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Abstract: Pore-fluid identification is one of the key technologies in seismic exploration. Fluid
indicators play important roles in pore-fluid identification. For sandstone reservoirs, the effective
pore-fluid bulk modulus is more susceptible to pore-fluid than other fluid indicators. AVO (amplitude
variation with offset) inversion is an effective way to obtain fluid indicators from seismic data directly.
Nevertheless, current methods lack a high-order AVO equation for a direct, effective pore-fluid bulk
modulus inversion. Therefore, based on the Zoeppritz equations and Biot–Gassmann theory, we
derived a high-order P-wave AVO approximation for an effective pore-fluid bulk modulus. Series
reversion and Bayesian theory were introduced to establish a direct non-linear P-wave AVO inversion
method. By adopting this method, the effective pore-fluid bulk modulus, porosity, and density can be
inverted directly from seismic data. Numerical simulation results demonstrate the precision of our
proposed method. Model and field data evaluations show that our method is stable and feasible.

Keywords: the effective pore-fluid bulk modulus; high order AVO equation; series reversion;
Bayesian theory

1. Introduction

Pore-fluid identification remains a key part of hydrocarbon reservoir exploration. Fluid indicators
are crucial to distinguishing pore-fluid. The first fluid indicator is defined as the weighting difference of
P- and S-wave velocities (Smith and Gidlow, 1987) [1]. Hence, Fatti et al. (1994) proposed the weighting
difference of P- and S-wave reflection coefficients as a fluid indicator [2]. As the recognition technology
developed, the definition of the fluid indicator expanded into the impedance domain. Goodway
et al. (1997) showed the advantages of Lamé parameters in fluid discrimination while lithologic
parameters remained unchanged [3]; however, the identification accuracy of Lamé parameters will
decrease if lithologic parameters change. Quakenbush et al. (2006) defined a fluid indicator with a
bulk modulus, which was more sensitive to pore-fluid and more independent of a rock matrix than
the Lamé parameters [4]. Russell et al. (2011) generalized the fluid indicator to a Gassmann fluid
factor and enhanced the ability to distinguish pore-fluid [5]. Most conventional fluid indicators are a
combination of density and velocity. However, these fluid indicators can often provide uncertain results
when determining fluids because their sensitivity is conditional on the mixed effects of pore-fluid and
rock matrices (Zhang et al., 2010) [6]. To improve the accuracy of fluid identification, Yin and Zhang
(2014) presented an effective pore-fluid bulk modulus as a fluid indicator. It has been proven that the
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effective pore-fluid bulk modulus is advantageous in identifying reservoirs because it is only related to
pore-fluid [7].

AVO inversion is a useful tool to extract fluid indicators from seismic data directly. AVO
inversion methods can be divided into linear and nonlinear methods. The former uses linear AVO
approximations to establish inversion equations, while the latter uses exact expressions or high order
AVO approximations. Yin and Zhang (2014) deduced a linear four-term AVO approximation and
proposed a Bayesian AVO inversion method for an effective pore-fluid bulk modulus. By using
this method, the effective pore-fluid bulk modulus could be inverted from seismic data directly [7].
However, the four terms of this approximation are not completely independent, and this method needs
four angle gathers. Yin et al. (2018) put forward a new linear three-term AVO approximation and
enhanced the stability of inversion [8]. Nevertheless, we must analyze the exponential relationship
between porosity and shear modulus when we invert field data by employing this approximation.
Linear approximations have high precision under small incident angles and parameter differences at
both sides of an interface; however, they will suffer a loss of accuracy with increasing incident angles
and parameter differences. At present, neither exact nor nonlinear equations exist for an effective
pore-fluid bulk modulus.

In this paper, an effective pore-fluid bulk modulus is considered as a fluid indicator. Based on
Zoeppritz equations and the Biot–Gassmann theory, we first deduce a high-order AVO approximation
for the effective pore-fluid bulk modulus. Consequently, a direct nonlinear AVO inversion method is
formulated for the fluid indicator in a series reversion and Bayesian theory framework. Model and
field data tests follow.

