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Abstract: The electric rudder system (ERS) is the executive mechanism of the flight control system,
which can make the missile complete the route correction according to the control command.
The performance and quality of the ERS directly determine the dynamic quality of the flight control
system. However, the transient and static characteristic of ERS is affected by the uncertainty of
physical parameters caused by nonlinear factors. Therefore, the control strategy based on genetic
algorithm (GA) identification method and finite-time rudder control (FTRC) theory is studied to
improve the control accuracy and speed of the system. Differently from the existing methods, in this
method, the difficulty of parameter uncertainty in the controller design is solved based on the ERS
mathematical model parameter identification strategy. Besides, in this way, the performance of the
FTRC controller was verified by cosimulation experiments based on automatic dynamic analysis
of mechanical systems (ADAMS) (MSC software, Los Angeles, CA, USA) and matrix laboratory
(MATLAB)/Simulink (MathWorks, Natick, MA, USA). In addition, the advantages of the proposed
method are verified by comparing with the existing strategy results on the rudder test platform,
indicating that the control accuracy is improved by 70% and the steady-state error is reduced by at
least 50%.

Keywords: electric rudder system; finite time rudder control; genetic algorithm;
parameter identification

1. Introduction

The electric rudder system (ERS) is the position servo mechanism of high-precision control systems
such as aircraft, ship, and missile, whose dynamic and static performance directly determines the
accuracy and rapidity of the controlled object [1]. Compared with hydraulic rudders and pneumatic
rudders, electric rudders are simple, reliable, low-cost, and high-precision. Hence, obtaining a
high-efficiency ERS controller is a very practical and meaningful study. The structure of an ERS is
shown in Figure 1, which is mainly composed of a motor, a screw, a reduction, and a rocker arm.
In order to overcome the interference of different nonlinear factors in the design of the controller based
on the ERS parameter model, research has made a lot of efforts from two aspects.
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Figure 1. Schematic diagram of an electric rudder system.

On the one hand, the accuracy of the actual physical parameters of the ERS is ensured by using
identification techniques. In the past, optimization methods for parameter identification were generally
divided into classic algorithms and intelligent algorithms. The least-square method in the classical
algorithm is the most widely used identification method. Its optimization principle is to continuously
optimize unknown parameters by minimizing the sum of the squared errors of the identification output
and the actual output [2,3]. One such method is proposed in [4] for parameter identification in ERS
models. However, classical optimization algorithms often face the problems of local optimization and
slow convergence speed. Compared with traditional algorithms, intelligent optimization algorithms
have higher efficiency and reliability in dealing with practical complex and changeable optimization
problems [5–7]. Intelligent optimization algorithms are usually inspired by physical phenomena of
real intelligent biology, and genetic algorithm is widely used because of its simple process, strong
scalability, and fast search ability unrelated to the problem field. In [8], the genetic algorithm is applied
to the ERS parameter identification experiment, and the improved algorithm is proved to have good
optimization effect by comparing with the classical optimization algorithm such as the least square
method. Therefore, the genetic algorithm (GA) has the advantage of not needing to know the prior
conditions such as the system structure, so it is suitable for parameter identification of ERS.

On the other hand, the influence of uncertain factors can be solved by designing special control
methods. In [9], the classical proportional integral differential (PID) control method is studied, and the
experimental results show the superiority of the algorithm control performance. However, when the
ERS encounters various parameter changes and nonlinearities during dynamic high-speed motion,
it cannot ensure acceptable tracking performance. Robust sliding mode control is also applied to
controller design due to its strong robustness to system uncertainties [10,11]. For example, in [10],
a robust adaptive sliding mode controller is proposed for ERS, which uses the ability of adaptive online
estimation to estimate the boundary of uncertain parameters and the adjustable gain of the sliding
mode controller. Nevertheless, the parameters of the process update are greatly affected when the
nonlinearity of the system is large. Fuzzy control does not require the accurate mathematical model of
the controlled object and is applied to the design of the ERS controller [12], which achieves a good
tracking performance of the system. However, how to obtain fuzzy rules and membership functions is
completely based on experience. In addition, adaptive technology is also widely used in the design of
controllers due to the low requirements for the precise model of the controlled object [13,14]. In [15],
because the process parameters are adaptively updated and applied to the ERS system, the initial
parameter requirements of the controller design are not very demanding. However, if there is a large
parameter uncertainty, it will lead to inaccurate system identification and affect system performance.

