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Abstract: Infrared Thermography has been used as a tool for predictive and preventive maintenance
of Photovoltaic panels. International Electrotechnical Commission provides some guidelines for
using thermography to detect defects in Photovoltaic panels. However, the proposed guidelines
focus only on the location of the hot spot than diagnosing the types of faults. The long-term reliability
and efficiency of panels can be affected by progressive defects such as discolouring and delamination.
This paper proposed the new Thermal Pixel Counting algorithm to detect the above faults based on
three thermal profile index values. The real-time experimental testing was carried out using FLIR
T420bx® thermal imager and results have been provided to validate the proposed method. In this
work, the fuzzy rule-based classification system is proposed to automate the classification process.
Fuzzy reasoning method based on a single winner rule fuzzy classifier is designed with modified
rule weights by particular grade. The performance of the proposed classifier is compared with the
conventional fuzzy classifier and neural network model.

Keywords: infrared thermography; photovoltaic panels, discoloring; delamination; defect diagnosis;
fuzzy classifier

1. Introduction

A Photovoltaic (PV) panel defects reduce the panel power and long-term reliability that is not
recovered during regular operation. The defects may be initiated during the manufacturing process,
transportation, installation and real operating environmental condition [1]. As long as the defect is not
much relevant to safety issues and power degradation, that defect is not considered as a failure or
series defect. The investment cost of PV based power generation system is high, and it is payback
time mainly depends on electrical performance and panels operating lifetime. The major PV panel
defects are delamination, Ethylene Vinyl Acetate (EVA) discoloring and cell part isolation due to cell
cracks. These defects will initiate safety issues, reliability problems and power loss in the power system
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(~15%) [2,3]. Condition monitoring methods are developed to detect such issues for increasing the
lifetime of the PV panel [4].

Commonly Current-Voltage (I-V) characteristics measurement is used for faults diagnosis on
solar PV panels. Nevertheless, it is a time-consuming process as well as inability to classify the
defects such as delamination, EVA discolouring and cell part isolation due to cell cracks. Ref. [5]
provides a comprehensive literature review report of faults detection methods developed in the earlier
research work.

Infrared Thermography (IRT) usages in preventive maintenance and condition monitoring of
electrical types of equipment are increased in recent years due to its user-friendly operation and
accuracy in fault diagnosis with an exact spot. Ref. [6] reviewed the IRT image-based fault detection
methods used for electrical apparatus maintenances, with thermal image measurement technique
and its features extraction, the impact of environmental factors and real-time operating conditions in
image measurement. Operating temperature of PV panels/cells creates a negative effect on the power
efficiency of the panel, and it is considered as an essential reference value for detecting the hot spot
location of the panel. Ref. [7,8] provide the current and voltage based faulty indicator to detect the
faults in the PV system. [9] heightened the value of the mounting variable of commercial-grade PV
panel used in a building-integrated PV system for operating with its designed efficiency.

Electroluminescent (EL) method is used for diagnosing the solar PV modules and strings as
a non-invasive method; it can be effectively used for diagnosing the cell cracks and shunt fault,
inactive modules with reasonable accuracy. However, it is inefficient for detecting progressive faults
such as discolouring, delamination and optical degradation. IRT imaging technique can be used as
non-destructive testing for inspecting the PV panels working conditions, and it has many advantages
over EL imaging [10]. A hot-spot appears in PV panels due to imbalance current between the affected
cell and healthy cell, and it will increase the reverse biasing, thus dissipating power as heat. Hot spot
inspection is a well-known procedure for diagnosing the faults in the PV panels. The temperature
difference index values for non-defective, defective and defective with power losses PV panels were
reported in Ref. [11]. However, these index values mainly depend on the operating conditions such
as climatic irradiation values, and there are no temperature index values derived for progressive
defects classification.