2. Theory and Method

2.1. Sensitivity Analysis of the Effective Pore-Fluid Bulk Modulus

Various fluid indicators have been proposed to identify pore-fluid. In this section, we analyze
the sensitivity of several commonly used fluid indicators to detect pore-fluid changes in sandstone
reservoirs. By using the three types of sandstone model displayed in Table 1 [9], the P-wave modulus,
Gassmann fluid factor, and effective pore-fluid bulk modulus are computed. The calculation results
are shown in Table 2. To analyze the sensitivity of these three fluid indicators, we define the relative
variation as an identified parameter and visualize this identified parameter in the bar graph (Figure 1).
The larger the relative variation value is, the more sensitive the fluid indicator is to the change of
pore-fluid. The relative variations of the effective pore-fluid bulk modulus are the largest in all of
the three pictures in Figure 1. This demonstrates that the effective pore-fluid bulk modulus has more
advantages in identifying pore-fluid than the other two fluid indicators did.

Table 1. Three types of sandstone models by Hilterman (2001) [9].

Type Pore-Fluid P-Wave
Velocity (m/s)

S-Wave
Velocity (m/s)

Density
(g/cm3) Porosity (%)

1
Water 4115 2453 2.32 15
Gas 4050 2526 2.21 20

2
Water 3048 1595 2.23 15
Gas 2781 1665 2.08 20

3
Water 2134 860 2.11 15
Gas 1543 901 1.88 20
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Table 2. The calculation results of fluid indicators in sandstone models.

Type Pore-Fluid P-wave Modulus
(GPa)

Gassmann Fluid
Factor (GPa)

Effective Pore-Fluid Bulk
Modulus (GPa)

1
Water 39.29 −16.56 −17.66
Gas 36.25 −20.16 −12.90

2
Water 20.72 −19.75 −21.07
Gas 16.09 −6.98 −5.58

3
Water 9.61 3.37 3.59
Gas 4.48 −1.63 −1.70
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Figure 1. The relative variations of fluid indicators in sandstone models: (a) Type 1; (b) Type 2; (c) Type
3. M, F, and Kf represent the P-wave modulus, Gassmann fluid factor, and the effective pore-fluid
bulk modulus.

2.2. P-Wave High-Order AVO Approximations for the Effective Pore-Fluid Bulk Modulus

An effective pore-fluid bulk modulus has shown a clear advantage as a fluid indicator for
identifying pore-fluid. AVO inversion is a useful technology for extracting an effective pore-fluid bulk
modulus from seismic data directly, though a high-order approximation for inversion is nonexistent.
Here, a new estimation is deduced based on the Zoeppritz equations and Biot–Gassmann theory.
The Zoeppritz equations are the foundation of AVO methodology [10]. Based on the relationships
among seismic amplitudes, this equation can be expressed as (Keys, 1989) [11]
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where X represents sinθ, with θ as the incident angle; RPP and RPS are P- and S-wave reflection
coefficients, respectively; and TPP and TPS are P- and S-wave transmission coefficients, respectively.

For the incident P-wave case, A, B, C, and D are defined as (Kim and Innanen, 2013) [12]
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where γdry and γsat denote the velocity ratios of P- and S-wave in dry rock and saturated rock,

respectively. ∆ f / f , ∆µ/µ and ∆ρ/ρ are calculated by

∆ f

f
=

2( fi+1 − fi)
( fi+1 + fi)

, (3a)

∆µ
µ

=
2(µi+1 − µi)

(µi+1 + µi)
, (3b)

∆ρ
ρ

=
2(ρi+1 − ρi)

(ρi+1 + ρi)
, (3c)

where f and µ represent the Gassmann fluid factor and shear modulus, respectively, which can be
calculated by (Russell et al., 2011) [5]

f = ρα2
− γ2

dµ, (4a)

µ = ρβ2, (4b)

where ρ is density, and i and i + 1 are the upper and lower layers of the interface, respectively.
According to the Gassmann equation, the Gassmann fluid factor can be derived as (Han and

Batzle, 2003) [13]
f = GK f , (5)

where K f is the effective pore-fluid bulk modulus, and

G =
(1−Kn)

2

φ
, (6a)

Kn =
Kdry

Ks
, (6b)

where φ, Ks, and Kdry stand for the porosity of porous rock, the bulk modulus of solid grain, and the
bulk modulus of dry porous rock, respectively.

Based on the critical porosity model, Nur et al. (1998) provide the following equations [14]:

Kdry = Ks

(
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φ
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)
, (7a)

µdry = µs

(
1−

φ

φc

)
, (7b)

where φc, µs, and µdry denote critical porosity, the shear modulus of solid grain, and the shear modulus
of dry porous rock, respectively.

