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Abstract: The biomass is regarded as a part of renewable energy sources (RES), which can satisfy
energy demands. Biomass obtained from plantations is characterized by low bulk density, which
increases transport and storage costs. Briquetting is a technology that relies on pressing biomass
with the aim of obtaining a denser product (briquettes). In the production of solid biofuels, the
technological as well as material variables significantly influence the densification process, and as a
result influence the end quality of briquette. This process progresses differently for different materials.
Therefore, the optimal selection of process’ parameters is very difficult. It is necessary to use a decision
support tool—decision support system (DSS). The purpose of the work was to develop a decision
support system that would indicate the optimal parameters for conducting the process of producing
Miscanthus and willow briquettes (pre-comminution, milling and briquetting), briquette parameters
(durability and specific density) and total energy consumption based on process simulation. Artificial
neural networks (ANNs) were used to describe the relationship between individual parameters
of the briquette production process. DSS has the form of a web application and is opened from a
web browser (it is possible to open it on various types of devices). The modular design allows the
modification and expansion the application in the future.

Keywords: decision support system; briquettes production; willow; Miscanthus; artificial neural
network; multilayer perceptron

1. Introduction

The usage of energy around the world is constantly rising. This is due to the increase in population
and increasing demands of society [1,2]. The major part of energy today energy is obtained from
burning fossil fuels. This is detrimental to the environment mainly because of greenhouse gas
emissions [3]. The need for reducing the emission of greenhouse gases, and restricting the usage of
fossil fuels with simultaneous increase in energy demand caused an increase in the amount of research
regarding renewable energy sources (RES) [4,5].

The biomass is regarded as a RES of high potential, which can satisfy energy demands of
contemporary society both in developed and developing countries throughout the world [6–9]. The
interest in biofuels created from different biomass types including agricultural energy waste and energy
cultivations is growing [10,11]. The use of biomass to produce energy is around 50% of all RES in the
world, and in Europe it is 70% [3]. Biomass can also be a raw material for the production of liquid and
gaseous solid biofuels [11–13].
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The growing global bioenergy market requires new biomass sources. Logging wood and wood
biomass waste is insufficient. It is necessary to gradually replace it with agricultural biomass (energy
plantations, aquatic plants and algae, agricultural waste, food processing waste and municipal solid
waste [8,14,15]). The use of lignocellulosic biomass, e.g., Miscanthus, willow, poplar, acacia or paulownia
as a source is particularly interesting [5,11,16].

Biomass obtained from plantations is characterized by low bulk density, which increases transport
and storage costs. For this reason, the shredded material is subjected to compaction using high
pressure [8,17]. Briquetting is one of the basic technologies for thickening and converting biomass into
solid biofuel—bio-briquettes intended for direct combustion [8,10,18]. Briquetting is a process that
comprises several stages, such as initial shredding, milling and densifying. Sometimes drying the raw
material or cooling the briquettes is required [5,19,20].

Main qualitative parameters of briquettes are related to density, porosity and durability. Moisture
content and compressive strength also influence the quality of briquette. These parameters are very
significant from the viewpoint of logistic processes, combustion processes and so on [21,22]. Briquettes
of bulk density above 1000 kg·m−3 are biofuels of high quality [23]. In the production of solid biofuels,
the technological as well as material variables significantly influence the densification process, and
as a result influence end quality of briquettes [24]. These factors can be divided into preproductive
(material properties: particle size and moisture content), productive (impact of drying, storage or
shredding on the properties of the material and the densification process) and post productive (storing,
transport and trans-shipment conditions) [19,23,24]. The size of the particles and their distribution are
included in the main factors determining the physical and mechanical properties of the briquette. Finer
milling means higher density, hardness and durability, but also causes higher production costs [10].
Many researches were dedicated to describing and explaining the processes of biomass densification.
The efficacy of the densification process stems from the quality of bonds between particles [10]. The
process of densifying the fragmented biomass occurs under high pressure, which causes the contact
area to increase, so adhesive forces lead to permanent connections between those particles [17]. The
work delivered by pressure is partially converted into heat. During densification, the friction and
shear in between the particles and between the particles and the briquetting machine, as well as the
molecular adhesive forces cause the temperature of the briquette to increase [9].