The analysis of the above control methods shows that the exponential convergence form based on
Lyapunov asymptotic stability is the fastest. However, these control analyses are based on Lipschitz
continuous infinite stable control methods. Fortunately, finite-time control has been widely used in
control theory and applied research due to its advantages in convergence speed and convergence
accuracy. In reference [16], the finite-time theoretical controller of linear parameter time-varying system
and linear time-delay system is designed, and the effectiveness of the method is proved by the servo
mechanism experiment. In [17], the theoretical idea of combining adaptive and finite-time theory is
proposed. The advantage of fast convergence in finite time is used to improve the convergence speed
of adaptive estimation, and the ability of the system to adapt to change is further improved. As far as
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we know, the method of combining the identification technology with the finite-time control theory to
better design the controller is scarce but very valuable. In [18], the finite-time servo control technology
and particle swarm optimization (PSO) algorithm identification technology were combined to design
a more accurate and effective ERS controller. The experimental results show the effectiveness of the
finite-time control method based on the identification model.

Inspired by parameter identification and special control methods to solve uncertain parameters in
ERS controller design, in this paper, firstly, ERS parameter identification algorithm uses linear ordering
to perform selection operations, nonlinear uniform crossover operators, Gaussian mutation operators,
and adaptive crossover and mutation probabilities. Then, the finite-time control theory is studied and
its stability is proved. Finally, the finite-time controller is designed by applying the improved genetic
algorithm (IGA) to the system model parameter identification. This paper is organized as follows.
The dynamic characteristics model of ERS is described in Section 2 for subsequent model parameter
identification and controller design. In Section 3, an improved genetic algorithm and a finite-time
control strategy are introduced. Then, the simulation experiments are compared with the existing
control strategies to verify the effectiveness of the finite-time rudder control (FTRC) strategy based on
IGA identification in Section 4. In Section 5, the ERS experimental platform is introduced, and the
effectiveness of identification strategy and control method is verified by experiments. Finally, Section 6
gives the conclusion of the study.

2. Model of Electric Rudder System

2.1. System Description

Figure 2 shows the structure of the ERS and the principle of information transmission process.
Its structure includes controller, rudder, motor, gearbox, feedback potentiometer, and return spring
rudder surface. The function of the ERS is to control the attitude and trajectory by driving the rudder
surface after receiving the command signal from the control system. Its output is a closed-loop control
system of displacement (angle), velocity, or acceleration, and its role is to enable the output to accurately
track the input. The controller is a unit that performs arithmetic processing on the servo control system
and converts the received control signals into corresponding driving currents to control the motor.
The servo motor receives the controller’s electrical signal and converts it into the corresponding speed
and torque output. Meanwhile, the position information feedbacks to the drive controller through
the encoder, so that the system forms a closed loop. Therefore, with the widespread application of
servo control systems and the rapid development of related technologies, it is of great significance to
perform efficient and reliable control of servo control systems.
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Considering the nonlinear characteristics such as friction and torque connection between the
motor and the rudder surface, the dynamic model of the ERS is described by the equation of motion of
the linear DC motor and the rudder surface. System dynamics can be described as:

L
·

ia = u−Ria −Kewm

Jm
·

wm = Kt
u−Kewm

R − Bmwm − Tm

Jt
·

w = Tl − Btw− T f (w) − Tsp(θ) − TL

(1)

where u is the control voltage signal, ia is the armature current, wm is the motor angular velocity, and θ
and w are the output angle and angular velocity of the ERS, respectively. R and L are the resistance and
inductance, respectively. Ke and Kt are the back electromotive force constant and the torque constant,
respectively. Jm, Bm and Jt, Bt are the moment inertia and viscous damping constant of the motor and
rudder axle, respectively. TL is the load torque, and Tsp and Tf are return spring torque and friction
torque, respectively, as follows:

T f = Fcsgn(w) (2)

Tsp(θ) =


TLH + ks(θ− θ0), θ0 < θ < θmax

−TLH − ks(θ0 − θ), θmin < θ < θ0

TLHsgn(θ− θ0) + ks(θ− θ0), θmin < θ < θmax

(3)

where θ0 is the initial angle of the ERS, TLH and ks are the offset and gain, respectively, and Tm and Tl
are the input and the output torque of the gearbox, respectively. The backlash nonlinearity is usually
described by

Tl(t) =


n(Tm − δ),

·

Tm > 0 and Tl(t) = n(Tm(t) − δ)

n(Tm + δ),
·

Tm < 0 and Tl(t) = n(Tm(t) + δ)

Tl(t−), otherwise

(4)

where n is the gear ratio, δ is the backlash distance, and Tl(t_) means that no change occurs in Tl(t).
When the armature inductance L is very small, the armature hysteresis effect is ignored. Therefore, in
the controller design, the equivalent second-order system state space of the ERS dynamic equation is
as follows: 

·

θ = w

J
·

w = −
(
B + n2KtKe

R

)
w + nKt

R u− Fcsgn(w)

−ks(θ− θ0) − TLHsgn(θ− θ0)

