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Abstract: This study proposes a fuzzy self-organized neural networks (SOM) model for detecting
fraud by domestic customers, the major cause of non-technical losses in power distribution networks.
Using a bottom-up approach, normal behavior patterns of household loads with and without
photovoltaic (PV) sources are determined as normal behavior. Customers suspected of energy theft
are distinguished by calculating the anomaly index of each subscriber. The bottom-up method used is
validated using measurement data of a real network. The performance of the algorithm in detecting
fraud in old electromagnetic meters is evaluated and verified. Types of energy theft methods are
introduced in smart meters. The proposed algorithm is tested and evaluated to detect fraud in smart
meters also.

Keywords: fraud-detection; non-technical loss; power distribution; load profile modeling; data
mining; fuzzy-SOM

1. Introduction

Power grids fall into three main sectors of production, transmission and distribution. A large
portion of the power grid losses belongs to distribution networks due to their expansiveness, speed
of development and inappropriate operation. In 2018, 10.79% of the electricity delivered to Iran’s
national grid was lost in distribution. That is equivalent to a stunning amount of 32 billion kWh [1].
Generally, electrical energy losses are the portion of electricity that is injected into the transmission and
distribution grid but is not paid for by end-users. In other words, part of the electricity injected into the
transmission and distribution grid, which does not generate any revenue for the electricity providers,
is called loss of electricity. Electricity losses consist of two main components, namely “technical losses”
and “non-technical losses”. Technical losses occur due to the current passing through the inherent
characteristic of electrical resistance of the conductors of the grid. These types of losses are found in
transmission and distribution lines, transformers and metering systems. Non-technical losses originate
from off-system activities and occur in various forms, including electricity theft, non-payment by
subscribers, and errors in recording and calculating energy costs. An important issue facing the
problem of losses in electricity distribution networks is the serious challenge of unclear share of
technical and non-technical losses in the networks. Calculated technical losses are not reliable because
of insufficient information, poor quality of equipment, poor installation quality and low operational
quality. Introduction of small-scale generators into the grid, and especially small domestic solar
units, as well as wind mini-generators, micro-hydro generators, etc. has increased the complexity
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of assessing electrical energy losses, especially in the non-technical sector. The conventional rule of
detecting non-technical losses in power distribution companies includes field visiting and testing
customer meters. The aforementioned methods result in less detection of those subscribers who
disrupt their meters at certain times but for the whole metering period. The non-technical losses
imposed on the power grid thus account for a significant share of total non-technical losses. In addition,
the high number of customers and the need to test all network meters make these methods very costly.
In practice, in many cases the high cost of testing equipment, the cost of manpower and the cost of
transporting swallows a large portion of the revenue from non-technical loss recovery.

Numerous studies have so far provided useful solutions to detect such fraud. A method for
detecting fraud by high-voltage customers is presented in [2,3]. The methods presented in these
studies are based on artificial intelligence and data mining and have achieved successful results.
Another interesting research work is that of Monedero et al. [4]. The proposed method based on
artificial neural networks was used in the Spanish Seville power grid, and the remarkable result
was a 50% improvement in the detection of non-technical casualties compared to previous methods.
In general, methods for detecting non-technical losses and unauthorized use of the power grid can be
divided into three categories: theoretical methods, hardware methods and data analysis methods [5].
Among these, data-analysis-based methods have the highest share, which in practice are preferred
over other methods because of the high cost of meter testing or installation of consumption monitoring
hardware. Numerous proposed and tested methods have had significant results in monitoring and
reducing technical losses, but technological changes such as smart grids techniques and technologies [6],
digital meter technology, and the development of domestic energy generation using on-grid rooftop
photovoltaic (PV) panels have created complexities in non-technical loss-detection models. Various
articles have focused on the detection of non-technical losses and unauthorized use of the network
in smart networks [6–9], but the issue of non-technical losses in networks with large numbers of
grid-connected small scale generations has been considered in few research works. The effect of such
resources on non-technical losses of distribution grids, has received less attention in the literature.
Expanding the use of almost no-cost solar/mini-wind/micro-hydro power (apart from initial investment
costs) will generally encourage a minimal use of the costly network energy, but the problem arises
when there are similarities between the behavior of subscribers suspected of manipulating meters and
subscribers using these small resources. This similarity of consumption behavior makes it difficult to
distinguish these two types of subscribers using the methods presented in previous research. This study
focuses on rooftop grid-connected solar resources, where the model may be extended to mini-wind
and micro-hydro generation using the relevant resource models.