For the same reservoir, we assume that critical porosity is constant. Replacing µ with µdry, and
substituting Equations (5) and (7a,b) into Equation (2a–d), we have

A =

(
1−

∆ρ
ρ

)−1

, (8a)

B = γ−1
sat, (8b)

C =


(
1−

∆ρ
ρ

)
γ

2
dry

γ2
sat


1− γφ

∆φ

φ

−1

+

1−
γ2

dry

γ2
sat


1−

∆φ

φ
−

∆K f

K f

−1


1
2

, (8c)



Energies 2020, 13, 1313 5 of 18

D =
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By substituting Equation (8a–d) into (1) and applying the Taylor expansion to ∆K f /K f , ∆φ/φ
and ∆ρ/ρ, the P-wave reflection coefficient is deduced as follows:

Rpp = R(1)
pp + R(2)

pp + R(3)
pp + . . . , (9)

where, R(i)
pp (i = 1, 2, 3, . . .) are the different order terms of P-wave reflection coefficients, involving the

effective pore-fluid bulk modulus, porosity, and density. The ith-order approximation is written as
Rpp = R(1)

pp + . . .+ R(i)
pp (i = 1, 2, 3, . . .). Using the method of numerical analysis, we study the effect

of the expansion order number on the accuracy of the deduced approximation. For small incident angle
and parameter differences across the interface, the relative errors of different order approximations are
all less than 1%. With an increase of the incident angle and parameter differences across the interface,
the accuracy of the first- and second-order approximations decreases heavily. The relative error of
the third-order approximation increases but is still less than 1%. When the expansion order number
is greater than 3, the accuracy of the deduced approximation increases slightly, but the calculation
efficiency decreases heavily. We considered both accuracy and efficiency, and decided to use the
third-order approximation, which is expressed as
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Using the sand model in Table 3 (Yin and Zhang, 2014) [7], we compare the accuracy of these
approximations. P-wave reflection coefficients are computed through the Zoeppritz equations [10],
Aki–Richards approximation (Aki and Richards, 1980) [15], and different order approximations,
respectively. As shown in Figure 2a, the curves of the Aki–Richards approximation and different order
approximations all are close to the Zoeppritz curve. Small elastic parameter perturbations across
reflectors are caused only by pore-fluid (Model 1). In Figure 2b,c, note that the AVO curves computed
from the Aki–Richards approximation and different order approximations are close to the Zoeppritz
curve for incident angles less than 30◦. However, for larger incident angles the curve of the deduced
third-order approximation is the closest to the Zoeppritz curve. This is because the elastic parameter
perturbations across reflectors are caused by only porosity or both pore-fluid and porosity (Models 2
and 3).
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Table 3. Parameters of the sand model (Yin and Zhang, 2014) [7].

Pore-Fluid Kf (GPa) ρ (g/cm3) Vp (m/s) Vs (m/s) φ (%) φc (%)

Model 1
Gas 0.10 1.99 1920 1230 25 40

Water 2.38 2.26 2590 1150 25 40

Model 2
Water 2.38 2.26 2590 1150 25 40
Water 2.38 2.34 3580 2070 25 40

Model 3
Gas 0.10 2.12 3340 2170 25 40

Water 2.38 2.26 2590 1150 25 40
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Next, we analyze the information contained in reflections and the stability of inversion for the
first-order approximation. If the second- and higher-order terms of Equation (9) are neglected, it
becomes a linear approximation. The P-wave reflection coefficient is written as

Rpp ≈ R(1)
pp =


1

4
−

1
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γ2
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K f
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1
γ2

sat

γφ sin2 θ+

1
4
−

1
4

γ2
dry

γ2
sat

+
1
4

γ2
dry

γ2
sat

γφ

 sec2 θ

∆φ

φ

+
(
−

1
4

sec2 θ+
1
2

)∆ρ
ρ

.

(11)

In this equation, the effective pore-fluid bulk modulus, porosity, and density have different
proportions of information in their reflection coefficients. As a result, the stability of inversion for these
three elastic parameters is different. Equation (11) can be expressed as

Rpp =



(
1
4 −

1
4

γ2
dry

γ2
sat

)
sec2 θ

−2 1
γ2

sat
γφ sin2 θ+(

1
4 −

1
4

γ2
dry

γ2
sat

+ 1
4

γ2
dry

γ2
sat
γφ

)
sec2 θ


−

1
4 sec2 θ+ 1

2



T
∆K f

K f
∆φ
φ

∆ρ
ρ

, (12)

where the first term on the right of Equation (12) is the mapping operator between elastic parameters
and reflection coefficients.