Various types of biomass are used for the production of briquettes. The most widely and commonly
used type for solid biofuel production is wood biomass (when considering commercial purposes, as
it has high content of lignin—a natural binder). Others other than wood types may also be valid
for such purposes [8]. Various species of Miscanthus and bamboo have great potential for bioenergy
production due to high yield, high cellulose and hemicellulose content, high calorific value and low
ash content [6,25]. Additionally, waste biomass from harvesting lines (poppy, oat, wheat and rice hulls)
or corn waste can be used as raw materials for briquette production [8,26,27].

As shown above, both the characteristics of the raw material and operational parameters are
responsible for the quality of briquette. Therefore, in the production of solid biofuel (briquette), it is
very important to understand the impact of these main factors on the properties of briquette. With this
knowledge, product quality can be improved [9,21].

Unfortunately, biomass as a raw material has vastly different properties. Therefore, there has
not been a single, consistent mathematical description of the briquetting process so far. This process
progresses differently for different materials. Therefore, the optimal selection of process’ parameters
(machine settings included in the production line) is very difficult. It is thus necessary to use decision
support tools.

Operational research methods are classic decision support tools. However, due to the increasing
complexity of decision-making problems and the growing possibilities of IT systems, in recent decades,
a new type of tools supporting decision-makers has been developed: the so-called decision support
systems (DSS). The definition formulated by Sprague and Carlson was [28,29]: "DSS comprises a class
of information system that draws on transaction processing systems and interacts with the other parts
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of the overall information system to support the decision-making activities of managers and other
knowledge workers in organizations". In recent years, there has been a rapid development of research
on DSS. This is confirmed by the rapidly growing number of publications [29,30].

DSS is composed of three basic components, which are: the database management subsystem,
the model base management subsystem and the dialog generation and management subsystem (user
interface), which handles the interaction of the user with the system [28,30]. DSSs are used in many
areas, e.g., IT, production engineering, transport, biosystem engineering and many more. In agricultural
engineering, DSSs are used in pest management, crop production, biomass production, operational
planning machine activities and pig products chains [29]. Decision support systems cover various
parts of the supply chain. They are mostly used to deal with suppliers, optimize shipments, transport
and production. The industries that most often use DSSs in the supply chain are manufacturing
(e.g., medicine and fertilizer production, etc.) and agriculture. DSSs in the supply chain are also
used in automotive processes, computers, construction, e-commerce, fisheries, food, forestry, logistics,
medicine and petroleum [31–33]. DSSs are used to supplement energy-related decision processes [34].
Decision support systems were also a research subject in the field of RES. For example, DSSs have been
developed for:

• Evaluation of energy and economic benefits of power to gas/heat technologies [35].
• The renewable energy management (a small scale photovoltaic energy production) based on the

existing geographic information systems [36].
• Achieving energy balance in a low-voltage microgrid with RES (photovoltaic panels and wind

turbines) [37].
• Supplementing the selection of optimal sites for grid-connected photovoltaic power plants using

an environmental DSS [38].
• Setting priorities regarding the selection of bioenergy home heating sources in Southern Europe

(DSS uses MCDA—multicriteria decision analysis—methods) [39].

One of the components of DSSs is a model. It is important that they describe as accurately as
possible the processes on which a DSS is expected to provide the decision-maker with information on
the best solutions. The desire to increase the possibility of developing accurate decision variants has
resulted in the emergence of intelligent DSSs, in which methods of artificial intelligence are used. In
order to find dependencies between individual parameters describing the briquette production process
artificial neural networks (ANNs), which are one of the methods of artificial intelligence, can be used.

The term artificial neural network refers to a computational and machine learning technique [40–43].
One type of neural networks are multilayer perceptron neural networks (MLPs). An MLP consists
of an input layer, a hidden layer (one or two) and an output layer. Each layer consists of neurons
with a non-linear activation function, which are connected to each other [44–46]. ANNs are universal
nonlinear approximators. Implementation of artificial neural networks for different research proved to
be very efficient and accurate [20,40,43,44,47–52].