Thermal image pre-processing provides the preliminary inputs for assessing the condition of the
panels. The line profile analysis and image histogram analysis method has been implemented in a
condition monitoring system of PV panels [12]. In Ref. [13] different PV modules have studied the
reliability of the IR imaging technique with different defects such as cell fracture, deficient solder joints,
short-circuited cells and bypassed substring. The interrelationship between the junction and surface
temperature of the PV panel has been measured for improving the measurement accuracy of the IR
image [14]. The relationship between the I-V characteristics and thermal image of PV panels under
healthy, miner fault, massive fault, open circuit and short circuit fault conditions are presented in [15].
Thermal mapping with defects characterization and classification has been reported in [16,17]. Canny
edge detection algorithm [18,19] and digital colour conversion algorithm [20,21] have been successfully
implanted for identifying the hot spot regions and defects of the PV panels. Tsanakas [22] has
developed a new thermal image characterization algorithm based on aerial triangulation and terrestrial
georeferencing of thermal images. Vergura [23] has developed a new algorithm for quantifying thermal
image features via computer-aided thermography for diagnosing PV panel defects.

The available literature work does not provide a solution to detect and distinguish progressive
faults such as discolouring, delamination and optical degradation. Therefore, this paper provides a
digital thermal image pixel counting technique with fuzzy classifier for diagnosing and distinguishing
the EVA discolouring and delamination defects of PV panels. The proposed diagnosis technique is
developed based on the method have been proposed in [24] for faults classification of induction motor.
This algorithm can be easily implantable in the digital processor, which is used in automated condition
monitoring and defect diagnosis system.
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This research work mainly investigates the real-time surface faults occur in PV panel due to
environmental stress and proposed novel diagnosis solution for the fault’s detection through IR image
analysis, and it is required detailed investigation for detecting the internal PV faults such as short
circuit string, bypass diode problem, etc.

The fuzzy rule-based classification system is used in many engineering application and pattern
classification problems [25,26]. In this work, the fuzzy rule-based classifier is developed, based
on the input pattern database collected from the proposed diagnostic algorithm. It is designed
for implementation of Internet of Think (IoT) based fault classification system, which requires less
calculation time and fast response. Fuzzy rule-based classifier is one of the simple systems for
uncertainly condition problems with least calculation memory [27]. The monitoring the complete solar
PV panels in one power system involves a high volume of the data, the fuzzy rule-based classifier can
handle this kind of high dimensional database and gives the accurate classification results [28].

The paper is structured as follows. A defect in the PV panel is studied in Section 2. In Section 3, the
practical testing experimental setup is explained. In Section 4, the proposed digital image temperature
pixels analysis algorithm is described. Section 5 presents the experimental testing results and discussion.
Section 6 describes the fuzzy classifier system and Section 7 reports the classification performance of
the classifier. Finally, the conclusion of this paper is given in Section 8.

2. Defects in PV Panels

The failures of any product can be categorized into three stages such as infant-failure,
midlife-failures and wear-out failures. Graphical view of the PV panel failure is shown in Figure 1.
In this, EVA discolouring, delamination and cracked cell isolation are considered as progressive faults
because it started at an infant stage and progressed beyond the warranty period to reach the wear-out
time. Other than these faults, some defects may be happened due to external causes like clamping,
transport and installation, connector failure and lightning.
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Figure 1. Power loss due to delamination and corrosion.

In a PV module, EVA guards the solar cells against climate factors such as humidity, UV, pollution
and fog. It is essential to laminate the panel composite under an accurately defined temperature (T),
pressure (P) and time to confirm that the EVA cures appropriately. Due to the improper process limit
settings or deprived quality material usage, the EVA layer becomes melted, and it changes into milky
yellow colour in its lifetime. It is named as the discolouring defect. It leads to safety issues and power
losses. International Electrotechnical Commission (IEC) categorizes the defects under different classes
based on the impact in safety issues and power losses as given in Tables 1 and 2 [29,30].
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Table 1. Types of safety classes.

Safety Class Description

A Defects do not lead to safety issues

B(f,e,m) Defects can cause fire(f), electrical accident (e), physical
danger(m) and consecutive defects may occur

C(f,e,m) Defects lead to saviour’s safety issues

Table 2. Definition of power loss classes.