There are also some other small-scale resource technologies such as small parabolic solar collectors
which are mostly used for heating and cooking, hence are not included in the study.

The basic goals of this study can be summarized as follows:

• Accelerating detection and control of non-technical losses of distribution networks.
• Controlling the cost of detecting non-technical losses in power distribution companies.
• Providing an efficient model for consumption management.
• Modeling the effect of renewable resource development on customers’ load behavior.

Modeling the non-technical losses of distribution networks in this study is fully consistent with
a variety of conventional energy theft methods. The comprehensive model presented is applicable
to a wide range of distribution networks, both traditional and modern smart distribution networks,
which has received little research attention.

Customers’ energy consumption is measured using modern smart meters in the Iranian power
distribution network, but there are still significant numbers of electromagnetic or old digital meters in
the network. Due to the differing data resolution available in traditional meters and smart meters,
the detection method of non-technical losses of these two types of subscribers is different in some stages.
The method presented in this study is based on data-mining models. Since some subscribers who have
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successfully passed the meter test process may also have attempted energy theft, the consumption
data of the verified meters alone cannot provide a precise pattern of customer consumption behavior.
We use a bottom-up approach to determine the electrical energy consumption pattern. Electrical load
profiles are generated for customers with and without rooftop photovoltaic resources.

The proposed bottom-up model simulates the random behavior of the customers and, thus,
the load profile may be different from one customer to another. The effect of rooftop PV on load
profile is then. This study considers photovoltaic systems equipped with maximum power point
tracking (MPPT). A method based on self-organized neural networks (SOM), is proposed to detect
suspected subscribers to fraud and consumption anomalies. The model is then evaluated in a real
sample network.

2. Modeling Domestic Load Profile

We need to know the behavior of loads, and in particular, domestic customers in this study. Some
studies of power distribution networks such as master planning, loss reduction studies and protection
coordination studies use cumulative models of load behavior. A common method of analyzing load
behavior is to measure the simultaneous power consumption of a number of customers of a particular
category (e.g., domestic, commercial, industrial, etc.) and extend it to other customers of the same
category using coincidence factors [10]. The factor decreases as the number of subscribers increases.
Examples of coincidence curves are given in different references such as in [11]. The peak demand
obtained from these methods is used to design the network and coordinate protection relays, but
for applications such as load management and energy theft analysis, a higher resolution of power
consumption data is required. The cumulative load behavior curve is the sum of individual customers’
load profiles, and the load profile of each individual customer is the sum of the load behavior of its
electrical appliances. The methods used to aggregate the behavior of electrical appliances to reach
the customer’s load behavior are called “bottom-up” methods [12–15]. The bottom-up approach is
recognized as one of the most widely used methods that enables the study of consumer behavioral
patterns and the effects of load response programs [16]. These can be achieved by examining the
behavioral pattern for using home appliances [17] or by using the data of energy bills together with
specific questionnaires [18]. The latter method is based on statistical data that can be very accurate
in analyzing buildings energy demand [18]. Some studies have used such accurate information on
residents and home appliances to model electricity consumption [19–21] while others have used methods
to extract random models that reduce the need for detailed and accurate statistical information [22–26].
A bottom-up approach has been used to model the energy consumption of a home by considering
the level of activity of consumers (either when residents are at home or when they are not) and their
behavior pattern in [27]. Another model has been developed for studying electricity and hot water
consumption based on consumption time data in [20], where a good accuracy of results compared
to actual and measured values is demonstrated. Important features of the bottom-up methods are
categorized in [28], the most important of which are:

• It is simple and easy to implement.
• Macroeconomic and social factors can also be included in the model.
• It is very suitable for determining the energy consumption and related parameters.
• It is always capable of developing, computing and newer studies.
• It does not require very detailed information and can be conducted using billing data

and questionnaires.

Therefore, the bottom-up approach is a good way to extract the energy consumption curve as it
involves the behavior patterns of residents and the use of different appliances [27]. Due to the necessity
of knowing the consumption behavior of each individual household, the bottom-up method is used in
this study to extract the load profile.
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2.1. Typical Domestic Load Profile

Household consumption in cold and hot seasons has a completely different behavior pattern in
most areas of Iran. The main reason is the different types of heating and cooling systems. The increase
in the share of vapor compression cooling in recent years has led to a significant jump in the country’s
peak load during the warm season. In order to better understand the pattern of load behavior, we take
a closer look at the load consumed by home subscribers.