ANNs are widely employed to exploit the empirical knowledge. Particularly, ANNs are applied
in modeling, classification and clustering tasks, prediction processes, decision-making processes
and management of industrial production systems [53]. ANNs are used in various scientific fields
including, for example, bioinformatics, biochemistry, medicine, meteorology, economic sciences,
robotics, aquaculture, food security and climatology. ANNs are also used in agriculture, agrophysics
or agricultural engineering [20,40,44,47–49,51,54]. For example, an ANN was used to model paper
production. An ANN was implemented to predict the fibers’ length [53]. ANNs are also employed
to control and predict variables in drying processes (a tomato drying model, tobacco and willow
woodchips drying processes) [20,55]. Many applications of ANNs involve forecasting and prediction
in agriculture. The ANNs with MLP topology to forecast winter rapeseed yields and winter wheat
yield were developed [46,56]. The neural model forecasting temperature changes inside the heated foil
tunnel enables the optimization of decisions regarding the control of heating system. Consequently,
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this allows one to lower the energy usage needed to ensure optimal internal climate in heated foil
tunnel [44]. The ANN model can be also a part of a more complex DSS designated for internal
climate management.

Some authors propose artificial neural networks (ANNs) for energy demand prediction and
optimization (energy demand in smart grid; heating, ventilation and air conditioning energy savings in
office buildings) [34]. Many ANN applications are related to renewable energy sources (different uses
of ANN models for better energy production predictions). Research addresses for example the creation
and use of ANNs to forecast solar radiation (the main problem for the best use of photovoltaic systems)
and wind power forecasting [41,45,57–59]. ANNs are applied for forecasting building energy usage
and demand [42]. The diversification of ANNs applications is vast, demonstrating the importance of
this tool. ANNs are a powerful tool for making predictions based on a large number of interrelated
experimental data [20,44,47–50,52,55,60–63].

The aim of the work was to create a DSS, which could approximate optimal parameters for
producing briquettes from Miscanthus and willow. Such parameters are durability and specific density
(briquette parameters) and these associated with production processes (precomminution, milling and
briquetting parameters).

2. Materials and Methods

As part of the work, a decision support system was designed, made and tested on a selected
production line of plant biomass briquettes. The proposed decision support system is a continuation
of a larger research cycle. The whole work consisted of 4 stages (Figure 1): I—conducting experimental
tests, II—creating simulation models using ANN, III—performing simulation experiments and creating
a database and IV—developing the inference module for the proposed DSS.
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2.1. Testing the Briquetting Process

Stage I involved testing the briquetting process of the line located in the laboratory of the University
of Agriculture in Krakow. The research material was obtained from the experimental plots of the
Energy Plants Collection located at the Faculty of Production and Energy Engineering. The line
diagram and parameters of the briquette production line are shown in the Figure 2. Briquettes obtained
in the production process had a nominal diameter of 50 mm and a length of about 50 mm.
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The resulting briquette quality was assessed according to the guidelines set in standards EN
15234-3:2012 (Solid biofuels—Fuel quality assurance—Part 3: Wood briquettes for non-industrial
use). In accordance with the requirements in norm, a specific density of briquettes was set using a
kit for determining the specific density—RADWAG - WPS 510/C/1. Next, the mechanical durability
(DU) of the obtained briquettes was specified in accordance with the standard EN 15210-2:2011 (Solid
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biofuels—determination of mechanical durability of pellets and briquettes—Part 2: Briquettes). DU
was calculated from the formula [64]:

DU =
mA
mB
· 100% (1)

where:
DU—mechanical durability of briquette, %;
mA—mass of the sample after the test, g;
mB—mass of the sample before the test, g.

2.2. Developing ANN Models

Stage II consisted of developing ANN models for each stage of briquette production. Output
parameters from individual stages were treated as input to the next.

It has been assumed that individual models will enable the following parameters to be determined:

1. For the precomminution process and the milling process:

• Energy consumption,
• Bulk density,
• Granulometric composition of the comminuted and the milled material (share of

individual fractions).

2. For the briquetting process:

• Energy consumption,
• Specific density,
• Briquette durability.

Analysis of the production process and factors affecting the quality of the briquette allowed one to
determine the inputs for individual models. For creating the models and the learning process of ANNs,
the function “Automatic Designer” of Statistica was used. The back-propagation learning algorithm
and then the conjugate gradient algorithm were used for each ANN. An ANN of the MLP type was
chosen to create neural models.