Power Loss Class Description

A Power loss is <3% (unable to measure)
B Power loss degradation over time by exponentially
C Power loss degradation over time by linearly
D Power loss degradation saturates over time
E Power loss degradation over time by step by step
F Power loss degradation over time by unknown shaped

EVA discolouring defect comes under B(f) safety class and C power losses class and delamination
defect come under C(e) and D/E power losses class. It is very much essential to figure out such defects
in the early-stage to avoid power loss and ensure safety.

3. Thermal Image Measurement Setup

3.1. Hardware and Software

The defected PV panels such as EVA discolouring and delamination were procured from KCP
Solar industry. The PV panels are fitted on the rooftop of the Electrical Engineering Department
building at KSRCT (11.362◦N, 77.8279◦E), India. The PV panels are polycrystalline type, and its
technical specifications are used as maximum power Pmax of 18 Wp, short circuit current (ISC) of
2.62 A, rated current IMP of 2.32 A, open-circuit voltage (VOC) of 9.4 V and rated voltage (VMPP) of
7.2 V, under Standard operating condition (STOC). The ISC was measured combined with the voltage
VOC. The maximum current (IMAX) and the maximum voltage (VMAX) produced by the panel were
also measured with an Ammeter (0–2 A) and Voltmeter (0–30 V). An adjustable rheostat is used as a
variable (0 to 15 Ω) to investigate IMAX and VMAX. Figure 2 shows the schematic connection diagram
of the experimental model setup to acquire the IR image and measure the electrical characteristics of
the PV panel.
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Figure 2. Schematic diagram of the experimental setup.

T420bx Portable thermal camera is used for the measurement of IR image. Features of the imager
are 320 × 240 pixels of Focal Plane Array (FPA) uncooled microbolometer sensor with a spectral range
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of 7.5–13µm extended. The model has a temperature range of −20 to +350 ◦C with measurement
accuracy calibrated within +/−2 ◦C or +/−2% of reading. The recorded IR images are further treated in
the thermal image processing method.

3.2. IR Image Capture Method

The IR image has been taken in the city of Tiruchengode, Tamil Nadu, southern India (Latitude:
11.36◦, Longitude: 77.56◦, mean elevation: 246 m), a set of data taken on July 2018 and another set on
March 2017, in clear-sky conditions. This set has three instant capture, according to the time 06:00
(transient conditions—sunrise), 13:00 (steady-state conditions) and 18:00 (transient conditions—sunset)
for each module. Before each capture, the climatic conditions, such as air temperature, humidity, and
the average value of solar irradiance and wind velocity were accounted for the primary set-up of
the thermal camera and the emissivity. From the local weather station, the wind velocity, ambient
air temperature and humidity data were obtained and recorded by a temperature/humidity meter.
Pyrometer (solarimeter) is used to measure solar irradiance values. The recorded climatic conditions
for experimental data are tabulated in Table 3. Five faulted modules are used for investigation.

Table 3. The environmental conditions for the field thermographic measurements.

Date 10.07.2018 23.03.2017

Time 6:00 13:00 18:00 6:00 13:00 18:00
Air temperature (◦C) 23 34 27 25 36 28

RH-Relative humidity (%) 67 29 58 62 25 57
Wind speed (m/s) 0.8 2.8 3.7 0.6 1.2 3.8

Solar irradiance (W/m2) 34 890 182 31 742 154

According to the Indian solar resource maps, the approximate and optimum inclination angle of
PV panels has to be set at 13◦ for Tiruchengode/Tamilnadu. During the performance measurements,
whether the panels operate within optimum inclination or not, the aim is to reveal only the possible
defects on the panels’ surface that occur, so the difference between the module inclinations did not
affect the results of the complete experimental procedure. The distance between the thermal imager
and the PV module was kept at about 1–2 m. In order to get an accurate temperature measurement,
the specific factors were also considered during the initial set-up of the imager.

