = x(n)

∣∣∣Y = c j
)
=

n∏
l=1

P
(
X(l) = x(l)

)
, j = 1, 2, · · · , K (20)

Secondly, based on the learned model and by applying Bayes’ Theorem, the output label y with
the maximum posterior probability can be computed given any input x as:

P
(
Y = c j

∣∣∣X = x
)
=

P
(
X = x

∣∣∣Y = c j
)
P
(
Y = c j

)
∑

j P
(
X = x

∣∣∣Y = c j
)
P
(
Y = c j

) (21)

y = arg max
c j

∑
xi∈Nk(x)

P
(
Y = c j

)∏
l

P
(
X(l) = x(l)

∣∣∣Y = c j
)

(22)

2.4.3. Support Vector Machine (SVM)

SVM constructs a hyperplane or a set of hyperplanes, in high or infinite-dimensional space, which
can be used for classification, regression or other tasks [34,39]. The generalisation error of this classifier
can be best reduced when the classification boundary is far away from the nearest training data points.
The SVM can be viewed as a constrained quadratic optimisation problem, which can be solved using
the method of structural risk minimization [42]. The SVM constructs an optimal separation hyperplane
f (x) = 0 between datasets, given by:

y = f (x) = WTx + b =
N∑

i=1

Wixi + b (23)

where W is an N-dimensional vector and b is a scalar.
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2.4.4. Artificial Neural Network (ANN)

ANNs are mathematical or computational models that imitate the structure and function of a
biological neural network such an animal’s central nervous system, particularly the brain. The networks
can be used to estimate or approximate any non-linear function. These networks have the ability to
“learn” and summarise data; through experimental application to known data, which implies that
ANNs are able to reasonably act as automatic recognition systems by comparing local situations
determined by the complexity of learning and solving practical problems under different scenarios.
The simplest and most widespread form of an ANN consists of an input layer, a hidden layer, and an
output layer. Generally speaking, an ANN is composed of multiple layers of “neurons”. Each layer of
neurons has an input and output, where the input is the output from the previous layer. Each layer,
Layer(i), is composed of Ni (where Ni signifies N on the ith layer), and each layer of neurons on Ni is
composed of network neurons [34,36,40]. The collateral neuron takes the output of the corresponding
neuron on Ni−1 as its input. The connections between neurons are called synapses and each synapse
is assigned a weight, which determines the contribution of the previous neuron on the subsequent
ones [34,36,40]. The output y can thus be written as:

y = f
(
WTx

)
= f

 N∑
i=1

Wixi + b

 (24)

where f is the activation function, W are the weights and b is the scalar bias term. The weights W
are assigned through an iterative training process. The transfer function adopted here is the sigmoid
symmetric transfer function. Since the ANN type is backward propagation, scaled conjugate gradient
(SCG) was used as learning algorithm as well as for overfitting avoidance.

2.4.5. K-Fold Cross-Validation

Cross-validation is a model validation technique that enables a machine learning algorithm’s
prediction accuracy to be evaluated in practice [41]. In order to perform K-fold cross-validation,
the original dataset is split randomly into K subsets of roughly equal size [41]. Of these K subsets,
a single subset is retained to be used as validation data, while the other K − 1 subsets are used as
training data. Cross-validation is then repeated K times, with each subset being used exactly once for
validation. These K results are then averaged to obtain a single estimation. The most common value
used is K = 10.

3. Experimental Organisation and Data Source

In order to foster a substantial acceptability of any newly proposed technique, an experimental
validation is often required, and this is commonly achieved through the aid of an experimental test
rig. A representative test rig may be described as that which has been adequately set-up to correctly
simulate the investigated faults in the research. Typical industrial rotating machines are complex and
multi-components (e.g., rotors, bearings, gears, couplings, electric motors, blades, etc.) structures that
often possess multiple failure modes [43]. As it would be unrealistic to examine all faults classes at a
single instance, this study only considers some of the most common rotor-related (i.e., low frequency)
faults. The remainder of the section presents further details of various components that comprise the
test rig as well as the experimental simulation of the studied rotating machine conditions.