Reference [10] classifies home electrical appliances into four categories: brown goods, white
goods, minor appliances, and lighting systems. Relatively low consumption electronic equipment
such as communication equipment, desktops, scanners, CD/DVD players, TVs, modems etc. belong to
the category of brown goods. Basic household necessities are called white appliances. These include
kitchenware, laundry and heating and cooling appliances. Minor appliances are the type of electrical
equipment that are typically found in any home and are usually portable. Some of these minor
appliances include: electric kettle, toaster, juicer, coffee maker, ironing, fan, vacuum cleaner, sewing
machine, mobile phones, home digital cameras, radios, mp3 players, tablets, hair dryer, shaver, etc.

Various factors affect the load profile of household subscribers, the most important of which are:

• Temperature in terms of maximum summer temperature and minimum winter temperature.
• Yearly average temperature.
• Economic factors such as the price of all types of energy resources such as electricity, gas, etc., the

price of household electrical appliances, the per capita income of the household, and the economic
situation of the community.

• Demographic factors such as the number of households and population growth over a given period.
• Welfare level and infrastructure level of houses.

The modeling performed in this study and the measurement results along with the simulation
results confirm the significant effect of summer daytime temperature on the load behavior curve.

2.2. Mathematical Modeling of Load Profile

A prominent feature of the bottom-up model is that it can be used to analyze the load behavior
of each individual subscriber. Figure 1 illustrates the logic used for modeling. The daily load curve
is actually created by repeating two loops. In the first loop, after choosing the type of household, a
load curve will be created for each of the equipment in the house. This procedure is repeated in the
second loop for all the equipment and the cumulative consumption curve is added to the previous
curves to obtain the final household load curve. The appliance list varies from house to house, so a
coefficient is defined as the level of saturation that indicates the likelihood of a particular home being
equipped with a particular appliance (Pstart). In fact, for a large number of homes, this coefficient gives
the frequency of a particular home appliance. For example, a saturation level of 0.93 for an appliance
in 100 residential homes means that there are 93 units of that special equipment in the 100 homes [13].
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Assuming that the equipment list and associated saturation range are known, a mathematical
model is needed to construct the energy consumption curve. The basic idea is that if a particular
appliance is switched on, the power consumption will be added from the time step of switching on to
the whole house until the equipment operation cycle is completed and the equipment is switched off.
The daily consumption curve will be calculated from the sum of each individual consumption curve
when this process is repeated for all appliances. Depending on the customer’s consumption pattern,
a specific appliance can be switched on at any time of the day at various times. This part is actually one
of the most important parts of modeling. In this study, a start probability function (Pstart) is introduced
representing the probability of the appliance turning on at each time step. Any electrical appliance has
the highest chance of being turned on at certain times of the day. A clear example of this is the lighting
lamps that are most likely to be lit in the early hours of the night, but that does not mean that they
do not start at other times. For the mathematical definition of this problem, for each appliance, the
probability distribution function is defined whose maximum value or values correspond to peak hours
of probability of start, and the starting probability at other times follows a normal distribution pattern.
Pstart takes a value between zero and one. When the appliance is off, the search for the next start begins
based on Pstart. This is done by generating a random number of probability distributions related to
it. When the appliance turns on and completes its duty cycle, the search for the next switch-on time
begins. The Pstart probability function can be calculated using the following equation [13]:

Pstart(A, ∆t, h) = Phour(A, h) × f (A, d) × Pstep(∆t) × Psat(A) (1)

where Pstart is related to three variables, A indicates the type of the proposed appliance, ∆t is the
calculation time step, h is the daily time in hours, and Psat(A) is the saturation level of appliance A as
previously described. Phour is the probability factor that specifies the activity level of any appliance at
any time of the day. The larger the amount, the higher the probability of the appliance being turned on,
and vice versa. f is the frequency of turning the appliance on, which indicates the average number of
times a particular appliance is used per day. Pstep is a scaling factor that scales probabilities on the
basis of ∆t.

