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Abstract: To deal with the randomness and uncertainty of the wind power generation process, this paper
proposes the use of the clustering method to complement the multi-model predictive control algorithm
for active power control. Firstly, the fuzzy clustering algorithm is adopted to classify actual measured
data; then, the forgetting factor recursive least square method is used to establish the multi-model of
the system as the prediction model. Secondly, the model predictive controller is designed to use the
measured wind speed as disturbance, the pitch angle as the control variable, and the active power as the
output. Finally, the parameters and measured data of wind generators in operation in Western China
are adopted for simulation and verification. Compared to the single model prediction control method,
the adaptive multi-model predictive control method can yield a much higher prediction accuracy, which
can significantly eliminate the instability in the process of wind power generation.
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1. Introduction

The uncertainty of wind speed makes the output power of the wind power generation system
fluctuate greatly [1–3]. Frequent switching control will result in a transient overload of the transmission
chain and an overshoot of output power. As a result, the system shows very strong nonlinearity.
Since the multi-model predictive control (MMPC) method can effectively cope with complex nonlinear
systems—i.e., wind generation systems—it has been widely used recently.

In [4], a model predictive control (MPC)-based optimal active power control scheme for a
doubly-fed induction generator (DFIG) was proposed, which was applied to wind farms with a
distributed energy storage system (ESS). For such a multi-input and multi-output (MIMO) wind
generation system, the dynamic characteristics of the converter and wind turbines (WTs) were
considered in MPC. By using MPC, the reference for active power between WTs and ESS was optimized
according to the local wind conditions. The results showed that such a control scheme can greatly
reduce the control error of active power for WTs. Similarly, an online model-based predictive control
method was proposed in [5], which was used for the real-time optimal operation of a wind power
integrated system including demand response (DR) and ESS. This method took into account all the
interaction effects of the control facilities according to the estimated output of the future wind farms and
realized the maximum utilization of wind power. The model has good universality and adaptability,
and is suitable to resolve the high uncertainty of wind power generation and customer behavior.
Compared with the online no-prediction method and offline prediction method, the daily wind energy
utilization of this method is increased by 13.9% and 4.9%, respectively. In [6], an active power control
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architecture based on the combination of MPC and wind turbine state classification was proposed,
where an equivalent model of an MPC controller was established. Compared with traditional methods,
this method is more suitable for the active power control t the wind farm level since it ensures that the
wind farm operates as a single controllable entity on the grid and acts like a traditional power plant.

Considering that wind farms always cooperate and interact with traditional thermal power plants,
a comprehensive model of the hybrid system including both a wind farm and thermal power plant was
established in [7] by combining the wind farm model with the well-known thermal power model. In [8],
an improved load frequency control (LFC) method based on MPC was proposed, and the simulation
results showed that this method could effectively improve the frequency response level of both the wind
farm and thermal power plant, thus improving the frequency performance of the connected system.

To effectively coordinate the control of active power and reactive power, an MPC-based distributed
information synchronization scheme and distributed coordination control scheme for wind farms was
proposed and verified on a wind farm containing 10 WTs in [9]. For the distributed coordination control
scheme, the pitch angle and generator torque of the WTs were optimized to reduce the fatigue load
of the WTs and track the power reference of the wind farm. In [10], the MPC was utilized to replace
the proportional integral (PI) controller for the speed control of a permanent magnet synchronous
generator (PMSG). Similarly, the MPC was also applied to replace the traditional PI controller in [11,12].
The MPC avoids the disadvantages of the traditional PI controller; e.g., a slow dynamic response,
coupling, complex structure, difficulty in determining the PI’s parameters, etc. Compared with the PI
control, the MPC has better performance in speed tracking, irrespective of whether the step speed is
increased or step speed is decreased.