The basic element of MLP is the so-called artificial neuron (Figure 3). The values of input variables
and the threshold signal are fed to each neuron. These values are multiplied by the weights of
individual inputs and then the products calculated in this way are added together. The resulting sum
is transformed by a non-linear activation function resulting in an output signal at the neuron’s output.
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The structure of MLP networks is shown in Figure 4. These networks have a layered structure:
input layer, hidden layers and output layer. Each layer has a different number of artificial neurons.
Neurons of adjacent layers are connected to each other (no connections between neurons of the same
layer). The value of the output from each neuron is passed to the inputs of all neurons of the next
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layer. In the case of output layer neurons, the values obtained are the result of calculations. There is a
summary ANN response to the input values.
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ANNs are adapted to the modeled phenomenon during the learning process (weight changes for
individual neurons occur). Gradient methods are used to teach MLP networks. Two such methods were
used in the work: the back-propagation learning algorithm and then the conjugate gradient algorithm.

The values of the root mean-square error (RMSE) and mean absolute percentage error (MAPE)
calculated for testing data set were the criterion of choice. RSME and MAPE are commonly used
statistical errors to evaluate the model’s performance [20,44–46,65].

The selection criteria were the root mean-square error (RMSE) and mean absolute percentage
error (MAPE) calculated for the test data set. RSME and MAPE are commonly used statistical errors to
assess model performance.

The RMSE and the MAPE were calculated from the following formulas:

RMSE =

√√
1
n
·

n∑
i=1

(Yi −YANN,i)
2 (2)

MAPE =
1
n
·

∣∣∣∣∣Yi −YANN,i

Yi

∣∣∣∣∣ · 100% (3)

where:
n—number of observations,
Yi—values obtained during research,
YANN,i—calculated by the ANN value.
Sensitivity analyses were performed for the created models in order to reject input variables that

did not improve the accuracy of individual ANNs. The learning process has been repeated many times
to obtain the best ANN. For each model, 100 neural networks of different architectures were tested, of
which the best was selected.

2.3. Performing Simulation Experiments and Creating A Database

The following assumptions were made in the computer simulation process:
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1. The production of briquettes from Miscanthus and willow proceeds in three stages
continuously—the material passes through subsequent devices without interoperational storage.

2. The moisture content decreases by 2% at every stage of production.
3. During the simulation, the humidity of the chipped material varied from 13% to 21%.
4. Precomminution allows one to obtain chopped straw with a theoretical length of 10 and 20 mm.
5. Milling is carried out in one step—only one sieve (sieve diameters: 15, 10 and 4 mm).
6. Briquetting takes place at an adjustable pressure in the range of 20–56 MPa, every 2 MPa.

Based on computer simulations a database was created (Figure 5) for selected energy crops
(Miscanthus, willow).
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2.4. Developing the Inference Module for the Proposed DSS

The final stage was the design and implement the inference module. This module was designed
to calculate the optimal product and process parameters based on the total energy consumption. This
module was an integral part of the computer program, which has also been designed and made as part
of the work.

Assumptions for the designed application:

• Application in web technology,
• Responsive work mode,
• The ability to generate, modify and save reports,
• The ability to add more energy crops,
• Modular nature of the application,
• Expandable.

3. Results

In Figure 6 the essence of the DSS is shown. The ANN models used in the developed DSS are
shown on Figures 7–11. Inputs and outputs of individual ANNs and connections between them
are marked.
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Tables 1–3 present the RMSE and MAPE error values calculated for ANN models describing the
precomminution, the milling and the briquetting processes. Figure 12 shows a comparison of parameter
values describing the briquetting process obtained using ANNs with average values measured during
experimental tests for a selected example for the diameter of the last mill sieve (diameter = 15 mm).

Table 1. Root mean-square error (RMSE) and mean absolute percentage error (MAPE) error values
calculated for ANNs describing the precomminution process.

Energy Consumption Bulk Density Parts of Chipped Fractions

ANN RMSE
(Wh/kg)

MAPE
(%)

RMSE
(g/cm3)

MAPE
(%)

RMSE
(%)

MAPE
(%)

Willow 0.17 10.27 0.000642 0.21 2.50 10.08
Miscanthus 0.11 3.73 0.001187 1.28 1.72 8.40

Table 2. RMSE and MAPE error values calculated for ANNs describing the milling process.

Energy Consumption Bulk Density Parts of Milled Fractions

ANN RMSE
(Wh/kg)

MAPE
(%)

RMSE
(g/cm3)

MAPE
(%)

RMSE
(%)

MAPE
(%)

Willow 3.38 5.48 0.00212 1.31 2.79 5.90
Miscanthus 2.44 6.56 0.00027 0.24 1.30 3.79

Table 3. RMSE and MAPE error values calculated for ANNs describing the briquetting process.