(5)

where J = Jt + n2Jm and B = Bt + n2Bm are the equivalent total inertia and viscous damping constant,
respectively. In actual work, the physical parameters L, R, ks, TLH, Fc, J, B, Kt, Ke, and n are greatly
affected by nonlinear factors. Further defining a1 = ks/J, a2 = (BR + n2KtKe)/JR, b = nKt/JR,
c1 = TLH/J, c2 = Fc/J turns the control-oriented model (5) into the following form:

·

θm = wm
·

θ = w
·

w = −a1(θ− θ0) − a2w + bKewm

−c1sgn(θ− θ0) − c2sgn(w)

(6)

Therefore, in order not to be affected by nonlinear factors, the research direction is usually
from two aspects: system parameter identification and special control method. Since the armature
inductance value L is small, the armature current dynamics ia in Equation (1) can be neglected, so it can
be considered as u = Kewm. Kewm is the back electromotive force (EMF) generated by the permanent
magnet in the armature of the motor. Note that the use of an integrator to obtain zero steady-state error
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is applicable to a constant reference signal. According to the internal model principle, the tracking
error integral is extended to the state variable, and the control-oriented system model is described as:

·
x1 = x2
·
x2 = x3
·
x3 =

··

θr + a1(θr − x2) + a2

(
·

θr − x3

)
− a3 − bu

+c1sgn(θ− θ0) + c2sgn(w)

(7)

where x1 =
∫
(θr − θ)dt, x2 = θr −θ, x3 =

·
x2 =

·

θr −w,θr is the reference input, a1 = ks
J , a2 = BR+n2KtKe

JR ,

a3 = a1θ0, b = nKt
JR , c1 = TLH

J , c2 = Fc
J , J = n2 Jm + Jt, B = n2Bm + Bt.

2.2. Fundamental Lemma

The related lemma of finite-time control is introduced below to pave the way for the theoretical
research of finite time.

Lemma 1 [19]. For any real number xi, i = 1, . . . , n, x, y and 0 < q ≤ 1. The following inequality holds

(|x1|+ · · ·+ |xn|)
q
≤ |x1|

q + · · ·+ |xn|
q (8)

when 0 < q = q1/q2 ≤ 1. The following inequality holds∣∣∣xq
− yq

∣∣∣ ≤ 21−q
∣∣∣x− y

∣∣∣q (9)

where q1 and q2 are odd integers.

Lemma 2 [19]. For any real numbers c, d > 0 and real-valued function γ(x, y) > 0

|x|c
∣∣∣y∣∣∣d ≤ cγ(x, y)|x|c+d

c + d
+

dγ−c/d(x, y)
∣∣∣y∣∣∣c+d

c + d
(10)

Lemma 3 [19]. Assume the following non-Lipschitz continuous system

·
x = f (x), f (0) = 0, x ∈ Rn (11)

Suppose there exists a continuous function V: U→ R such that the following conditions hold:

(1) V: U→ R .
(2) There exist real numbers c > 0, a∈(0,1) and an open neighborhood U0 ⊂ U containing the origin,

so that the following conditions are true

·

V + cVa(x) ≤ 0, x ∈ U0\{0} (12)

For system (11), it is finite-time stable if it is Lyapunov stable in neighborhood U ⊂ U0, and its
state can converge to equilibrium point x = 0 within a finite time. A more precise description is that
if there is a function T(x0): U\{0}→(0,∞), so that for ∀x0 ∈ U ⊂ U0, the system is decoded as x(t, x0).
For x(t, x0)∈U\{0} and limt→

_
T(x0)

x(t, x0) = 0, when t∈[0, T(x0)], for t > T(x0), there is x(t, x0) = 0, then
the system is stable for local finite time. On the basis of this, if U = U0 = Rn, the system is global
finite-time stable.
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3. Strategy Based on GA Identification

3.1. GA-Based Parameter Identification

Genetic algorithm (GA) is an intelligent optimization algorithm based on the principles of natural
selection and genetics. It is an efficient optimization method that seeks the global optimal solution
without any initialization information [20]. In GA, each individual represents a separate solution.
By ranking the fitness value of each solution to determine the quality of each iteration optimization.
We can find the best solution by simulating the crossover and mutation of organisms in nature.
The identification diagram is shown in Figure 3. The fitness function uses the integral square error
(ISE) criterion of the following formula:

FISE =

∫
(θa − θi)

2
dt (13)

where θa refers to the output angle of the ERS after responding to the control command, that is,
the actual output angle collected by the test system. θi refers to the output angle after inputting the
same control signal to the identification model.
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3.2. Improvement on GA

This paper uses GA to identify model parameters because it has strong global search capabilities
without prior knowledge. However, as a general random search algorithm, GA still has the defects of
premature convergence and slow convergence speed when solving some complex problems. In order
to improve the convergence speed and identification accuracy, some measures have been taken in the
design of genetic algorithms.