Nicolao et al. (1993) proposed that the eigenvalues of this mapping operator matrix can be used to
measure the information of elastic parameters [16]. The eigenvalues are proportional to the information
content. The direction cosine of the eigenvector of the mapping operator matrix can reflect the difficulty
of inverting these elastic parameters. The greater the absolute value of the direction cosine is, the easier
the inversion is. Moreover, when the direction cosine equals zero, the inversion is unviable. By using
the first model in Table 3, the eigenvalues corresponding to the effective pore-fluid bulk modulus,
porosity, and density are shown in Figure 3a. When the incident angle is smaller than 30◦, the energy
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of the first eigenvalue (blue) is larger than that of the second eigenvalue (red) and the third eigenvalue
(black). Consequently, we only need to analyze the eigenvector of the first eigenvalue to get a different
degree in inverting these elastic parameters. As displayed in Figure 3b, the direction cosine of the
effective pore-fluid bulk modulus, porosity, and density is far away from zero. This means that these
three elastic parameters can be inverted by Equation (11).
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The stability of inversion is very important. Therefore, the method proposed by Yin et al.
(2018) is used to analyze the stability of Equation (11). Yin et al. (2018) deduced a three-term linear
approximation including the effective pore-fluid bulk modulus [8], an approximation of which can be
displayed as

Rpp =

[(
1
4 −

1
4

γ2
dry

γ2
sat

)
sec2 θ

]
∆K f

K f
+

[(
γ2

dry

4γ2
sat
−

2
γ2

sat
sin2 θ

)
+ 1

r

(
sec2 θ

4 −
γ2

dry

2γ2
sat

sec2 θ+ 2
γ2

sat
sin2 θ

)]
∆ fm
f m

+
(
−

1
4 sec2 θ+ 1

2

)∆ρ
ρ ,

(13)

where fm = φµ, r is the fit coefficient of φ and µ according to field data.
The logarithm of the condition number of weighting coefficients can measure the stability of the

inversion equation. The smaller the logarithm is, the more stable the inversion is. We compute the
values of Equations (11) and (13), the results of which are shown in Figure 4. With the increase of
incident angle, both of these two conditional numbers decrease. However, the conditional number
of Equation (13) is larger than that of Equation (11). This indicates that the stability of inverting the
effective pore-fluid bulk modulus, porosity, and density increases with an increase in the incident
angle, and that the stability of Equation (11) is better than that of Equation (13).



Energies 2020, 13, 1313 8 of 18
Energies 2020, 13, x FOR PEER REVIEW 8 of 18 

 

 
20 

10 

0 

D
ire

ct
io

na
l c

os
in

es
 o

f e
ig

en
ve

ct
or

s 

6 18 24 30 
Maximum incident angle (°) 

0 12 

13 
11 

 
Figure 4. Analysis of the condition number of the coefficient matrix in Equations (11) and (13). 

The weighting coefficients before elastic parameters in Equation (11) include 2 2
dry satγ γ . satγ  is 

the ratio of P- to S-wave velocities in saturated rock and can be calculated by logging data, while dryγ  
is the ratio of P- to S-wave velocities in dry rock. Russell et al. (2003, 2006, 2011) [5,17,18] estimated 
the value of 2

dryγ  through theoretical analysis and practical calculations, and proposed a possible 

range value for 2
dryγ . 

Here, we analyze the effect of 2 2
dry satγ γ  on the weighting coefficients of the effective pore-fluid 

bulk modulus, porosity, and density. According to Russell et al. (2011) [5], we assume that 2
satγ  is 4 

and 2
dryγ  is 2.33, 2.50, and 3.00, respectively. As shown in Figure 5, the weighting coefficient curves 

of these three elastic parameters are computed with an incident angle from 0° to 45°. With the 
variation of 2

dryγ , the pore-fluid bulk modulus (Figure 5a) and porosity (Figure 5b) curves change, 

while the density curve (Figure 5c) is unaffected. Therefore, 2 2
dry satγ γ  influences only the effective 

pore-fluid bulk modulus and porosity, while the density is unchanged. 

 
0.45 

0.25 

0.05 

W
ei

gh
te

d 
co

ef
fic

ie
nt

 

15 30 45 60 
Incident angle (°) 

1 

 
0.55 

0.35 

0.15 

W
ei

gh
te

d 
co

ef
fic

ie
nt

 

15 30 45 60 
Incident angle (°) 

1 

 
0.30 

-0.10 

-0.50 

W
ei

gh
te

d 
co

ef
fic

ie
nt

 

15 30 45 60 
Incident angle (°) 

1 

(a) (b) (c) 

Figure 5. Weighting coefficients of 2 2.33dryγ = , 2 2.50dryγ = , and 2 3.00dryγ = . (a) The effective pore-fluid 

bulk modulus; (b) porosity; (c) density. 