3.1. The Rig

The experimental rig is primarily made up of two mild steel shafts which are connected by a
rigid coupling. The longer shaft has a length of 1000 mm and a diameter of 20 mm, while the shorter
has a length of 500 mm and a diameter of 20 mm. The longer shaft end of the entire rotor assembly
was then coupled to a 0.75 kW electric motor via a flexible coupling. In addition to connecting the
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rig components, the flexible coupling on the motor end of the rig assembly also serves the function
of preventing the transmission of motor-related faults signals. In order to ensure rig balance and
acceptable rotor deflections, three similarly machined bright mild steel discs with dimensions of
125 mm × 20 mm × 15 mm (i.e., outer diameter × inner diameter × thickness) were mounted at equal
distances on each rotor. The two balance discs mounted on the 1000 mm shaft were located at 300 mm
and 190 mm from the flexible coupling and bearing 2, respectively. The third balance disc was placed
at mid-span of the 500 mm shaft (i.e., 210 mm from bearings 3 and 4, respectively). The shaft assembly
was then supported by 4 SKF-type flange-mounted antifriction ball bearings. Each bearing was secured
to its pedestal by four 6 mm-thick bright mild steel threaded bars. Vibration data from each bearing is
collected via a 100 mV/g accelerometer mounted at 45 degrees. The rationale behind the diagonally
mounted accelerometer is sensor reduction as well as the expectation that both vertical and horizontal
responses can be reasonably represented. Figure 2 shows the experimental rig assembly and its
core components.
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3.2. Dynamic Characteristics

Experimental modal analysis is a widely acknowledged design testing and qualification tool
across various engineering disciplines [44]. Adequate knowledge about the modal properties of
a structure immensely paves way for design upgrades, faults diagnosis and remaining useful life
enhancement [45,46]. Based on this premise, the impact-response method of experimental modal
analysis was also used here to establish an understanding of the dynamic behaviours of the rig
as well as validate the origins of subsequent faults diagnostic [47–50] features (especially spectral
peaks). During the experimental modal testing, the complete rig assembly was excited by an ICP-PCB
type instrumented hammer and the corresponding vibration responses were measured using the
accelerometers. The first few natural frequencies (by appearance) of the experimental rig assembly
were determined to be 47 Hz, 55.54 Hz, 57.98 Hz and 127 Hz. The use of threaded bars to connect
bearings to their pedestal provided comparable flexibilities in both vertical and horizontal directions.
Hence the natural frequencies in both directions were very similar.

3.3. Simulation of Faults

A total of five (i.e., baseline relatively healthy and four faults cases as shown in Figure 3) commonly
encountered rotor-related cases were experimentally simulated, so as to cover a reasonably wide range
of practical operating conditions of typical industrial rotating machines. It was impossible to achieve
a perfect alignment while setting up the baseline case, as often is the situation in real-life scenarios.
A summarised description of the mode of experimental simulation for each case, the location of the
fault on the rig assembly and the severities are provided in Table 1 for simplification. Considering
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that several modern-day industrial rotating machines operate at multiple speeds, vibration data were
collected at 3 distinct speeds; 1200 rpm (20 Hz), 1800 rpm (30 Hz) and 2400 rpm (40 Hz) for each case.
This approach provides the opportunity to extensively understand the dynamics of the studied class of
machines under different operating conditions. Under each experimental scenario (i.e., under each case
and each machine speed), vibration data were obtained at a sampling rate of 10 kHz over a timespan
of approximately 120 seconds.
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Table 1. Description of experimentally simulated cases.