Equation (1) applies to all appliances. When an appliance is switched on, its rated power added
to the customers’ load profile during the operating cycle, and then the equipment is switched off to
begin the search for the next switch on. Standby power of equipment is also considered in this study.
For example, refrigerators and TVs consume some power even when they are off, which is included
in calculations.

3. Grid-Connected Photovoltaic Source Behavior

Small grid connected PV resources have resulted in a significant behavioral change in the load
pattern by contributing to supplying part of the customer’s demand and also providing part of the
grid’s required power from their surplus. This has made it necessary to consider the impact of these
resources in analyzing the customer’s behavior. In this study, the effect of the performance of small
photovoltaic sources on the load profile of households is investigated using mathematical modeling
and computer simulation.

There are various approaches to exploiting solar generation [29]. One of the most common
approaches is to generate solar energy through MPPT and to exploit the maximum solar radiation
power available. When solar power is operated as MPPT, there will be no freedom to participate in
frequency control, because there is no capacity to increase production in this case, however, for the
small producers in this study, the main objective is to provide the power consumption and utilize the
maximum capacity of the installed system. Therefore, this study investigates a photovoltaic system
operated under an MPPT strategy in grid-connected mode and the performance of the proposed
system in tracking maximum output power under different sunlight conditions and finally its effect on
the load profile of home subscribers is considered.



Energies 2020, 13, 1287 6 of 24

3.1. Modeling of Solar Panels

The PV module is a non-linear device that can be considered as a current source as shown in
Figure 2 [30–32]. Regardless of the internal series resistors, the common current-voltage (I-V) equations
of a solar module can be expressed as in Equation (2);

Io = NpIg −NpIsat

(
exp

(
qVo

ADKTmod

)
− 1

)
− Irsh (2)

where Io is the output current of the PV module, Np is the number of cells in parallel, Ig is the current
generated by solar radiation, Isat is the reverse saturation current, q is charge of an electron, Vo is the
output voltage of PV module, AD is the ideality factor of the diode, K is the Boltzmann’s constant and
Irsh is the current due to intrinsic shunt resistance of the PV module.
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The saturation current of the solar module Isat varies with temperature fluctuations as formulated
in Equation (3):

Isat = Ior

(Tmod
Tr

)3
exp

(
qEg

KTmod

(
1
Tr
−

1
Tmod

))
(3)

Ig = Isc
Si

1000
+ It(Tmod − Tr) (4)

where Ior is the saturation current at reference temperature (Tr), Eg is the band-gap energy, It is the
short-circuit current temperature coefficient, Isc is the short-circuit current of PV module, Si is the solar
insolation, and Tmod is temperature of the PV module in K.

The current through the shunt resistance is calculated as follows:

Irsh =
Vo

NsRsh
(5)

where Ns Is the number of cells in series, and Rsh is the internal shunt resistance of the PV module.

3.2. Maximum Power Point Tracking (MPPT) Modeling

Several algorithms have been proposed for maximum power point tracking. These algorithms
can be divided into three general categories [33,34]:

• Perturb and observation (P&O) algorithm [35–37];
• Incremental conductance algorithm [37–39];
• Soft computing methods such as fuzzy logic control-based algorithms [40], artificial neural network

(ANN)-based algorithms [41], Genetic Algorithm (GA)-based algorithms [42], Particle Swarm
Optimization (PSO) [43], etc.

Any of the mentioned algorithms could be adapted for the purpose of this research due to the
flexibility of ANN-based model used. The incremental conductance method [38,39] is used to model
the maximum power point tracking in this study. The dP/dV must be equal to zero at the maximum
power point [44], so:

d(V × I)
dV

=
dV
dV
× I +

dI
dV
×V = I +

dI
dV
×V = 0 (6)
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dI
dV

+
I
V

= 0 (7)

At any given moment, the MPPT checks the zero-sum requirement of dI/dV and I/V. If the resultant
is not zero, the proportional-integral (PI) controller considers the value of the product as error and
minimizes it. The value at the output of the PI controller is the amount of change required in the duty
cycle. This value is added to the current duty cycle value. For better convergence, the initial value of
duty cycle has been set to 0.75 by trial and error. The concept of the proposed controller is shown in
Figure 3.
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4. Data Mining Methods for Fraud Detection

Detection of anomalies is done using the famous knowledge discovery model. These models are
widely used in data-mining research [2,45–47]. Given the similarity of energy consumption behavior in
small areas with relatively homogeneous distribution and living standards, the use of non-supervised
knowledge discovery methods allows data clustering. The SOM method is used for clustering and
then detecting anomalies in subscriber consumption profile in this study. Anomalies in the load profile
can be the result of a common fraud or a failure in the metering system, which in any case is the
non-monetization of the relevant shared energy consumption for distribution companies, equivalent to
non-technical losses.