In [13], a variable-weight MPC strategy was introduced to optimize the coordination of mechanical
load and the power of the wind power generation system. In the variable-weight MPC strategy,
the pitch and torque are coordinated by Pareto analysis to optimize the output and load of the generator.
Through the evaluation of the wind condition, the weight matrix of MPC can be updated adaptively.
Finally, compared with the traditional gain scheduling PI control, the results showed that the strategy is
effective. According to the operation areas of the wind turbine, three kinds of controllers—classic MPC
and two kinds of economic model predictive control (EMPC)—were designed in [14]. The simulation
results showed that the performance of the three predictive control strategies was better than that of the
traditional LQR controller. EMPC can not only effectively reduce the fatigue load of all operation areas,
but also increase the utilization of wind energy when the wind speed fluctuates near the rated wind
speed. When the power grid operates under an unbalanced condition, the low-voltage ride-through
capability becomes a difficulty for managers. Therefore, a finite set model predictive control strategy
was proposed in [15], which could ensure the converter provides a balanced current and both active
and reactive power support during grid connection. Compared with the traditional MPC, this method
increases the control delay, and the waveform quality is much better.

Besides, the MPC method was also applied to a new type of converter control a the wind turbine
with PMSG in [16], and the separation control of the machine and the grid side was realized by
minimizing the value function. Further study on MMPC for PMSG control was also reported in [17].
The MMPC can ensure the smooth control of the active power output of WTs while ensuring high
wind energy utilization efficiency. In the low wind speed condition, the fluctuation of active power
can be reduced. The overshoot of active power can be reduced when WT operates near the rated wind
speed. A smooth control can be realized, and the fluctuation of active power can also be significantly
reduced when the WT operates above the rated wind speed.

From the above studies, it is apparent that the MPC method can solve the uncertainties and random
changes of wind speed in the wind power generation system. However, there is little discussion about
the short-term rapid change of wind speed in the above studies, especially for the case in which the
wind speed varies through three different wind speed sections in a few seconds.

In view of this situation, this paper proposes an MMPC method for wind turbines under all wind
conditions. The main contents of this paper include the following: (1) the classification of the collected
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1000 groups of field-collected data using the fuzzy clustering method (FCM) and establishment of a
multivariable prediction model using the forgetting factor recursive least square method (FFR-LSM),
(2) the design of the multi-model predictive controller (MMPCR) with measurable wind speed as
disturbance signal and pitch angle as the control variable, (3) the application of the designed MMPCR
to the actual power control of wind turbine, and a comparison of the results with those of the single
model predictive control method. The rest of this paper is organized as follows: Section 2 introduces
the modeling of the wind turbine data from actual field using fuzzy clustering, Section 3 presents the
design of the generalized predictive controller and Section 4 details the realization of multi-model
switching control. Case study and simulation analysis are carried out in Section 5, while the conclusions
are finally drawn in Section 6.

2. Fuzzy Clustering Modeling of the Field-Collected Wind Turbine Data

2.1. Mathematical Model of Variable Speed Variable Pitch Wind Turbine

Generally, a variable speed variable pitch wind turbine is mainly composed of a wind wheel,
transmission part, and generator. The output power can be described as [18]

P =

{
ηPr, vcutin ≤ v < vN

PN, vN ≤ v ≤ vcutout
(1)

with
Pr = 0.5ρv3SCp(λ, β) (2)

and

CP = (0.44− 0.0167β) sin
[
π(λ− 3)
15− 0.3β

]
− 0.00184(λ− 3)β (3)

λ =
2πnR

v
=
ωR
v

(4)

where η is the conversion efficiency of wind energy, P is the mechanical power of WT, ρ represents air
density, S stands for the swept area of the blade, λ is the tip speed ratio, β is the pitch angle, v is the
wind speed, ω is the speed of the main shaft, and R is the diameter of the wind turbine.

2.2. Fuzzy Clustering of Data Sets

The measured data of WTs including the wind speed, pitch angle and active power of the generator
are classified by the subtraction clustering algorithm–fuzzy c-means clustering, and then multiple
models are generated by FFR-LSM. The fuzzy c-means clustering algorithm determines the category of
each data point according to the membership degree. When the fuzzy objective function is the smallest,
the data group is divided into C fuzzy categories. Details of the algorithm can be found in [19] and [20].
The Davies Bouldin index (DBI) is used to evaluate the cluster performance. The process of subtractive
clustering is as follows [21,22]:

• Step 1: Determine the number of categories C and fuzzy weight index m, and initialize the
clustering center V.