3.2.1. Genetic Operators

The model parameters can be easily encoded on the chromosome via real-number encoding.
This chromosome can then be represented by a nine-dimensional array of 9 real-number variables as
follows X = [L, R, ks, TLH, Fc, J, B, nKt, nKe]T. The parents are assumed to be Xt = [x11, x12, . . . , x1n]T,
and any offspring to be X t + 1. The selection operation uses a linear sort selection method, and its
selection probability is:

Ps
(
a j
)
= 1/m

[
η+ −

η+ − η_

m− 1
( j− 1)

]
(14)

where m is the population number, j is the index number in descending order, η− and η+ are the
worst and best individual expected values of the individual, respectively, and their relationship is
η+ + η− = 2.

The purpose of cross-operation is to expand the range of population search, so as to ensure the
diversity of population individuals. In order to avoid the tedious encoding and decoding process of
binary encoding, we use the arithmetic crossover operator commonly used in real encoding. Meanwhile,
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nonuniform linear crossings are introduced. Assuming the parents are Xt
1 and Xt

2, the offspring resulting
from the crossover process are:

Xt+1
1 = c ·Xt

1 + (1− c) ·Xt
2

Xt+1
2 = c ·Xt

2 + (1− c) ·Xt
1

(15)

where c is a scale factor randomly generated between (0, 1).
In order to make the algorithm converge quickly and suppress the premature convergence of

the population, the following modified mutation operator is used. The mutation operator uses the
Gaussian mutation method as follows:

Xt+1 = Xt + N(0, σ) (16)

where N(0, σ) is Gaussian distribution and σ is variance. In order to speed up convergence, σ is set as a
variable parameter in this paper

σ(t) = 1− 0.9
t
G

(17)

where t and G are the current and total evolutionary generations, respectively.

3.2.2. Adaptive Crossover and Mutation Probability

Because the cross probability Pc and mutation probability Pm play a key role in the optimization
characteristics of GA, the fixed probability cannot meet the overall characteristics. The cross and
mutation probability values of traditional GA are usually set according to specific situations. Therefore,
there is a great blindness in setting the specific value. The larger the cross probability Pc, the easier the
genetic model will be destroyed, and the slower the optimization speed will be if the Pc is too small;
the smaller the mutation probability Pm is, the lower the probability of generating new individuals will
be, and the GA will become a blind random search algorithm if the Pm is too large. In order to find the
best value of each problem, adaptive cross probability and mutation probability methods are applied.
The sigmoid function is introduced to obtain the probability of adaptive crossover and mutation.

Pt
c = Pc1 −

Pc1−Pc2
1+e−α(t/G−Ns)

Pt
m = Pm1 −

Pm1−Pm2
1+e−α(t/G−Ns)

(18)

where Pc1 and Pc2 are the initial cross probability and the final cross probability, respectively. Pm1 and
Pm2 are the initial mutation probability and the final mutation probability respectively. Ns is the cutoff

point, being set to 0.25, and α is the shape factor, being set to 20. G is the total generation. The flowchart
of the improved genetic algorithm is shown in Figure 4.

3.3. Controller Based on Finite Time

The adaptive backstepping recurrence technique is introduced into the framework of finite-time
stability theory, and the control law and adaptive law are obtained.

Step 1: For the subsystem x1 of (7), a virtual control law x2d = −k1xq
1 renders the derivative of

V1 = 1/2x2
1 to satisfy

•

V1(x1) ≤
∣∣∣x1(x2 − x2d)

∣∣∣− k1x1+q
1 (19)

where k1 > 0 is an adjustable parameter, q = q1/q2∈(2/3,1).

Step 2: For the subsystem (x1, x2), the time derivative of V2(x1, x2) = V1(x1)+
∫ x2

x2d

(
s1/q
− x1/q

2d

)2−q
ds

is calculated as:

•

V2 ≤
∣∣∣x1(x2 − x2d)

∣∣∣− k1x1+q
1 + ξ

2−q
2 x3 + (2− q)k1/q

1 x2
∫ x2

x2d

(
s1/q
− x1/q

2d

)1−q
ds

≤

∣∣∣x1(x2 − x2d)
∣∣∣− k1x1+q

1 + ξ
2−q
2 x3 + (2− q)k1/q

1 |x2||x2 − x2d|ξ
1−q
2

(20)

where ξ2 = x1/q
2 − x1/q

2d = x1/q
2 + k1/q

1 x1.
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Applying Lemmas 1 and 2 to the first term and the last term of the second inequality of (19),
it follows 