In this paper, we use the third-order approximation to establish a nonlinear AVO inversion 
method. This approximation includes the first-, second-, and third-order terms: 

(1) (2) (3)
pp pp pp ppR R R R≈ + + . (14)

2.3. Effective Pore-Fluid Bulk Modulus Nonlinear AVO Inversion Method 

AVO inversion includes linear and nonlinear approaches. By adopting the third-order 
approximation, the AVO inversion method is strictly nonlinear. Because the efficiency of the 

Figure 4. Analysis of the condition number of the coefficient matrix in Equations (11) and (13).

The weighting coefficients before elastic parameters in Equation (11) include γ2
dry/γ2

sat. γsat is the
ratio of P- to S-wave velocities in saturated rock and can be calculated by logging data, while γdry is
the ratio of P- to S-wave velocities in dry rock. Russell et al. (2003, 2006, 2011) [5,17,18] estimated the
value of γ2

dry through theoretical analysis and practical calculations, and proposed a possible range

value for γ2
dry.

Here, we analyze the effect of γ2
dry/γ2

sat on the weighting coefficients of the effective pore-fluid

bulk modulus, porosity, and density. According to Russell et al. (2011) [5], we assume that γ2
sat is 4

and γ2
dry is 2.33, 2.50, and 3.00, respectively. As shown in Figure 5, the weighting coefficient curves of

these three elastic parameters are computed with an incident angle from 0◦ to 45◦. With the variation
of γ2

dry, the pore-fluid bulk modulus (Figure 5a) and porosity (Figure 5b) curves change, while the

density curve (Figure 5c) is unaffected. Therefore, γ2
dry/γ2

sat influences only the effective pore-fluid
bulk modulus and porosity, while the density is unchanged.

Energies 2020, 13, x FOR PEER REVIEW 8 of 18 

 

 
20 

10 

0 
D

ire
ct

io
na

l c
os

in
es

 o
f e

ig
en

ve
ct

or
s 

6 18 24 30 
Maximum incident angle (°) 

0 12 

13 
11 

 
Figure 4. Analysis of the condition number of the coefficient matrix in Equations (11) and (13). 

The weighting coefficients before elastic parameters in Equation (11) include 2 2
dry satγ γ . satγ  is 

the ratio of P- to S-wave velocities in saturated rock and can be calculated by logging data, while dryγ  
is the ratio of P- to S-wave velocities in dry rock. Russell et al. (2003, 2006, 2011) [5,17,18] estimated 
the value of 2

dryγ  through theoretical analysis and practical calculations, and proposed a possible 

range value for 2
dryγ . 

Here, we analyze the effect of 2 2
dry satγ γ  on the weighting coefficients of the effective pore-fluid 

bulk modulus, porosity, and density. According to Russell et al. (2011) [5], we assume that 2
satγ  is 4 

and 2
dryγ  is 2.33, 2.50, and 3.00, respectively. As shown in Figure 5, the weighting coefficient curves 

of these three elastic parameters are computed with an incident angle from 0° to 45°. With the 
variation of 2

dryγ , the pore-fluid bulk modulus (Figure 5a) and porosity (Figure 5b) curves change, 

while the density curve (Figure 5c) is unaffected. Therefore, 2 2
dry satγ γ  influences only the effective 

pore-fluid bulk modulus and porosity, while the density is unchanged. 

 
0.45 

0.25 

0.05 

W
ei

gh
te

d 
co

ef
fic

ie
nt

 

15 30 45 60 
Incident angle (°) 

1 

 
0.55 

0.35 

0.15 

W
ei

gh
te

d 
co

ef
fic

ie
nt

 

15 30 45 60 
Incident angle (°) 

1 

 
0.30 

-0.10 

-0.50 

W
ei

gh
te

d 
co

ef
fic

ie
nt

 

15 30 45 60 
Incident angle (°) 

1 

(a) (b) (c) 

Figure 5. Weighting coefficients of 2 2.33dryγ = , 2 2.50dryγ = , and 2 3.00dryγ = . (a) The effective pore-fluid 

bulk modulus; (b) porosity; (c) density. 