Energy Consumption Briquette Density Briquette Durability

ANN RMSE
(Wh/kg)

MAPE
(%)

RMSE
(g/cm3)

MAPE
(%)

RMSE
(%)

MAPE
(%)

Willow 1.22 3.43 0.0174 1.76 1.42 1.31
Miscanthus 1.63 3.26 0.0156 1.43 1.02 0.91

The detailed algorithm of the DSS inference module operation is presented in Figure 13.
The application has a web form and is opened from a web browser. The technologies used were

the project in the Model-View-Controller (MVC) design pattern, Java programming language and
elements of the SQL programming language. The following libraries were used: Spring MVC, Spring
Web, Spring Security and Hibernate. The application has been scaled to one database server. Postgre
SQL server version 9.4 was chosen. Coding was done using the NetBeans programming environment.
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Figure 12. Comparison of parameter values describing the briquetting process obtained using ANNs 
with average values measured during experimental tests (for the diameter of the last mill sieve of 15 
mm): (a) energy consumption for Willow; (b) briquette density for Willow; (c) briquette durability for 
Willow; (d) energy consumption for Miscanthus; (e) briquette density for Miscanthus; (f) briquette 
durability for Miscanthus. 

Figure 12. Comparison of parameter values describing the briquetting process obtained using ANNs
with average values measured during experimental tests (for the diameter of the last mill sieve of
15 mm): (a) energy consumption for Willow; (b) briquette density for Willow; (c) briquette durability
for Willow; (d) energy consumption for Miscanthus; (e) briquette density for Miscanthus; (f) briquette
durability for Miscanthus.
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The system was developed using elements of graphical notation of the UML (unified modeling
language). The program also meets the principles used in software engineering. Two sample schemes
were selected, namely a use case diagram (Figure 14) and an implementation diagram (Figure 15).
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4. Discussion

As part of this work, a DSS (Figure 6), which is designed to assist the user in the selection of
process parameters for a given line producing briquettes from energy plants based on input parameters
based on data from simulations has been designed and made.

The requirement for the proper operation of DSSs is the accuracy of models describing individual
processes. ANNs models used in our DSS show high accuracy of calculations (independent models
were developed to calculate particular output variables).

For the precomminution process (Table 1) the MAPE error values varied from 0.21% to 10.27%.
The lowest errors occurred for bulk density (MAPE = 0.21% and 1.28%). The ANN model calculating
the values of the parts of chipped fractions variable was the least accurate (MAPE = 10.08% for willow
and MAPE = 8.40% for Miscanthus). For variables “energy consumption” and “parts of chipped
fractions” ANNs were more accurate for Miscanthus. The ANN accuracy for bulk density is very high
for both plants.

For the milling process (Table 2) the MAPE error values varied from 0.24% to 6.56%. Additionally,
in this case, the lowest errors occurred for bulk density (MAPE = 1.31% for willow and MAPE = 0.24%
for Miscanthus). The error values for energy consumption and parts of milled fractions did not exceed
a few percent and show the high accuracy of the models (MAPE = 5.48% and 5.90% for willow and
MAPE = 6.45% and 3.79% for Miscanthus).

For the briquetting process (Table 3), the MAPE error values varied from 0.91% to 3.43%. The
highest error values occurred for energy consumption (MAPE = 3.43% for willow and MAPE = 3.26%
for Miscanthus). For the other two output variables, these errors were much lower: MAPE = 1.76% and
1.43% for briquette density and MAPE = 1.31% and 0.91% for briquette durability. No major differences
in the accuracy of neural models were observed between willow and Miscanthus briquetting.
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Figure 12 shows examples of using ANNs to simulate the briquetting process (this is the most
important of the briquette production processes that determines the quality of the final product and
energy consumption). The results for one type of sieve (diameter = 15 mm) and for two selected
humidity levels (10% and 15%) are summarized. The comparison of average real values (obtained
from measurements) with the values of three output variables calculated by ANNs confirmed the
high accuracy of the developed models for the entire range of applied briquetting pressures. It can be
observed that in the case of Miscanthus, changes in humidity had a small effect on the values of the
output parameters of briquetting (Figure 12d–f). However, for willow, the change in humidity caused
significant differences in the case of briquette density and briquette durability (Figure 12b,c). Higher
humidity reduced the density and durability of the briquette at the same briquetting pressures. It is
worth noting that at 17 MPa pressure, the durability of willow briquettes made from raw material
with humidity of 15% was much lower (by 37%) than 10% biomass briquettes. Despite the large
non-linearity of changes, the ANN describing the durability of the briquette simulates the process
very well.