• Step 2: Calculate the fuzzy membership matrix U according to Equation (5).

ui j =


 c∑

k=1

‖xi−V j‖
2

m−1

‖xi−Vk‖
2

m−1

−1

‖xi −Vk‖ , 0

1 ‖xi −Vk‖ = 0andk = j
0 ‖xi −Vk‖ = 0andk , j

(5)

where uij is the membership of xi belonging to category j, and Vj or Vk is the clustering center of
category j or k.
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• Step 3: Calculate the category center Vj using Equation (6).

V j =

n∑
i=1

um
ij xi

n∑
i=1

um
ij

(6)

• Step 4: Calculate the objective value J of cluster Vj using Equation (7) and judge whether target
value is met or not. If it is met, the clustering will end; otherwise, return to step 2.

J =
n∑

i=1

c∑
j=1

(ui j)
m
‖xi −V j‖ (7)

In this paper, a total of 1000 groups of field measured data set M (m1, m2, m3) are classified, where
m1 stands for the pitch angle, m2 represents wind speed, and m3 is the active power of the generator.
The clustering result shows that a minimum DBI can be obtained when the number of clusters is equal
to five. The clustering result is shown in Table 1.

Table 1. The clustering result of field-collected wind turbine data. DBI: Davies Bouldin index.

Number of Clustering 3 4 5 6 7

DBI 1.4473 0.6923 0.1978 1.1791 0.9733

When the number of clusters is five, all clustering center of the data can be summarized as

Center =


0.00 2.07 661.09
0.04 4.43 709.23
5.94 7.02 870.10

10.07 9.78 1300.79
13.08 11.06 1508.43


Considering that some of the data may overlap with each other—e.g., the wind speed can

increase or decrease in a short time—the output power is consequently affected by the wind speed.
Therefore, the wind generation system can be regarded as a system with a strong disturbance.

2.3. Least Square Modeling

Based on the results of the above clustering data, the wind speed and pitch angle are used as
inputs, and the output power is taken as the output for the least squares modeling and to perform the
index function determination. To overcome the shortcoming of the poor correction ability of the least
square method (LSM), the forgetting factor recursive LSM (FFR-LSM) is adopted in this paper [22].
The performed index function is

J =
L∑

k=1

λL−k[y(k) −ϕT(k)
∧

θ(k)] (8)

where θ̂(k) is the parameter under-identification, ϕ(k) is the observation matrix, λ is the forgetting
factor, L is the times of observation, and y(k) is the output of the system.

For the objective function given in Equation (8), Equation (9) can be used to express the recursive
least square parameter estimation formula of the forgetting factor.
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∧

θ(k) =
∧

θ(k− 1) + K(k)
[
y(k) −ϕT(k)

∧

θ(k− 1)
]

K(k) = P(k−1)ϕ(k)
λ+ϕT(k)P(k−1)ϕ(k)

P(k) = 1
λ

[
1−K(k)ϕT(k)

]
P(k− 1)

(9)

with K(k) representing the gain matrix and P(k) standing for the covariance matrix.
According to the measured data and the operating characteristics of the wind generator system,

the cumulative abnormal return (CAR) model expressed in Equation (11) is used to identify the
parameters. Combined with the classification results of the field-collected wind turbine data, five
mathematical models are established.