In this paper, we use the third-order approximation to establish a nonlinear AVO inversion 
method. This approximation includes the first-, second-, and third-order terms: 

(1) (2) (3)
pp pp pp ppR R R R≈ + + . (14)

2.3. Effective Pore-Fluid Bulk Modulus Nonlinear AVO Inversion Method 

AVO inversion includes linear and nonlinear approaches. By adopting the third-order 
approximation, the AVO inversion method is strictly nonlinear. Because the efficiency of the 

Figure 5. Weighting coefficients of γ2
dry = 2.33, γ2

dry = 2.50, and γ2
dry = 3.00. (a) The effective pore-fluid

bulk modulus; (b) porosity; (c) density.

In this paper, we use the third-order approximation to establish a nonlinear AVO inversion method.
This approximation includes the first-, second-, and third-order terms:

Rpp ≈ R(1)
pp + R(2)

pp + R(3)
pp . (14)

2.3. Effective Pore-Fluid Bulk Modulus Nonlinear AVO Inversion Method

AVO inversion includes linear and nonlinear approaches. By adopting the third-order
approximation, the AVO inversion method is strictly nonlinear. Because the efficiency of the nonlinear
inversion method is pretty low in practice, series reversion is applied. Series reversion is an effective
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approach to transforming a nonlinear relationship into a linear relationship (Frank and Tat, 2001) [19].
For example, for the expression

y =
x

1− x
=

n∑
i=1

xi, (15)

the solution is
x = y/(1 + y). (16)

By using series reversion to solve Equation (15), x can be expanded in series as

y =
n∑

i=1

xi, (17)

where xi is the ith-order item of y.
Substituting Equation (17) into (15), we can express xi as

xi = (−1)i+1yi, i = 1, 2, . . . , n. (18)

By adopting Equation (18) into (17), x can be calculated as

x = x1 + x2 + x3 + . . . = y− y2 + y3 + . . . = y/(1− y). (19)

In this way, the P-wave reflection coefficient, the effective pore-fluid bulk modulus, porosity, and
density can be expanded in series. There are some tests for the effect of the expansion item number
on accuracy and efficiency. When these parameters are expanded into three items, this method has
advantages in both accuracy and efficiency. These parameters can be expressed as

Rpp = Rpp1 + Rpp2 + Rpp3, (20a)

K f = K f 1 + K f 2 + K f 3, (20b)

φ = φ1 + φ2 + φ3 , (20c)

ρ = ρ1 + ρ2 + ρ3 . (20d)

Combining Equation (20a–d) with (10a–d), we obtain

Rpp3 = R(1)
pp (K f 3,φ3,ρ3) + R(2)

pp (K f 2,φ2,ρ2) + R(3)
pp (K f 2,φ2,ρ2) + R(3)

pp (K f 1,φ1,ρ1), (21a)

Rpp2 = R(1)
pp (K f 2,φ2,ρ2) + R(2)

pp (K f 1,φ1,ρ1), (21b)

Rpp1 = R(1)
pp (K f 1,φ1,ρ1). (21c)

Additionally, using the approach of Zhang and Weglein (2009) [20], we can calculate Rpp1, Rpp2,
and Rpp3 through Rpp in four steps. First, according to Equation (21c), K f 1, φ1, and ρ1 are inverted
by the Bayesian theory. Second, K f 2, φ2, and ρ2 are inverted via the least square method based on
Equation (21b). Third, K f 3, φ3, and ρ3 are inverted using the last step from Equation (21a). Finally, K f ,
φ, and ρ are computed using Equation (20a–d).

In the first three steps, a linear inversion AVO method is functional. The AVO inversion is based
on the convolution model, which is written as

d=WR=WGm, (22)

where, d, W, m, and G are the seismic data, seismic wavelet, elastic parameters, and mapping operator
between d and m, respectively. Because G is usually an irreversible matrix, its conjugate matrix is
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commonly adopted to solve Equation (22). In general, the objective function of AVO inversion takes
the form of an L2 norm, which is expressed as

Jmin =
1
2

∫
(Gm− d)2dt. (23)

AVO inversion is an ill-conditioned and ill-posed problem. The single point estimation method is
commonly used to obtain optimal solutions for the objective function. However, it is unable to evaluate
solutions. Thus, this paper introduces the Bayesian inversion theory. The mathematical expression of
the Bayesian theory can be expressed as