4. TPC Algorithm

The proposed Thermal Pixel Counting TPC algorithm is described in this session. The sample
PV panel photograph and its thermal image for three different conditions are shown in Figure 3.
The defected PV panel may be identified from visual observation of the photograph. The yellow colour
shading appeared in the EVA defect panel, surface structure distortion in the delamination defect panel.
The thermal image also clearly exposes the defected regions based on the intensity of the thermal pixel
values. In the initial condition, the mean and standard deviation (std) of the thermal matrix has been
calculated based on the Equations (1) and (2), and its values are tabulated in Table 4. The mean and std
values of the healthy and defected panels have been compared with the IEC standards. This value
has a less significant difference for different conditions, and it may help to classify the severity of the
defects based on safety and power loss classes as per IEC standard. Even though defects are identified
based on the above-said factors, still more detailed investigations are required, due to environmental
temperature conditions and thermal camera noise. The captured thermal image underwent further
analysis in the TPC algorithm. The temperature pixels matrix database of the solar PV panels has
been collected from FLIR tool. A developed TPC algorithm works under while and if loop conditions.
It checks and counts the temperature pixels values more than that the set, ∆T◦C plus minimum
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temperature. The flow chart of the TPC algorithm is shown in Figure 4, while Table 5 describes the
pseudocode of the TPC algorithm. The coding of the algorithm has been developed in MATLAB.

Tmean =

∑q=m∗n
q=1 [T]

m× n
(1)

Tstd =

√
1

(m× n) − 1

∑q=m∗n

q=1

∣∣∣[T] − [Tmean]
∣∣∣ (2)

Tn average =

∑ j=m
i=1

∑ j=n
i=1 [T−n]

count_n
(3)

Tn =
count_n
m× n

(4)

Tn f h = (Tn − (Tn)healthy) (5)Energies 2020, 13, x FOR PEER REVIEW 6 of 14 
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Figure 3. Photograph and thermal image of the Photovoltaic (PV) panel: (a) healthy, (b) Ethylene Vinyl
Acetate (EVA) discolouring defect, (c) delamination defect.

Table 4. Mean and std of the temperature matrix of the PV panel and cell.

Defects
Temperature (◦C) IEC Standard

Mean Std Safety Class Power Loss Class

Healthy-Panel 48.5 1.24 A A
EVA discolor-panel 55.4 1.82 B(f) C
Delaminated-panel 60.72 3.32 B(e) D/E

Healthy-cell 58.7 0.13
EVA discolor-cell 55.87 0.65
Delaminated-cell 61.92 0.76
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Table 5. Pseudocode for TPC algorithm.

Pseudocode for TPC Algorithm

Procedure: TPC(S)
Initialization:
T(mxn) ← Thermal pixel matrix
Tmean ←mean value of the thermal pixel matrix
Tstd← standard deviation of the thermal pixel matrix
Tn ← n degree variation of thermal pixel index value
Tnfh ← Temperature index value for defect classification
cunt_n←0
Tmin ←Tamp, assume that minimum temperature values be the ambient temperature
Initial Finding:
Tmean ← based on the Equation (1)
Tstd ← based on the Equation (2)
WHILE
n ≤ (Q = PV panel temperature difference(∆T◦C))
IF T(mxn) ≥ Tmin + ∆T◦C
T_n(i,j) = T(i,j)
count_n = count_n + 1
ELSE
T_n(i,j) = 0
count_n← pixels matrix
End IF
Tn average← calculated from Equation (3)
Q = N + 1
go to WHILE
Tn ← calculated from the Equation (4)
Tnfh ← calculated from the Equation (5)
End WHILE
End Procedure

5. Testing Results and Discussion

The thermal image of the PV panel for different defect and healthy conditions are captured in the
experimental setup described in Section 3. The captured image has been analyzed in FLIR Tools, and
its thermal pixels matrix database is collected. The thermal pixels matrix of three different samples of
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PV panels under three conditions such as healthy, EVA discolouring defect and delamination defect
are stored in MATLAB database. A TPC algorithm has been executed by using a thermal pixel matrix
stored in the MATLAB database as an input pattern. The temperature variation of the panel and
individual cell under defected conditions for different ∆T◦ has been compared with healthy panel and
cell. Table 6 shows the average temperature matrix of the panel and cell. The percentage of thermal
pixels variation of the panel and cell is shown in Figure 5a,b.