Case Description Abbreviation Severity and Location

1 Healthy with residual
misalignment Healthy The reference case likely contains some residual misalignment at

the couplings, due to manufacturing and assembly imperfections

2 Rotor bow Bow 3.4 mm run-out was created at the centre of the 1000 mm shaft.

3 Rotor misalignment Mlign 0.8 mm mild steel shim beneath RHS of bearing 1 foundation

4 Bearing looseness Loose Loosening some of the bearing 3 threaded bar nuts

5 Rotor rub Rub Partial rub using two Perspex blades (TDC and BDC of 1000 mm
shaft), 275 mm from bearing 1

4. Data Arrangement and Signal Processing Parameters

In this study, vibration data were collected under a total of 15 experimental scenarios. A scenario
here represents a specific machine condition (e.g., rotor misalignment) at a specific machine speed
(e.g., 40 Hz). Prior to applying any of the tools within the proposed hybrid framework, it was crucial
to ensure that the measured vibration data under individual scenarios exhibit comparable signal
processing characteristics such as number of data points, frequency resolution, sampling frequency, etc.
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4.1. Data Arrangement for CCS Data Fusion

Data preparation for CCS commences with averaging. In the present work, an “average” refers to
single complete CCS calculation, which is then converted into a sample with a number of features,
for training, validating, or classification in the subsequent stage for machine learning classification.
A two-stage overlap method was used for generating enough averages from the raw data (the higher
the number of averages, the higher the similarities between the reconstructed and original signals).
As shown in Figure 4, the initial stage of data preparation involves splitting the raw data into segments
of 20,000 data points with an overlap of 80%. The next stage is to calculate the ith CCS average of
the [2(i− 1) + 1] to [2(i− 1) + 10]th segments from each bearing pedestal using Hanning window.
The sampling rate used is FS = 10 kHz and the frequency resolution is d f = 0.5 Hz. The number of
raw data points, as well as the number of averages generated for each case is listed in Table 2.
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Table 2. The number of raw data points and averages in each case.

Speed 20Hz 30Hz 40Hz

Case Code Raw Data Averages Raw Data Averages Raw Data Averages

Healthy 1,272,000 153 1,279,000 153 1,110,000 132

Bow 1,266,000 152 1,271,000 152 1,266,000 152

Loose 1,058,000 126 1,248,000 150 1,261,000 151

Mlign 996,000 118 927,000 109 928,000 110

Rub 1,259,000 151 1,271,000 152 994,000 118

Total - 700 - 716 - 663

After the data preparation, Equations (1)–(7) were then use to generate the typical CCS shown
in Figure 5. Each spectrum represents a specific case (i.e., Healthy, Bow, Loose, Mlign and Rub) at
2400 rpm (40 Hz). It is useful to reiterate that each CCS is a fusion of all vibration data from all
4 bearings, thereby providing a complete dynamics of the entire machine. During the faults diagnosis,
only the first five harmonic components were considered, as it was adjudged that these would contain
sufficient information to distinguish faults at these frequencies. Based on the types and magnitudes of
the harmonics present alone, the Bow case exhibits much higher amplitudes at all harmonics than the
other cases. In the Rub case however, the patterns of harmonics amplitudes can be described as the
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reverse of the Bow. The higher harmonics (especially 3X, 4X and 5X) had the highest amplitudes as
opposed to Bow which had a far superior 1X amplitude. The Loose and Bow cases also displayed
similar 1X and 4X harmonic patterns. Unlike in the other cases whereby harmonic patterns sometimes
appeared similar but amplitudes may differ and vice versa, Healthy and Mlign cases were immensely
similar and almost undistinguishable on all counts. This phenomenon was anticipated because of the
low severity of misalignment in Mlign case coupled with the inherent residual misalignment in the
Healthy case. In order to enhance the ability to distinguish faults at all speeds, SE feature was applied
here based on Equation (8). The computed SEs for the harmonics were then used as inputs to the
PCA stage.
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4.2. Data Arrangement for Dimensionality Reduction

The SE of the CCS allows for the extraction of two features. Firstly the SE of 1X, 2X, 3X, 4X and 5X;
and secondly the normalised harmonics is basically their ratios (e.g., 2X/1X, 3X/1X, 4X/1X and 5X/1X).
By centralising and standardising each of these features according to Equations (9)–(12), 4 input data
types (i.e., centralised SE, centralised ratio, standardised SE and standardised ratio), were generated
for the PCA. The PCA converts these original features into the same number of principal components
(PCs). The percentage of explained variance of each component indicates how much information
the resultant PC holds. Typically, the first few PCs hold the vast majority of information. Based on
this premise, the remaining PCs can, therefore, be discarded to reduce dimensionality of the dataset
without necessarily compromising diagnosis quality. Table 3 provides a list of the percentages of
explained variance for each PC for the different features at all speeds. Additionally, it is apparent that
the combination of PCs 1 and 2 account for more than 3

4 of the explained variance for each feature at
all speeds.
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Table 3. Percentage of explained variance by each PC.