A detailed operation algorithm of the DSS inference module is shown in the Figure 13. This
diagram can be divided into two parts: the parameters specified by the user and the parameters
calculated by the DSS inference module.

The user specifies the type of energy plant (Miscanthus or willow), moisture content of the energy
plant and the expected durability of the briquette. If the plant has too much humidity (>20%), additional
drying of the plant material is necessary.

Based on the given parameters, the DSS inference module calculates the process parameters
(settings for the ax chopper, beater mill and piston briquetting press) and determines the forecast
parameters of the briquette (durability and specific density). The objective function is to minimize
total energy consumption. From the selected durability range and set humidity for the selected plant
material, the data set with the lowest total energy consumption was selected. This solution gave the
opportunity to perform simulations for many variants of interest to potential users.

The parameters characterizing the quality of produced briquettes are mechanical durability and
specific density. These parameters are commonly used as indicators of briquette quality [8,17,21–23,64].

Durability and density are related to each other. For briquettes made of a specific type of biomass
and under certain conditions, the higher the density, the greater the durability. The values of these
parameters are very important for briquette producers—they affect the costs of transport and storage of
briquettes. The higher durability and density of the briquettes means that they have higher transport
and load compliance—transport and storage costs are lower. For transport, the limit is the maximum
transport volume of the transport means (e.g., trucks), not its load capacity. The higher density of
briquettes means that a larger mass can be transported with one transport means. Additionally, higher
density briquettes have lower costs of the storage process—a certain mass takes up less storage space,
it is better to use storage devices, etc. The greater durability of the briquettes means that they have a
higher loadability (stacking resistance), which allows better use of the surface of the transport means
and storage space. Briquettes with higher durability are less damaged (crushed) during transport,
handling and storage processes.

Examples of user interface screens of the designed DSS are shown in the Figures 16 and 17.
As the DSS is intended for briquette producers in Poland, the user interface is in the Polish

language. By asking the DSS question via the user interface (Figure 16), the user enters via the keyboard
information: regarding the selected energy plant ("Select Plant"), minimum ("Minimum durability
(%)") and maximum ("Maximum durability (%)") durability of the briquette and humidity of the
material ("Humidity (%) Range: 14-20"). After entering the information, the decision-maker can click
the calculate button and will be taken to the screen with the DSS response (Figure 17). In case of
entering incorrect data, the "Clear" button, which will delete the entered data, may also be clicked.
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Figure 17. DSS user interface screen with system response.

The screen with the DSS response presents the results of the calculations. The results were divided
into two groups: product properties and process parameters. As a part of the process properties,
the following are displayed: durability (%), total energy consumption (Wh/kg) and specific density
(g/cm3). As a part of the process, the following parameters are displayed: theoretical chop length
(mm), diameter of the last sieve (mm) and agglomeration pressure (MPa). The decision-maker can
save several subsequent unit tests in the form report to compare and choose the best solution. The
generated report can be saved and modified.
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The use case diagram (Figure 14) illustrates the main functionality of the system, which consists of
the calculating product, input and process parameters, total energy consumption and displaying them.
This diagram also shows the division of permissions/tasks between parts of the systems. The user has
the authority to enter data and generate, modify and save reports. DSS is designed to interpret input
data and perform calculations according to the designed algorithm. The database stores data on input
parameters (material properties), ANN models database and forecasted output parameters (product
and process).

The implementation diagram (Figure 15) reflects the physical structure of the system. The modules
of the web application itself are also distinguished. Due to the use of ready-made libraries (Spring,
Hibernate and Spring MVC), the process of analyzing data was significantly shortened.

System operation was confirmed by a series of unit tests. Selected tests are presented in the
Tables 4 and 5. The selected unit tests parameters reflected the upper briquette durability ranges.

Table 4. Simulation results for selected input data—Miscanthus.