Table 6. Average temperature matrix of the thermal image of the panel and cell.

Panel
Temperature Variation (Tmin + ∆T◦C)

5 10 15 20 25 30

Healthy 51.7 56.3 60.3 - - -
EVA-discoloring defect 55.5 56.2 59.2 - - -

delamination defect 60.9 61.2 62.5 64.4 - -
Cell

Healthy 50.5 - - - - -
EVA-discoloring defect 55.9 55.9 - - - -

delamination defect 61.9 61.9 61.9 - - -
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Figure 5. Percentage of thermal pixels variation of PV panel under different ∆T◦C conditions.

The EVA discolouring defect increases the thermal pixel of the panel and cell in the band of T15 C

compared than healthy condition. The delamination defect increases the thermal pixel of the panel and
cell in the band of T20 C. The percentage variation of the thermal pixel gives the accurate identification
and classification of the EVA discolouring and delaminated defects from the healthy panel.

Figures 6 and 7 show the modified thermal image for Tmin + 15 ◦C and Tmin + 20 ◦C. From the
figure, the defects of the panel and cell-based on the temperature pixel intensity are observed.
The performance of the proposed TPC algorithm can be verified by quantifying the results observed in
the analysis. The two percentage indicators such as T15 and T20 are proposed for defect diagnosis of
the PV panel, and their values are compared with the healthy panel and derived new index values
T15fh and T20fh, and the values for three different samples are tabulated in Table 7. The T15 index
percentage is varied significantly for delamination defect compared than EVA discolouring defect. T20

index percentage also is increased significantly for delamination defect. There is no such observation
observed in EVA discolouring defected panels.
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Table 7. Comparative analysis of defected panels with the healthy panel.

Index Sample EVA-Discoloring Defect Delamination Defect

T10th = (T10-T10_healthy)
1 67.80% 83.63%
2 60.23% 82.12%
3 61.23% 84.54%

T15th = (T15-T15_healthy)
1 1.23% 74.02%
2 2.12% 73.56%
3 1.35% 74.24%

T20th = (T20-T20_healthy)
1 0 10.24%
2 0 11.26%
3 0 10.46%

6. Fuzzy Rule-Based Classification

Fuzzy rule-based classification approach has been successfully implemented to various fault
prediction and classification problems [31–33]. It is developed based on the fuzzy relation method.
The rule weight plays a critical role to decide the performance of the classifier [26]. In this paper, the
certainty grade based fuzzy classification system is used for classifying EVA and delamination faults
of the solar PV panel. Certainty grade leads the fuzzy membership function to learn and adopt a new
input pattern vector without modifying the shape of the membership function.

The Certainty Factor CF values of each fuzzy rule are modified based on Table 8.
Fuzzy IF-THEN rules for pattern classification problem can be written as

Rule R j : x1 is A j1 and . . . .xnis A jn then output C j, j = 1, 2, . . . .N (6)

where

x = {x1 . . . ..xn}—n-dimensional input vector
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Aj1 to Ajn—Linguistic variables
Cj—output fault class
N—Number of Rules

Table 8. Certainty grade values of the fuzzy rule for a different case.

Case CF1 CF2 CF3 CF4 CF5 CF6 CF7 CF8 CF9

Case 1 1 1 1 1 1 1 1 1 1
Case 2 1 1 1 0.5 0.5 0.5 1 1 1
Case 3 0.6 0.8 1 1 0.8 0.8 0.8 0.5 0.2
Case 4 0.2 0.8 0.6 0.5 0.7 0.9 0.35 0.8 0.4
Case 5 0.2 0.7 0.9 0.8 0.8 0 0.6 1 0.7

The certainty grade factor is introduced in the Equation (6), and it can be rewritten as

Rule R j : x1 is A j1 and . . . .xnis A jn then output C j with CF j, j = 1, 2, . . . .N (7)

where

CFj—certainty grade of the Rule Rj (0 ≤ CF j ≤ 1)

The winner rule of the new input vector Xp is defined by

µ j ∗ (Xp) ∗CF j = max
{
µ j(Xp)•CF j ; j = 1, 2, . . . .N

}
(8)

The CF determines the size of the decision region of each rule without modifying the membership
function area. The decision region of each rule in three linguistic variable models is shown in Figure 8.
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In this PV fault classification system, two fault classes such as delamination and EVA fault are
considered. The following three IF THAN rules are considered to explain the adjustment of the
classification boundaries. The membership function of the above-defined rules is shown in Figure 9a,b.