P(m|d) = P(d|m)P(m)/P(d), (24)

where P(m|d) denotes the posterior probability function, P(d|m) is the likelihood function, P(m)

represents the prior distribution function (on which the results of this theory mainly depend), and
P(d) is marginal distribution, which is always a constant. It is assumed that the prior information
complies with multivariate Cauchy distribution, which is expressed as

P(m) = Pom exp

−2
N∑

i=1

ln
(
1 + mTΦim

), (25a)

Pom =
1

π2N |Ψ|N/2
, (25b)

Φ =
(
Di

)T
Ψ−1Di, (25c)

Di
nl =


1, n = 1, l = i
1, n = 2, l = i + N
1, n = 3, l = i + 2N
0, else

, (25d)

where N is the number of samples, and Ψ is a 3× 3 scale matrix.
The likelihood function obeys multivariate Gaussian distribution as

P(d|m) =
1

(2π)
N
2
√

detCd

exp
{
−

1
2
(d−Gm)TC−1

d (d−Gm)
}}

, (26)

where Cd denotes the noise covariance matrix.
The posterior probability distribution of parameters to be solved can be indicated as

P(m|d) =

−1
2
(d-Gm)TC−1

d (d-Gm) − 2
N∑

i=1

ln
(
1 + mTΦim

) . (27)

In terms of Equations (23) and (27), the objective function becomes

J(m) =
1
2
(d-Gm)TC−1

d (d-Gm) + 2
N∑

i=1

ln
(
1 + mTΦim

)
. (28)

By taking the derivative of Equation (28) with respect to m, m is given.

3. Results

In this section, a logging model and field data are used to validate the advantages of our new
inversion method.
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3.1. Model Data Test

A logging model from sandstone reservoirs was used to verify the feasibility of our inversion
method. The synthetic seismic record generated by the Ricker wavelet with a dominant frequency of
25 Hz is shown in Figure 6a (without noise) and Figure 6b (signal-to-noise ratio equals 2). Figure 7a
displays the inverted results of the synthetic gather without noise. The logging data, elastic parameters
inverted by the previous linear method (Yin et al., 2018), and proposed nonlinear method in this paper
are shown using black, green, and red lines. The errors between the logging data and the inverted
results are displayed in Figure 7b. The inversion results of the effective pore-fluid bulk modulus,
porosity, and density had the same trend as the logging data, while the curves of the proposed nonlinear
method were closer to the logging data curves. Figure 7c displays the values of L2 norm and shows
that these two methods could obtain a satisfactory result within five iterations. The final value of
the L2 norm in the proposed method case was smaller than that in the method of Yin et al. (2018).
Furthermore, we added noise to the synthetic angle gathers, as shown in Figure 6b. The inverted elastic
parameters of the synthetic angle gathers with and without noise are displayed in Figure 8a. Figure 8b
shows the errors of logging data and the inverted results. The error difference was relatively larger
in the noise case than in the noise-free case. However, the error between inverted elastic parameters
and logging data was not so severe. As can be seen in Figure 8c, the curves of the L2 norm were close.
Using the synthetic gathers without noise, we compared the accuracy and efficiency of the proposed
nonlinear method and the traditional fully nonlinear method (Zhou et al., 2016) [21]. Figure 9a shows
the inverted results of these two methods. The inverted values were both close to those of the logging
data. The curves of error are displayed in Figure 9b, without much difference between the curves.
However, the traditional fully nonlinear method took about 15 times as long as the proposed method.
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Figure 7. (a) Inversion results of the effective pore-fluid bulk modulus, porosity, and density by the
linear and proposed methods; (b) Error; (c) The values of the L2 norm.
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3.2. Field Data Test

Additionally, a real 2D dataset was used to measure the feasibility of the proposed method, with
mainly sandstone reservoirs as the target layers. Figure 10 is the post-stack seismic section, with gas
layers at 1.601 and 1.662 s, and water layers at 1.579, 1.620, 1.628, and 1.642 s, according to the logging
interpretation. Based on the logging data, we calculated the effective pore-fluid bulk modulus to test
its sensitivity to pore-fluid. The cross-plot of the pore-fluid bulk modulus and porosity is shown in
Figure 11. The different pore-fluid types can be clearly identified by the pore-fluid bulk modulus. We
transformed the pre-stack gathers from the offset domain to the angle domain and extracted angle
gathers from 3◦ to 38◦. A wavelet was statistically determined from the field seismic data for inversion.
Finally, the proposed inversion method was applied to obtain the elastic parameters.
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Figure 11. Cross-plot of the effective pore-fluid bulk modulus and porosity.