Y(k + 1) = ϕT(k)θ (10)

with
Y(k + 1) = [y1(k + 1), y2(k + 1), y3(k + 1), y4(k + 1), y5(k + 1)]T

θ =


a11 a12 a13

a21 a22 a23

a31 a32 a33

a41 a42 a43

a51 a52 a53



ϕT(k) =


−y1(k) u1(k) ξ1(k)
−y1(k) u2(k) ξ2(k)
−y1(k) u3(k) ξ3(k)
−y1(k) u4(k) ξ4(k)
−y1(k) u5(k) ξ5(k)


Taking the initial value θ(0) = 0, P(0) = 105 I, λ = 0.95, I is the unit matrix, and five mathematical

models of wind generation system can be obtained, as shown in Equation (11).

y1(k + 1) = 0.9374y1(k) + 0.3711u1(k) + v1(k)
y2(k + 1) = 0.9695y1(k) + 0.3371u1(k) + v2(k)
y3(k + 1) = 0.9217y1(k) + 0.2091u1(k) + v3(k)
y4(k + 1) = 0.9241y1(k) + 0.3821u1(k) + v4(k)
y5(k + 1) = 0.9801y1(k) + 0.2891u1(k) + v5(k)

(11)

where yi(k) is the output power of the wind generator, ui(k) is the pitch angle, and vi(k) is the wind
speed. Therefore, Equation (11) is taken as the prediction model for the system.

3. Design of the Generalized Predictive Controller

In this paper, the controlled auto-regressive integrated moving-average (CARIMA) model is used
as the prediction model [21,22]. The discrete difference equation is shown in Equation (12).

A
(
z−1

)
y(k) = B

(
z−1

)
u(k− 1) + C

(
z−1

)
ξ(k)/∆ (12)

where y(k) and u(k) are the output and input of the controlled object, ∆ = 1 − k−1 is the difference
operator, A(z−1), B(z−1), and C(z−1) are polynomials of backward operators, and ξ(k) is the white noise
sequence with zero mean value. If the time delay of the system d > 1, then let the coefficients of the
first d − 1 terms of B(z−1) be zero. The polynomials also satisfy the following:
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A(z−1) = 1 + a1,1z−1 + a1,2z−2 + · · ·+ a1,naz−na

B(z−1) = b1,0 + b1,1z−1 + b1,2z−2 + · · ·+ b1,nb z−nb , l1,0 , 0
C(z−1) = 1 + c1,1z−1 + c1,2z−2 + · · ·+ c1,ncz−nc

3.1. Objective Function

In general, for the sake of the following smoothness, tracking control is carried out by following
the reference track after softening. The reference trajectory is shown as follows:

w(k + j) = a jy(k) +
(
1− a j

)
yr(k) (13)

where yr(k) stands for a set value for output, w(k) represents the reference trajectory, and α is the
softening coefficient with 0 < α < 1.

The performance function can be represented by using the following equation:

minJ(k) =
n∑

j=1

[y(k + j) −w(k + j)]2 +
m∑

j=1

λ( j)[∆u(k + j− 1)]2 (14)

where n is the maximum prediction length, m is the control time-domain (m ≤ n), and λ(j) is the control
weighting coefficient. To prevent the variation caused by a drastic change of control increment, a certain
value is set for λ(j), while ∆u(k) is the control increment of the system. Therefore, the generalized
predictive control method can be understood to find a reasonable control increment sequence ∆u(k),
∆u(k + 1), . . . , ∆u(k + m − 1) to make the objective function J have the minimum value.

3.2. Output Prediction

In order to predict the output ahead of step j, the Diophantine equation is introduced in the
generalized predictive control method:

E j
(
z−1

)
A
(
z−1

)
∆ + z− jF j

(
z−1

)
= 1 (15)

where Ej and Fj are determined by prediction length and system parameter.
The optimal output prediction value can be obtained by combining Equations (13) and (15):

Y = G∆U + f (16)

with
Y = [y(k + 1), y(k + 2), · · ·, y(k + n)]T

∆U = [∆u(k), ∆u(k + 1), · · ·, ∆u(k + m− 1)]

f = H∆u(k) + Fy(k) = [ f (k + 1), f (k + 2), · · ·, f (k + n)]T

G =


g0 0
g1 g0
...