IF x(T10th) is Low(L) THAN Class 1 (Healthy condition)
IF x(T10th) is Medium(M) THAN Class 2 (EVA Fault)
IF x(T10th) is High(H) THAN Class 3 (Delamination Fault)
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The boundaries values of the membership function are modified using CF values, which are
shown in Figure 10. The dotted line is drawn by the product of values of CF and the compatibility
grade values. The formula to determine the certainty grade values for C class classification problems is

CF j =
βClassC j(R j) − β∑C

k=1 βClass k(R j)
(9)

where Cj is the consequent class and

β =

∑
k,C j

βClass k (R j)

(C− 1)
(10)
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7. Performance Evaluation

The PV panel fault information database is collected from 25 sample panels. It has three index
attributes [diagnosis index values: T10, T15, T20] for three different classes such as Healthy condition,
EVA fault and delamination fault. The real number values are normalized into the unit interval of (0,1).
In this work, three numbers of triangular fuzzy membership functions are used with total possible
IF-THAN fuzzy rules (33 = 27). The CF value of each fuzzy rule was determined by the procedure
described in the above section. The confusion matrix evaluates the classification performance.

The comparative analysis of the different performance classifier is given in Table 9. The fuzzy
classifier with CF gives better classification accuracy compared with other methods due to its learning
ability of the new input pattern.

Table 9. PV panels classification test results.

Method TP FN FP TN % of Accuracy % of Sensitivity

Fuzzy classifier 22 03 21 04 86 88
Fuzzy classifier with CF 24 01 23 02 94 96

Neural Network 20 05 21 04 82 80
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8. Conclusions

The defects in the solar PV panels lead to power loss and safety issues. The detecting and
classifying the progressive defects such as EVA-discoloring and delamination through thermal imaging
technique is challenging one due to atmospheric temperature variations and camera noise. In this
paper proposed the TPC algorithm to detect the EVA discolouring and delamination defects. In this
work, we proposed T15 and T20 temperature index values that will highlight the temperature pixel
distribution at ∆T◦C equal to 15 ◦C and 20 ◦C. As per IEC standard, the panel surface temperature
higher than above said degree leads to power loss and safety issues. These index values are compared
with healthy panel for validating the proposed algorithm efficiency. The classification process is
automated with the help of the proposed fuzzy classifier. The classification boundaries are adjusted by
modifying the certainty grade of each fuzzy IF-THEN rule without changing the membership function
parameter values. The fuzzy classifier with CF gives better classification accuracy compared to other
methods and average classification accuracy increased by 10%.
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Nomenclatures

T(m*n) Thermal pixel matrix
Tmean Mean value of the thermal pixel matrix
Tstd The standard deviation of the thermal pixel matrix
Tn n degree variation of the thermal pixel index value
Tnfh Temperature index value for defect classification
N Temperature degree variation
Q Number of iteration per degree
∆T◦C The small variation in temperature
Voc Open circuit voltage
Vmpp Rated voltage
ISC Short circuit current
VMAX Maximum voltage
IMAX Maximum current
PMAX Maximum power
X Input variables vector
N Number of rules
Cj jth output fault class
CFj jth certainty grade
µj jth membership function
XP Input variable
B Optimal boundary
Rj jth rule
Aj jth Fuzzy variable
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degradation of photovoltaic panels in a photovoltaic power plant. Energies 2019, 12, 3631. [CrossRef]