Speed Feature Extracted PC1 PC2 PC3 PC4 PC5 PC 1&2

20 Hz

Centralised SE 98.8046 0.9327 0.1915 0.0697 0.0015 99.7373

Centralised ratio 83.4228 11.3585 4.6620 0.5567 N/A 94.7813

Standardised SE 47.3572 35.6890 13.2328 3.3719 0.3492 83.0462

Standardised ratio 45.8536 26.7937 22.3915 4.9611 N/A 72.6473

30 Hz

Centralised SE 80.2678 14.5710 4.8346 0.3196 0.0069 94.8389

Centralised ratio 86.4172 10.9302 2.3409 0.3117 N/A 97.3474

Standardised SE 50.2902 32.7920 14.7593 2.1318 0.0267 83.0822

Standardised ratio 57.7854 24.8192 15.9871 1.4083 N/A 82.6047

40 Hz

Centralised SE 85.3494 13.2058 0.7743 0.6089 0.0616 98.5552

Centralised ratio 97.3550 2.3694 0.2433 0.0323 N/A 99.7244

Standardised SE 55.1189 31.6004 10.7211 1.8511 0.7085 86.7193

Standardised ratio 97.5927 1.5837 0.6559 0.1677 N/A 99.1764

Figure 6 compares the PCA results of all four features at 40Hz so as to examine the stability of SE
with PCA alone, so as to justify the need for more advanced machine learning approaches. Of all the
speeds considered, only 40 Hz offered reasonable separation for all cases with SE as a feature. This
was perhaps due to the enhanced amplitude of vibration at this speed due to its closeness to the first
natural frequency. Despite the reasonably good performance of SE at 40 Hz, the use of PCA alone is
limited because it is unable to effectively integrate all speeds into a single map. This is due to disparity
in amplitude of vibration at different speeds. Hence multiple charts would be required for each speed.Energies 2018, 11, x FOR PEER REVIEW  13 of 20 
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5. Data Analysis and Discussion of Results

The results will be initially examined in the context of the classification accuracy of the various
machine learning techniques with regards to all features at all machine speeds. This comparison would
give an indication of the most optimised technique-feature combinations under different scenarios of
speeds and case. The remainder of the results analysis entails the assessment of visualisation strength
of the techniques.

5.1. Accuracy Comparison

As previously highlighted, earlier combinations of CCS and PCA for rotor-related faults
classification yielded encouraging outcomes, all such efforts were wholly based on manual human
observations of perceived patterns of new unlabelled samples. The dominance of human intervention
was adjudged a potential weak link especially from the viewpoint of repeatability, which could
eventually jeopardise the quality diagnosis when dealing with critical industrial rotating machines.
Therefore, implementing an approach that is capable of learning historical patterns and then using
such knowledge to perform future classifications would highly enhance reliability. By using PCs 1 and
2 with labels as input data for training and validating the machine learning classifiers as well as K-fold
cross-validation method (i.e., K = 10), Table 4 displays a comparison of their accuracies for all features.

Table 4. Accuracy of different machine learning classifiers (%).

Speed Feature Extracted k-NN k = 5 Naïve Bayes Linear SVM Gaussian SVM ANN 2-10-5 ANN 2-20-5