{∣∣∣x1(x2 − x2d)
∣∣∣ ≤ 21−q

|x1||ξ2|
q
≤ 21−q

(
γ1x1+q

1 + γ
−1/q
1 qξ1+q

2

)
/(1 + q)

|x2||x2 − x2d| ≤ 21−q
∣∣∣∣ξ2 + x1/q

2d

∣∣∣∣q|ξ2|
q
≤ 21−qξ

2q
2 + 21−qk1

∣∣∣xq
1

∣∣∣|ξ2|
q (21)

Then, substituting (21) into (20) yields

•

V2 ≤
∣∣∣x1(x2 − x2d)

∣∣∣− k1x1+q
1 + ξ

2−q
2 x3 + (2− q)k1/q

1 x2
∫ x2

x2d

(
s1/q
− x1/q

2d

)1−q

≤

∣∣∣x1(x2 − x2d)
∣∣∣− k1x1+q

1 + ξ
2−q
2 x3 + (2− q)k1/q

1 |x2||x2 − x2d|ξ
1−q
2

(22)

Again applying Lemma 2, |x1|
q
|ξ2| ≤ γ2qx1+q

1 /(1 + q)+γ−q
2 ξ

1+q
2 /(1 + q), and defining the virtual

control law x3d = −k2ξ
2q−1
2 , (22) becomes

•

V2 ≤

[
−k2 + 21−q

[
γ
−1/q
1 q
1+q + (2− q)k1/q

1

(
1 +

γ
−q
2 k1

1+q

)]]
ξ

1+q
2 +

[
−k1 +

21−q

1+q

(
γ1 + γ2q(2− q)k1+1/q

1

)]
x1+q

1 + |ξ2|
2−q
|x3 − x3d|

(23)

where γ1, γ2, k2 are adjustable positive parameters.
Step 3: For the system (7) with a positive definite function

V3(x1, x2, x3) = V2(x1, x2) + l
∫ x3

x3d

(
s

1
2q−1 − x

1
2q−1

3d

)3−2q

ds (24)

The time derivative of V3(x1, x2, x3) satisfies

•

V3 ≤
•

V2 + lξ3−2q
3

•
x3 + l(3− 2q)k

1
2q−1

2 |x3 − x3d|ξ
2−2q
3

[
k1/q

1 |x2|+
1
q

∣∣∣∣x1/q−1
2

∣∣∣∣|x3|

]
(25)

where 0 < l < 1, ξ3 = x
1

2q−1

3 − x
1

2q−1

3d = x
1

2q−1

3 + k
1

2q−1

2 (x
1
q
2 + k

1
q

1 x1).
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Moreover, considering (23), by Lemmas 1 and 2

|ξ2|
2−q
|x3 − x3d| ≤ 22−2q

|ξ2|
2−q
|ξ3|

2q−1
≤

22−2q

1 + q

[
γ3(2− q)ξ1+q

2 + γ
2−q
2q−1

3 (2q− 1)ξ1+q
3

]
(26)

|x2||x3 − x3d|ξ
2−2q
3 ≤ 22−2q(|ξ2|

q
|ξ3|+ k1|x1|

q
|ξ3|) ≤

22−2q

1 + q

[
γ5qk1x1+q

1 + γ4qξ1+q
2 +

(
γ
−q
4 + γ

−q
5 k1

)
ξ

1+q
3

]
(27)∣∣∣∣∣x 1

q−1

2

∣∣∣∣∣|x3||x3 − x3d|ξ
2−2q
3 ≤M1ξ

1+q
3 + M2|ξ2|

q
|ξ3|+ M3|x1|

q
|ξ3|

≤
q

1+q

(
γ7M3x1+q

1 + γ6M2ξ
1+q
2

)
+

[
M1 +

γ
−q
6 M2
1+q +

γ
−q
7 M3
1+q

]
ξ

1+q
3

(28)

where γi > 0,(i = 3, 4, . . . , 7) are adjustable parameters, and

M1 = 22−2q(2q− 1)
(
1 + k1/q−1

1

)
/q,

M2 = 22−2q
(
(1− q)/q + k2 + (2q− 1)k1/q−1

1 k2/q
)
,

M3 = 22−2q(1− q)k1/q−1
1 (1 + k2)/q

(29)

and considering (8)–(9), the following inequality holds

•

V3 ≤

{
21−q

{
γ1 + γ2q(2− q)k

1+ 1
q

1

}
+ l(3− 2q)k

1
2q−1

2 (γ522−2qqk
1+ 1

q

1 +γ7M3) − (1 + q)k
}

x1+q
1

1+q +{
21−q(2− q)