The inverted effective pore-fluid bulk modulus and density are displayed in Figure 12.
In Figure 12a, the values of purple area range from −1.5 to −0.5 GPa, which means gas sand,
while the red color ranges from −4 to −3 GPa, representing water sand. There are two purple areas
matching the gas sandstone reservoirs in the profile of the effective pore-fluid bulk modulus. Four red
layers exist and all correspond to the positions of water sandstone reservoirs. As shown in Figure 12b,
the gas sand in purple has an approximate value of 2.30 g/cm3. The value of the water sand in blue is
around 2.38 g/cm3. For the density profile, there are two purple layers and one blue layer. However,
the first purple layer at 1.579 s is not gas sand but water sand. The bottom three layers cannot be
identified on the profile. Note that the effective pore-fluid bulk modulus showed a better correlation
with fluid interpretation than density did.
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4. Discussion

In this study, we addressed three topics. First, we favored the effective pore-fluid bulk modulus
as a fluid indicator to identify pore-fluid in a sandstone reservoir. A data analysis model followed
and verifies the high sensitivity to pore-fluid change by the effective pore-fluid bulk modulus (Table 2
and Figure 1). With this in mind, a new high-order AVO approximation was deduced based on the
Zoeppritz equations and Biot–Gassmann theory. Appendix A includes the detailed formula derivations.
Figures 2–4 show the high accuracy and stability of this new approximation. Second, we introduce
the series reversion and Bayesian theory to build a nonlinear AVO inversion method. The results of
logging data tests showed that the proposed nonlinear inversion method had higher accuracy than
the linear method (Figure 7). The stability and noise-insensitivity of the proposed method were high
because of the Bayesian framework (Figure 8). The proposed method showed high accuracy and
efficiency by comparison with the traditional fully nonlinear inversion method (Figure 9). The field
data test showed the practicability of the proposed method and the strong identification ability of
the effective pore-fluid bulk modulus (Figure 11). Third, we briefly illustrated the limitation and
expectations of this work. Compared with other fluid indicators, the effective pore-fluid bulk modulus
was more sensitive to pore-fluid change. However, this methodology was only applicable for sandstone
reservoirs. Moreover, fluid indicators should be selected according to the actual reservoir conditions.
An assumption that the lithology of the target reservoir was constant was made during the derivation
of the new approximation. This presumption is inconsistent with real conditions, and will produce
errors when applying the new approximation into field data. A new study direction would be to
address this assumption. Finally, we use an AVO inversion method to obtain the effective pore-fluid
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bulk modulus from seismic data. This method relies heavily on the initial model, which is difficult to
build satisfactorily for field data inversion. Deep learning would be a promising alternative for the
future inverted method.

5. Conclusions

An effective pore-fluid bulk modulus is regarded as a fluid indicator that can identify pore-fluid in
sandstone. Based on the Zoeppritz equations and Biot–Gassmann theory, we first derived a high-order
approximation that estimated the effective pore-fluid bulk modulus directly. By introducing the series
reversion and Bayesian theory, a nonlinear AVO inversion method was proposed to invert the effective
pore-fluid bulk modulus. Model results demonstrate that the high-order AVO approximation had
higher precision than linear approximations and could be applied to AVO inversion. The results of the
field data test show the stability, effectiveness, and feasibility of our method in identifying pore-fluid
in a sandstone reservoir.
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Appendix A

The contents of this appendix show the weighting coefficients before ∆K f /K f , ∆φ/φ, and ∆ρ/ρ

of R(1)
PP , R(2)

PP and R(3)
PP .

Appendix A.1. The Weighting Coefficients before ∆K f /K f , ∆φ/φ, and ∆ρ/ρ of R(1)
PP

R(1)
pp = W11

∆K f

K f
+ W12

∆φ

φ
+ W13∆

∆ρ
ρ

, (A1)

where
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Appendix A.2. The Weighting Coefficients before ∆K f /K f , ∆φ/φ, and ∆ρ/ρ of R(2)
PP

R(2)
pp = W21

∆K f

K f

2

+ W22
∆φ

φ

2

+ W23
∆ρ
ρ

2

+ W24
∆K f

K f

∆φ

φ
+ W25

∆K f

K f

∆ρ
ρ

+ W26
∆φ

φ

∆ρ
ρ

, (A2)

where

W21 =
1
8

1−
γ2

dry

γ2
sat


sin2(θ) +

γ2
dry

γ2
sat

,



Energies 2020, 13, 1313 16 of 18
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