...
. . .

gn−1 gn−2 · · · g0

 =


g11z−1 + g12z−2 + · · ·

g22z−1 + g23z−2 + · · ·
...

gnnz−1 + gn(n+1)z−2 + · · ·



H =


G1 −G0

z
(
G2 − z−1g1 − g0

)
...

zn−1
(
Gn − z−n+1gn−1 − · · · − z−1g1 + g0

)


F = [F1, F2, · · ·, Fn]
T



Energies 2020, 13, 1329 7 of 12

where G is the control matrix. The parameters of Ej, Fj, Gj, and Hj are determined by the prediction
length and system parameter, and satisfy the following:

E j
(
z−1

)
= e j,0 + e j,1z−1 + . . .+ e j, j−1z−( j−1)

F j
(
z−1

)
= f j,0 + f j,1z−1 + . . .+ f j, j−1z−( j−1)

G j
(
z−1

)
= g j,0 + g j,1z−1 + . . .+ g j, j−1z−( j−1)

H j
(
z−1

)
= h j,0 + h j,1z−1 + . . .+ h j, j−1z−( j−1)

3.3. Determination of the Optimal Control Law

The hypothesis is that W = [w(k + 1), w(k + 2), · · · , w(k + n)]T; when ∂J
∂∆u = 0, the optimal

performance index function of Equation (17) can be obtained, as shown in Equation (18).

∆U =
(
GTG + λI

)−1
GT(W − f ) (17)

u(k) = u(k− 1) + ∆u (18)

To make full use of remaining control information and prevent the predictive control increament
of ∆u(k) from being reduced due to interference, a smooth filter is used as the input to carry out
weighted control, as shown in Equation (19).

u(k) =

s∑
i= j

q(i)u(k|k− i + 1 )

s∑
i=1

q(i)
(19)

where s stands for the control steps in the time domain and q(i) represents the control
weighting coefficient.

The generalized predictive control method can make the control output close to the reference
trajectory or target curve as much as possible through rolling optimization and feedback correction.
In this paper, the control input u(k + 1) optimizes and corrects the control input u(k) at step k through
the optimal prediction at step k + 1, which can slow down the excessive increase or decrease of the
control input increment in a certain trend and effectively reduce the occurrence probability of overshoot.
The actual control variable is

us(k) =
u(k) + u(k + 1/k)

2
= u(k) + ∆u

(k + 1/k)
2

(20)

with

∆u
(

k + 1
k

)
=

m∑
i=1

β(k)∆u(k + i/k)

m∑
i=1

β(k)
(21)

where ∆u(k + i/k) is the predictive control increment at time k + 1 and β(k) is the weighting factor
(0 < β < 1).

4. Multi-Model Switching Control

The structure diagram of the MMPC system of the wind generation system is given in Figure 1,
where the stability of the multi-model switching control system has been demonstrated in Equation [18].
In the figure, ŷi(i = 1, 2, . . . , 5) is the output of M1, M2, . . . , M5, and yr is the reference input. At each
sampling time, the optimal sub-model will be selected for predictive control [19,21].
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Figure 1. Structure diagram of the multi-model predictive control (MMPC) system.

Suppose at time k, ei(k) = y(k) − ŷi(k) represents the error between actual output and the output
of sub-model i, define the switching performance index function:

Ji(k) = ae2
i (k) + b

l∑
j=1

ρ je2
i (k− j) (22)

where l is the time length, a and b (a > 0, b > 0) are the error weighting coefficients representing
the matching degree of current and past time length l, respectively, while ρ is the forgetting factor.
The smaller the Ji(k), the higher the matching degree of model Mi.

5. Case Study and Simulation Analysis

In order to verify the effectiveness of the proposed method, the wind turbines with a doubly-fed
induction generator (DFIG) in Guazhou Wind Farm of Western China are utilized for the case study.
The parameters of wind turbine can refer to the Appendix A.

The wind generation system is given in Equation (11) and is adopted for simulation analysis (see
in Figure 2), where the pitch angle is taken as the control variable and the wind speed is considered
as a disturbance. The pitch angle is controlled according to the disturbance signal to ensure that the
output of the wind turbine can follow the predetermined target. In this paper, the forgetting factor
ρ = 0.7, the softening coefficient α = 0.35, the unit value is adopted as the control length, and the value
of control weighting coefficient λ(j) is 0.9. The simulation results of the single MPC and the MMPC are
given in the following figures.