[
k

1
q

1

(
1 + q + γ

−q
2 k1

)
+ γ321−q

]
+ l(3− 2q)k

1
2q−1

2

[
γ6M2 + γ422−2qqk

1
q

1

]
+ γ

−
1
q

1 21−qq− (1 + q)k2

}
ξ

1+q
2

1+q +

{
22−2q

[
γ
−

2−q
2q−1

3 (2q− 1) + l
(
γ
−q
4 + γ

−q
5 k1

)
(3− 2q)k

1
q

1 k
1

2q−1

2

]
+ l(3− 2q)k

1
2q−1

2 q−1
[
(1 + q)M1 + γ

−q
6 M2 + γ

−q
7 M3

]}
ξ

1+q
3

1+q + lξ3−2q
3

[
••

θ r + a1(θr − x2) + a2(
•

θr − x3) − a3 − bu + c1sgn(ξ3−2q
3 ) + c2sgn(w)

]
(30)

Therefore, a control law designed as the form

u = b−1

−a1x2 − a2x3 + k3

[
x

1
2q−1

3 + k
1

2q−1

2

(
x

1
q
2 + k

1
q

1 x1

)]3q−2
 (31)

where k3 > 0 is an adjustable parameter. Then, substituting (23), (26), (27), and (28) into (25),

and considering the system (7) and the definitions of ς3, x3d, ς2, x2d and m1, m2, m3 of (33)–(35),
·

V3

satisfies the following formulas:

·

V3(x) ≤ −m1x1+q
1 −m2ς

1+q
2 −m3ς

1+q
3 (32)

where

m1 = k1 −
21−q

1 + q

[
γ1 + γ2(2− q)k1+1/q

1

]
−

l(3− 2q)k1/(2q−1)
2

1 + q

[
γ522−2qqk1+1/q

1 + γ7M3
]
> 0 (33)

m2 = k2 − 21−q(2− q)k1/q
1 −

γ
−1/q
1 21−qq

1+q −
2−q
1+q

[
γ
−q
2 21−qk1+1/q

1 +γ322−2q
]
−

l(3−2q)k1/(2q−1)
2

1+q

[
γ422−2qqk1/q

1 + γ6M2
]
> 0

(34)

m3 = lk3 −
γ
−(2−q)/(2q−1)
3 22−2q(2q−1)

1+q −
l(γ−q

4 +γ
−q
5 k1)22−2q(3−2q)k1/q

1 k1/(2q−1)
2

1+q −

l(3−2q)k1/(2q−1)
2

q

[
M1 +

γ
−q
6 M2
1+q +

γ
−q
7 M3
1+q

]
> 0

(35)
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Meanwhile, by Lemma 1 V3(x1, x2, x3) satisfies

V3(x) ≤ 1
2 x2

1 + |x2 − x2d|ς
2−q
2 + |x3 − x3d|

ς
3−2q
3 ≤ 2x2

1 + 2ς2
2 + 2ς2

3

(36)

Then, by Lemma 1, the following inequality holds.

·

V3(x) ≤ −2−
1+q

2 λ
(
2x2

1 + 2ς2
2 + 2ς2

3

) 1+q
2
≤ −2−

1+q
2 λV3(x1, x2, x3)

1+q
2 (37)

where λ = min{m1, m2, m3}. From the above description and Lemma 3, it is concluded from (24) and
(37) that the system (7) is stable to c = 2−(1+q)/2λ, α = (1+q)/2 ∈ (0, 1) in the finite time of equilibrium
point x = 0. In short, the proposed control strategy (31) ensures that the system (6) has the required
angle of higher static performance x1 =

∫
(θr − θ)dt = 0,x2 = θr − θ = 0 in a limited time.

In order to make the parameter selection of the controller design in this paper have basis, the paper
gives the guidance of the controller adjustable parameter selection:

(1) q is chosen as a fraction satisfying q ∈ (2/3, 1) with the odd numerator and denominator; generally,
it may be more likely to close to 1.

(2) This paper chooses L ∈ (0, 1) by determining (32), so as to reduce the influence of uncertain
parameters on the convergence rate. Therefore, on the premise of satisfying the convergence rate,
the parameter should be as small as possible.

(3) The choice of k1, k2, and k3 is mainly based on guaranteeing the positiveness of m1, m2, and m3;
that is, inequality (33)–(35) holds. Note the interrelations and constraints between k1, k2, and k3 in
(33)–(35). Their selection follows the following guidelines: first, k1 is selected by guaranteeing
inequality (33). Then, choose k2 to be greater than k1 according to (34). After that, select k3 to
be greater than k1 and k2 according to (35). It should be noted that a larger k3 will increase the
burden on the control input u from (31).

(4) γi (i = 1, . . . , 7) are just for guaranteeing the positiveness of m1, m2, and m3.

The control strategies proposed in this paper are summarized as follows: First, the ERS model
parameters are identified through IGA to pave the way for controller design. Then, the finite-time
stability of the ERS system is designed using finite-time stability with faster convergence speed than
asymptotic stability. Finally, the stability of the closed-loop system is analyzed.