20 Hz

Centralised SE 98.14 98.29 98.4 98.1 97.7 97.9

Centralised Ratio 98.71 98.57 98.9 99.3 99.0 99.3

Standardised SE 93.43 85.43 94.0 94.4 93.3 94.0

Standardised Ratio 88.57 84.71 88.0 88.7 89.7 90.1

30 Hz

Centralised SE 94.13 94.41 96.1 94.7 94.1 95.9

Centralised Ratio 96.79 96.51 97.9 98.6 83.5 83.9

Standardised SE 99.16 98.46 98.9 99.4 98.3 98.6

Standardised Ratio 100 100 100 100 100 100

40 Hz

Centralised SE 98.19 97.89 98.0 98.5 96.8 98.0

Centralised Ratio 100 95.17 99.4 99.7 87.9 98.0

Standardised SE 100 100 100 100 100 100

Standardised Ratio 100 100 100 100 99.8 96.2

The results show that feature type has a significant effect on classification accuracy. The features
which demonstrated the best performance at the PCA stage (i.e., centralised ratio at 20 Hz, standardised
ratio at 30 Hz, and standardised SE at 40 Hz) also represent the best features for automatic fault
classification for all the tested machine learning classifiers.

5.2. Visualised Decision Rules

In order to further enhance understanding of the classification mechanisms, the 2D decision
rules presented in Figures 7–9 were developed. The trained classifiers divide the relevant regions
of the PC1-PC2 plane into different sections. Each section of the region corresponds to individual
faults. Furthermore, new unlabelled data points will then be assigned to sections that exhibit
similar characteristics.

It is important to highlight that, under all three machine speeds examined, instances of severe
over-fitting phenomena occurred for both Naïve Bayes and Gaussian SVM classifiers. The sections
corresponding to Healthy and Mlign cases are quite minimal which could lead to incorrect classification
of future data points. While a similar phenomenon was also evident for linear SVM under the Healthy
case at 30 Hz, it demonstrated good outcomes at 20 Hz and 40 Hz speeds. K-NN and the two ANN
classifiers displayed very good performance at all speeds. Judging by all-round performance, ANN
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offered the best results under all scenarios. The ANN architecture adopted here was based on a
two-layered backward propagation (BP) network that applied sigmoid hidden and soft max output
neurons. This architecture has the capability to classify vectors arbitrarily, provided adequate neurons
exist within its hidden layer. The 2-10-5 and 2-20-5 configurations visible in Table 4 respectively
represent the input number of neurons for the hidden layer output whereby the two inputs represent
PC1 and PC2. The datasets was divided into 70 (for training), 15 (for validation) and 15 (for testing).Energies 2018, 11, x FOR PEER REVIEW  15 of 20 
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6. Conclusions and Future Work

Industrial rotating machines faults detection and classification using vibration-based approaches
is widely applied across various industries over several decades. Despite the wealth of knowledge
attributable to these classes of approaches, a significant amount of time is still attributable to their
field-based implementation, which consequently impacts overall downtime and organisational profit
margins. This is perhaps why recent research efforts have immensely focussed on the development
of techniques that are capable of rationalising faults diagnosis data through data fusion. Such
initiatives include the development of a composite spectrum (CCS) approach that uses a single
spectrum to describe entire rotating machine dynamics, irrespective of the number of measurement
locations. While initial findings from this approach yielded very encouraging outcomes, there still
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exist significant opportunities for improvement especially with regard to minimising or eliminating
human intervention/subjectivity so as to enhance repeatability.

Building upon the earlier CCS multi-sensor data fusion technique, the current study presents
an automatic hybrid approach that uses spectrum energy (SE) as its feature. The proficiency of the
new SE feature with various machine learning classifiers with regards to different machine scenarios
of speed and conditions is presented. This multi-features/multi-classifiers/multi-scenarios approach
allows for adequate performance comparison. It was observed that classifiers, such as Naïve Bayes
and Gaussian support vector machine (SVM), displayed instances of severe overfitting, owing to the
minimal nature of the sections corresponding to Healthy and Mlign cases which could lead to incorrect
classification of future data points. While this situation was also apparent for linear SVM under
the Healthy case at 30 Hz, its performance at other speeds was quite good. While K-NN classifiers
displayed reasonably good performance at all speeds, ANN offered an all-round best set of results
under all scenarios. The findings recorded in the current study demonstrate immense opportunity for
automating data fusion-based faults classification of industrial rotating machines. While the current
study only examined rotor-related faults, future studies are planned towards testing the presented
approach on other classes of faults especially high frequency faults associated with bearings and gears.
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