8. Pei, T.; Hao, X. A fault detection method for photovoltaic systems based on voltage and current observation
and evaluation. Energies 2019, 12, 1712. [CrossRef]

9. Skoplaki, E.; Boudouvis, A.G.; Palyvos, J.A. A simple correlation for the operating temperature of photovoltaic
modules of arbitrary mounting. Sol. Energy Mater. Sol. Cells 2008, 92, 1393–1402. [CrossRef]

10. Hoyer, U.; Burkert, A.; Auer, R.; Buerhop-Lutz, C. Analysis of PV modules by electroluminescence
and IR thermography. In Proceedings of the 24th European Photovoltaic Solar Energy Conference and
Exhibition—EUPVSEC, Hamburg, Germany, 21–25 September 2009; pp. 3262–3266.

11. Moretón, R.; Lorenzo, E.; Leloux, J.; Carrillo, J.M. Dealing in practice with hot-spots. In Proceedings of the
29th EUPVSEC, Amsterdam, The Netherlands, 22–26 September 2014; pp. 1–6.

12. Botsaris, P.N.; Tsanakas, J.A. An infrared thermographic approach as a hot-spot detection tool for photovoltaic
modules using image histogram and line profile analysis. Int. J. Cond. Monit. 2012, 2, 22–30.

13. Buerhop, C.L.; Schlegel, D.; Niess, M.; Vodermayer, C.; Weißmann, R.; Brabec, C.J. Reliability of IR-Imaging
of PV-Plants under operating conditions. Sol. Energy Mater. Sol. Cells 2012, 107, 154–164. [CrossRef]

14. Fares, Z.; Becherif, M.; Emziane, M.; Aboubou, A. Infrared thermography study of the temperature effect
on the performance of photovoltaic cells and panels. Sustain. Energy Build. Smart Innov. Syst. Technol.
2013, 22, 875–886.

15. Hu, Y.; Cao, W.; Ma, J.; Finney, S.J.; Li, D. Identifying PV module mismatch faults by a thermography-based
temperature distribution analysis. IEEE Trans. Device Mater. Reliab. 2014, 14, 951–960. [CrossRef]

16. Buerhop-Lutz, C.; Scheuerpflug, H. Characterization of defects in PV-Modules by their temperature
development using IR-thermography. In Proceedings of the 31st EUPVSEC, Hamburg, Germany,
14–18 September 2015.

17. Tsanakas, J.A. Fault diagnosis and classification of large-scale photovoltaic plants through aerial orthophoto
thermal mapping. In Proceedings of the 31st EUPVSEC, Hamburg, Germany, 14–18 September 2015;
pp. 1783–1788.

18. Tsanakasa, J.A.; Chrysostomoub, D.; Botsarisa, P.N.; Gasteratosb, A. Fault diagnosis of photovoltaic
modules through image processing and canny edge detection on field thermographic measrements. Int. J.
Sustain. Energy 2015, 34, 351–372. [CrossRef]

19. Ha, L.; Tsanakas, J.A.; Buerhop, C. Faults and infrared thermographic diagnosis in operating c-si photovoltaic
modules: A review of research and future challenges. J. Renew. Sustain. Energy Rev. 2016, 62, 695–709.

20. Kaplani, E. Detection of degradation effects in field-aged c-si solar cells through ir thermography and digital
image processing. Int. J. Photoenergy 2012, 1–11. [CrossRef]

21. Uma, J.; Muniraj, C.; Sathya, N. Diagnosis of photovoltaic (PV) panel defects based on testing and evaluation
of thermal image. J. Test. Eval. 2018, 47, 1–9. [CrossRef]