4. Simulation Comparison with Existing Strategies

In this section, the method of cosimulation experiments was used to verify the comparison
between the control method in this paper and the existing control strategies. Automatic dynamic
analysis of mechanical systems (ADAMS) was used to construct the ERS mechanical dynamics model,
and matrix laboratory (MATLAB)/Simulink environment was used to verify the controller. As shown
in Figures 5 and 6, in order to realize the cosimulation of the following system based on ADAMS and
MATLAB/Simulink, the setting steps are as follows: First, determine the state variable of the mechanical
virtual prototype model of the follower system. Then, ADAMS/Control is used to determine the
model output of the angular velocity input variable and the feedback angular velocity variable of the
MATLAB/Simulink follow-up drive system. Finally, the control algorithm proposed in this paper is
verified in the MATLAB/Simulink simulation environment. This paper is compared with existing
control strategies in this environment.
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In order to illustrate the effectiveness of the method more intuitively, the classic PID control in [9]
and the H∞ control in [21] are given as follows:

uPID = −5x2 − 1.2x1 − 0.1x3 + τ f a0 + τspa0 (38)

uH∞ = 0.15
··

θr + 0.5
·

θ− 14x2 − 0.6x3 (39)

where τ f a =
Fcsgn(w)R

nKt
τspa =

[TLHsgn(θ−θ0)+ks(θ−θ0)]R
nKt

.
In [10], the robust adaptive PID sliding mode control (RASM) strategy, the PID controller in [9],

and the H∞ controller in [21] are used to verify the transient performance and robustness. The parameter
values constructed by the joint simulation model are shown in Table 1. The simulation experimental
system model is the same as that in [10]:

q = 96/97, k1 = 0.25, k2 = 38, k3 = 400, l = 0.00019,
γ1 = 0.03,γ2 = 1,γ3 = 20,γ4 = 1,γ5 = 15,γ6 = 10,γ7 = 54

(40)

m1 = 0.0075, m2 = 5.7594, m3 = 0.00034.
As shown in Figures 7 and 8, compared with the existing control strategy of ERS, the FTRC control

strategy in this paper has better control accuracy and speed.
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Table 1. Physical parameter of electric rudder system.

Parameters Value Unit

J 0.0031 kgm2

B 0.0098 Nm s/rad
Kt 0.0175 Nm/A
Ke 0.0295 V s/rad
ks 0.0877 Nm/rad

TLH 0.46 Nm
Fc 0.34 Nm
R 1.55 Ω
L 1.6 mH
θ0 15 ◦

n 22.26 /

5. Experimental Application and Results Analysis

Figure 9 shows the hardware schematic of the ERS test platform to verify the effectiveness
and practicability of the proposed FTRC strategy. Firstly, configure the parameters of the controller
through Copley Controls CME 2 software, and then send the control signal to the controller through
the multifunctional data acquisition card (DAQ) USB-3500. After the controller drives the ERS,
the USB-3500 data acquisition card collects the position information feedback by the potentiometer of
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the servo system. In order to verify the effectiveness of the FTRC proposed in this paper, the paper uses
a control strategy based on model parameter identification in practical applications. The experiment is
divided into two parts: one is to use IGA to identify ERS parameters and compare the performance
with the existing optimization algorithm; the other is to use the identified parameter model in FTRC
design and compare it with the existing PID and H∞ control.
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5.1. Parameter Identification Algorithm Verification

In order to verify the superiority of the proposed IGA optimization performance, a comparative
experiment was set up as follows: Firstly, the controller sends the control command (desired angle
θr) and collects the feedback signal (actual angle θa). Then, the data is input into the preset model
under MATLAB programming to obtain the identification angle θi, and the fitness value is obtained by
Equation (13). The function continually updates the model parameters so that θa and θi are constantly
approaching. Finally, this paper compares the PSO and GA1 optimization algorithm with IGA. We only
compare the number of iteration steps and the size of the fitness value to illustrate. For fair comparison,
among the three algorithms, GA1 does not apply adaptive selection and mutation probability, and the
rest of the operations are performed according to this article. In this study, parameter error (EPE)
and average parameter error (EAPE) were used to evaluate the parameter identification accuracy.
The calculation of EPE and EAPE is as follows:

EPE =

∣∣∣∣∣∣∣∣Xi −
∧

Xi
Xi

∣∣∣∣∣∣∣∣× 100%, i = 1, 2, . . . , D (41)

EAPE =
1
D

D∑
k=1

∣∣∣∣∣∣∣∣Xi −
∧

Xi
Xi

∣∣∣∣∣∣∣∣× 100% (42)

where Xi and
∧

Xi are the parameters of the actual system and the identification system, respectively,
and D is the dimension of Xi.