Durability
Range (%)

Moisture
(%)

Theoretical
Chop

Length
(mm)

Diameter
of the Last

Sieve
(mm)

Briquetting
Pressure

(MPa)

Durability
(%)

Density
(g/cm3)

Energy
Consumption

(Wh/kg)

90-100 14 10 15 43 90.1 0.917 58.09
80-90 14 10 15 20 81.0 0.748 24.51

90-100 15 10 15 36 90.1 0.827 53.71
80-90 15 10 15 20 80.9 0.748 24.28

90-100 16 10 15 36 90.4 0.825 53.02
80-90 16 10 15 20 80.6 0.751 24.19

90-100 17 10 15 39 90.2 0.857 54.41
80-90 17 10 15 22 80.1 0.757 24.31

90-100 18 10 15 38 90.4 0.857 53.81
80-90 18 10 15 22 80.2 0.747 24.3

90-100 19 10 15 39 90.0 0.864 57.05
80-90 19 10 15 23 80.4 0.736 24.75

90-100 20 10 10 33 90.0 0.796 62.18
80-90 20 10 15 28 80.4 0.743 36.98

Table 5. Simulation results for selected input data—willow.

Durability
Range (%)

Moisture
(%)

Theoretical
Chop

Length
(mm)

Diameter
of the Last

Sieve
(mm)

Briquetting
Pressure

(MPa)

Durability
(%)

Density
(g/cm3)

Energy
Consumption

(Wh/kg)

90-100 14 10 15 42 90.0 0.859 53.83
80-90 14 10 15 22 81.8 0.760 26.73

90-100 15 10 15 42 90.3 0.854 53.06
80-90 15 10 15 20 80.3 0.709 26.06

90-100 16 10 15 38 90.3 0.840 50.22
80-90 16 10 15 20 91.1 0.661 26.02

90-100 17 10 15 44 90.2 0.832 54.12
80-90 17 10 15 22 81.5 0.640 26.02

90-100 18 10 10 32 90.4 0.795 73.38
80-90 18 10 15 26 80.9 0.631 27.08

90-100 19 10 10 38 90.4 0.785 78.27
80-90 19 10 15 34 80.4 0.636 51.07

90-100 20 20 4 36 90.6 0.853 115.24
80-90 20 10 10 24 81.1 0.724 70.4

The decision maker, having to determine the parameters of the briquette production process, had
information about the type of plant (Willow or Miscanthus) and biomass moisture level. He also knew
what durability the briquette he wanted to achieve (introduces the minimum and maximum durability
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value to DSS). On this basis the DSS, using ANN models, calculated the parameters of individual stages
of the briquette production process (theoretical chop length, diameter of the last sieve and briquetting
pressure) and briquette quality parameters (durability and density) with minimal energy consumption.

For example, for Miscanthus with 14% humidity and the 90%-100% durability range, the DSS
process parameters: theoretical chop length= 10 mm, diameter of the last sieve = 15 mm and briquetting
pressure = 43 MPa will ensure briquette durability of 90.1% with minimal energy consumption of 58.09
Wh/kg (Table 4, row 1). If the decision maker states that 80% durability is sufficient, DSS will calculate
new process parameter values (only briquetting pressure = 20 MPa changes) that will ensure briquette
durability of 81.0% with a minimum energy consumption of 24.51 Wh/kg (Table 4, row 2).

It can be seen that reducing the briquette quality requirements from 90% to 80% results in
a significant reduction in energy consumption (by about 50%) for both Miscanthus and willow
(Tables 4 and 5).

5. Conclusions

The DSS designed and made in this work supported the decision-maker/user in the selection
of process parameters for the selected line producing briquettes from energy plants (Miscanthus and
willow). The developed DSS is unique—in the literature review no similar decision support tools were
found in the processes of producing briquettes from energy plants.

The developed DSS belongs to the class of Intelligent DSSs, as it uses artificial intelligence
methods—ANNs. The completed application is fully functional and is ready for implementation in
a real production system. Due to the use of web technology, it can be run on a desktop computer,
tablet or smartphone. DSS can be used by small enterprises, in which decision-makers usually do not
have expertise in the operation of complex computer systems. In Polish conditions, the production
of briquettes for energy purposes is most often carried out in small and medium-sized enterprises,
therefore there is a demand for this type of DSSs.

The modularity of the system allows future development of the designed system. It is possible
to improve the DSS through, e.g., supplementing or improving the model database. The developed
DSS is only applicable to the briquetting process. However, due to the open modular structure of
the program, after minor program modifications and supplementing the model database with neural
networks describing the pellet production process, the DSS can also be used for pellet production.
Further research will seek to increase this DSS’s functionality. It is planned to supplement it with other
types of energy crops and to introduce other types of production lines. In the future, it is planned to
add a module for creating production schedules.
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