Energies 2020, 13, x FOR PEER REVIEW 8 of 12 

 

[18]. In the figure, ˆ ( 1, 2, ,5)iy i = K  is the output of M1, M2, …, M5, and yr is the reference input. At 
each sampling time, the optimal sub-model will be selected for predictive control [19,21]. 

 

Predictive controller Plant

Model M1

Model Mω

Switching 
strategy

1ŷ
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Figure 2. Field-measured wind speed data.

From Figure 3, it is apparent that the tracking effect of the MPC algorithm is satisfactory, and the
maximum error of output power is 2.8 kW for the wind farm. As presented in Figures 3c and 4c (the
local zoom of Figures 3a and 4a), it is apparent that the output active power from the results derived
by the MMPC method is more smooth than that yield from the single MPC method. In comparison,
the MMPC can derive a much smaller output error under the same model switch strategy shown
in Figure 3e or Figure 4e. The maximum active output error using the single MPC is almost 3 kW
(in Figure 3c), while that yield from MMPC is about 2kW (in Figure 4c). It is mainly because that the
proposed adaptive multi-model switching predictive control method can switch to different models
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according to the wind speed variation, which can ensure the wind generation system operates in an
optimal condition by selecting the most suitable model given in Figure 1. For the single MPC method,
however, there is no additional choice but to adapt to the variation of the wind speed and tune the
control parameters according to the predicted control error. Since the wind speed sometimes varies
rapidly in a very short time, the performance of the MPC method becomes inferior when compared
with the MMPC method.
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Figure 3. Simulation results using the single model predictive control (MPC). (a) The output power 
of wind farm using a single MPC; (b) Local zoom of (a), (c) output power error between target curve 
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Figure 3. Simulation results using the single model predictive control (MPC). (a) The output power of
wind farm using a single MPC; (b) Local zoom of (a), (c) output power error between target curve and
control output, (d) control incremental of the single MPC, (e) model selection during the control process.

Additionally, as is reflected in Figures 3d and 4d, the switching control accuracy of MMPC is much
higher than that of the single MPC. The results show that the MMPC strategy can reduce the tracking
error in the dynamic process of the system and improve the convergence speed and tracking accuracy
of the system. The simulation results proves that, with the fuzzy clustering method used, the wind
speed data is pre-processed and classified to certain groups, and corresponding predictive control
scheme with suitable model given in Figure 1 is assigned, which enables the MMPC outperformances
the single MPC to a great extent.
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Figure 4. Simulation results using the MMPC. (a) The output power of wind farm using MMPC;
(b) local zoom of (a), (c) output power error between the target curve and control output, (d) control
incremental of the single MMPC, (e) model selection during the control process.

6. Conclusions

In this paper, up to 1000 groups of field-collected datasets are adopted for the case study. These data
are firstly classified into five groups using the classical clustering algorithm–fuzzy c-means clustering.
After this, the predictive controller is designed for multi-model switching control, and both the single
MPC and MMPC are applied to the wind generation system for the active power control of a local
wind farm in Gansu Province. For the case study and result analysis, it is proved that the proposed
adaptive MMPC for the active power of a wind generator is effective and efficient, and the combination
of the fuzzy c-means clustering and the MMPC solves the problem of randomness and uncertainty
in the active power prediction of the wind generation system. By pre-clustering and multi-model
switching, the impact of wind speed randomness and uncertainty on the output power is minimized,
and the prediction accuracy is effectively improved. The proposed method is of guiding significance
for the active power prediction in the system and the near future.
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Appendix A

Parameters of the Wind Turbine with DFIG Used for Case Study in Section 5

Rated power 1.5 MW
Operation wind speed range 3 m/s~25 m/s
Rated wind speed 11 m/s
Semi-diameter of the rotor 31.4 m
Air density 1.225 kg/m3
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