Figure 10 shows the change process of fitness values of different optimization algorithms.
Compared with other algorithms, the IGA proposed in this paper has fewer iterative steps and can
achieve smaller fitness values. In addition, it can be seen from Table 2 that the maximum EPE value of
IGA is 20%, which is far less than 48.3% of GA and 47% of PSO, which indicates that the modified
mutation and crossover probability and operator operation of this paper can effectively improve the
convergence precision and speed.
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Table 2. Electric rudder system identification results.

Parameters Value

Mean Value of the Identification Parameter (30 Trials)

PSO GA IGA
∧

Xi
EPE

∧

Xi
EPE

∧

Xi
EPE

L 0.003 0.002 0.33 0.004 0.33 0.0025 0.167
R 1.2 1.52 0.27 1.02 0.15 1.105 0.079
ks 0.08 0.06 0.25 0.05 0.375 0.071 0.113

TLH 0.4 0.55 0.375 0.25 0.375 0.32 0.2
Fc 0.2 0.31 0.55 0.15 0.25 0.17 0.15
J 0.001 0.0012 0.2 0.0008 0.2 0.0011 0.1
B 0.006 0.0039 0.35 0.0089 0.483 0.0069 0.15
Kt 0.5 0.31 0.38 0.38 0.24 0.42 0.16
Ke 0.6 0.88 0.47 0.45 0.25 0.69 0.15

5.2. Controller Verification

The controller is designed to verify the effectiveness of the control algorithm based on the
parameters obtained from the above identification algorithm. Since the actual system physical
parameters are different from those of the joint simulation experimental model, the parameters of the
controller (31) are set as follows:

q = 96/97, k1 = 0.25, k2 = 38, k3 = 400, l = 0.00019,
γ1 = 0.03,γ2 = 1,γ3 = 20,γ4 = 1,γ5 = 15,γ6 = 10,γ7 = 54

(43)

The following different laboratory conditions were set up in this paper:

Case 1. The square wave signal is used to verify the transient performance of the FTRC, as shown
in Figure 11a.

Case 2. The ramp wave signal is used to verify the steady state performance of the FTRC at
constant acceleration, as shown in Figure 12a.

Case 3. The chirp signal from 1 Hz to 20 Hz is used to verify the dynamic performance of the
FTRC, as shown in Figure 13a.
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Figure 13. Actual response and error of different algorithm under input chirp signal: (a) system
response; (b) system response error.

The experiment responses of ERS with PID, H∞, and FTRC in the above three cases are shown in
the Figures 11a, 12a and 13a, respectively. As can be seen from Figures 11b, 12b and 13b, compared with
other methods using the FTRC algorithm in this paper, the tracking accuracy and response speed of
ERS have been greatly improved under the same control instructions. Compared with other algorithms,
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the tracking accuracy is reduced by at least 70%, which proves that the dynamic performance of the
control algorithm for ERS has been greatly improved.

In addition, this paper aims to verify the advantages of FTRC control strategies in terms of energy
consumption. Figure 14 shows the energy consumption comparison diagram of ERS under Case
1. Therefore, compared with the other two algorithms, the energy consumption of this method is
relatively small, which shows that the energy consumption of this method is small.
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Figure 15a,b compares the dynamic and static performance response results of Cases 1 and 2,
including the set time (ST), the overshoot (OS), and the steady-state error (SSE). Compared with other
methods, it can be seen that the ST of ERS during deceleration and acceleration is within 100 ms, the OS
is less than 3%, and the SSE is reduced by at least 50%. Therefore, the effectiveness of the proposed
FTRC is illustrated.
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6. Conclusions

In order to improve the control accuracy and speed of ERS and avoid the influence of nonlinear
factors, this paper presents a new control method based on genetic algorithm and finite time theory.
The crossover operator of the GA uses a nonuniform linear crossover method, and the mutation
operator uses a Gaussian mutation method to obtain elite individuals and adaptive mutation and
crossover probability based on evolutionary characteristics. A finite time servo controller based
on GA identification parameters is designed for ERS, whose convergence rate is faster than the
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asymptotic stability. The joint simulation experiments verify that it has faster convergence accuracy
and convergence speed than the existing control strategies PID and H∞. The efficiency of different
intelligent optimization algorithms and the IGA identification parameters proposed in this paper are
compared, which proves that the optimization accuracy of the improved optimization algorithm has
been greatly improved. In addition, the dynamic and static performance of ERS under different actual
conditions was verified on the ERS test bench, which proves the effectiveness of the method proposed
in this paper. However, the proposed method has some limitations, such as online identification of
ERS parameters in a dynamic and fast environment, and needs further study.
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