22. Tsanakas, J.A.; Ha, L.D.; Shakarchi, F.A. Advanced inspection of photovoltaic installations by aerial
triangulation and terrestrial georeferencing of thermal/visual imagery. Renew. Energy 2017, 102, 224–233.
[CrossRef]

http://dx.doi.org/10.1016/j.rser.2014.07.155
http://dx.doi.org/10.1016/j.rser.2013.07.046
http://dx.doi.org/10.1016/j.rser.2018.03.062
http://dx.doi.org/10.1016/j.solener.2017.08.069
http://dx.doi.org/10.1016/j.infrared.2012.03.002
http://dx.doi.org/10.3390/en12193631
http://dx.doi.org/10.3390/en12091712
http://dx.doi.org/10.1016/j.solmat.2008.05.016
http://dx.doi.org/10.1016/j.solmat.2012.07.011
http://dx.doi.org/10.1109/TDMR.2014.2348195
http://dx.doi.org/10.1080/14786451.2013.826223
http://dx.doi.org/10.1155/2012/396792
http://dx.doi.org/10.1520/JTE20170653
http://dx.doi.org/10.1016/j.renene.2016.10.046


Energies 2020, 13, 1343 14 of 14

23. Vergura, S.; Marino, F. Quantitative and computer-aided thermography-based diagnostics for pv devices:
Part I—Framework. IEEE J. Photovolt. 2017, 7, 822–827. [CrossRef]

24. Singh, G.; Naikan, V.N.A. Infrared thermography based diagnosis of inter-turn fault and cooling system
failure in three phase induction motor. Infrared Phys. Technol. 2017, 87, 134–138. [CrossRef]

25. Ishibuchi, H.; Nozaki, K.; Tanaka, H. Distributed representation of fuzzy rules and its application to pattern
classification. Fuzzy Sets Syst. 1992, 52, 21–32. [CrossRef]

26. Abe, S.; Lan, M.S. A method for fuzzy rules extraction directly from numerical data and its application to
pattern classification. IEEE Trans. Fuzzy Syst. 1995, 3, 18–28. [CrossRef]

27. Singh, P.; Pal, N.R.; Verma, S.; Vyas, O.P. Fuzzy rule-based approach for software fault prediction. IEEE Trans.
Syst. Man Cybern. Syst. 2017, 47, 826–837. [CrossRef]

28. Ishibuchi, H.; Nakashima, T. Effect of rule weights in fuzzy rule-based classification systems. IEEE Trans.
Fuzzy Syst. 2001, 9, 506–515. [CrossRef]

29. IS/IEC. 61730-1: 2004 Photovoltaic (PV) Module Safety Qualification, Part 1: Requirements for Construction by
Bureau of Indian Standard; BIS: New Delhi, India, 2010; pp. 1–23.

30. IEC. 61853-1 International Electrotechnical Commission (IEC). 61853-1. Photovoltaic (PV) Module Performance
Testing and Energy Rating—Part 1: Irradiance and Temperature Performance Measurements and Power Rating;
IEC: Geneva, Switzerland, 2011; pp. 1–25.

31. Mahmoud, D.; Violeta, H.; Bruce, M.; Mark, D.; Peter, M. Photovoltaic fault detection algorithm based on
theoretical curves modelling and fuzzy classification system. Energy 2017, 140, 1–10.

32. Zhao, Q.; Shao, S.; Lu, L.; Liu, X.; Zhu, H. A new PV array fault diagnosis method using fuzzy C-Mean
clustering and fuzzy membership algorithm. Energies 2018, 11, 238. [CrossRef]

33. Chang, H.C.; Lin, S.C.; Kuo, C.C. Induction motor diagnostic system based on electrical detection method
and fuzzy algorithm. Int. J. Fuzzy Syst. 2016, 18, 732–738. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JPHOTOV.2017.2655484
http://dx.doi.org/10.1016/j.infrared.2017.10.007
http://dx.doi.org/10.1016/0165-0114(92)90032-Y
http://dx.doi.org/10.1109/91.366565
http://dx.doi.org/10.1109/TSMC.2016.2521840
http://dx.doi.org/10.1109/91.940964
http://dx.doi.org/10.3390/en11010238
http://dx.doi.org/10.1007/s40815-016-0199-4
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Defects in PV Panels 
	Thermal Image Measurement Setup 
	Hardware and Software 
	IR Image Capture Method 

	TPC Algorithm 
	Testing Results and Discussion 
	Fuzzy Rule-Based Classification 
	Performance Evaluation 
	Conclusions 
	References