The SOM network uses competitive learning to train and is developed based on specific
characteristics of the human brain. The cells in the human brain are organized in different areas so that
in different sensory areas they are presented with meaningful computational maps. Self-organized
networks are structurally divided into several categories in which we used the Kohonen network in
this study. The SOM is an unsupervised neural network composed of neural neurons in a regular,
low-dimensional grid structure. Each neuron has an n-dimensional weight vector where n is the
dimension of the input vectors. Weight vectors (synapses) attach the input layer to the output layer.
This is called the output layer, map or competitive layer. The neurons are connected by a neighborhood
function (as shown in Figure 4). Each input vector, by most similarity, activates a neuron in the output
layer called the winning cell. The similarity is usually measured by the Euclidean distance between
two vectors [48].

D j =
n∑

i=1

[∣∣∣Wi, j −Xi
∣∣∣]2

(8)

where Xi is the ith input vector of the neural network, Wi, j is the the weight vector which connects the
ith input to the jth output, and D j is the sum of the Euclidean distance between input sample Xi and its
associated weight vector to output j called a map unit.
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The most important difference between the SOM training algorithm and other vector quantization
algorithms is that in addition to the highest matching unit weight (the winner neuron), the weights of
the neighboring cells of the winning cell are also updated. Close-up observations in the input space
activate two close-up units in the map. The training phase continues until the weight vectors reach
steady state and no longer change:

Wnew
i, j = Wold

i, j + hi, j
(
Xi −Wold

i, j

)
(9)

where Wnew
i, j is the updated weight vector between input cell i and output cell j, Wold

i, j is the
previous weight vector between input vector Xi and weight vector to output neuron j, and hi, j
is the neighboring function.

After the training phase, i.e., in the mapping phase, it will be possible to automatically classify each
input data vector. In the training phase, auxiliary tags such as shared zip code (specifying geographical
area and living standard), main fuse capacity of meter, type of meter (digital or analog), tariff type
and meter reading period (time tag) are used. The anomaly detection algorithm in electrical energy
consumption is illustrated in Figure 5. The procedure for detecting abnormalities in a customer’s
behavior is such that a mass-normal behavioral dataset is generated by simulation. This data is used
as the input data of a SOM network for neural network training, and after clustering the bulk data,
the centers of each cluster are considered as the normal behavior center. Among the consumption
profiles located in each cluster, profiles whose elements have the maximum Euclidean distance to the
center of the respective cluster are considered as normal boundary load profiles and customers located
outside this boundary are classified as suspected substrates. The Euclidean distance of the suspected
subscribers to the anomaly is normalized based on 9 and the normalized distance of any suspected
subscriber from the nearest center of the cluster is defined as the “anomaly index”.
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The procedure for detecting anomalies in customers’ behavior is such that a mass data of normal
behavior is generated by simulation. This data is used as the input data of a SOM network for neural
network training, and after clustering the bulk data, the centers of each cluster are considered as the
normal behavior centers. The load curve of each customer lies at a specified distance from the centers of
the clusters. The distance of each load curve from the center of the corresponding cluster is calculated
using Equation (10):

DLi, j =


√√√ 24∑

t=1

(
PLi,t − PC j,t

)2


nc

j=1

(10)
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where DLi, j is the distance of the ith load curve from the center of the jth cluster. t is the time, PLi,t is the
load of the ith customer at time t, PC j,t is the load of the center of the jth cluster at time t, and nc is the
number of clusters. The membership function of each load curve in any cluster is calculated as below:

µi, j = max
(

1
DLi, j

)
(11)

where µi, j is the membership of any customers to normal behavior.

5. Case Study

5.1. Simulation of the Load Profile of Household Customers

Characteristics of electrical consumer appliances of a total of 76 residential houses were collected
using a questionnaire in Golgouah, Mazandaran, Iran. All meters of these customers were tested and
evaluated prior to the measurements. All of these subscribers are powered by a 20/0.4 kV-160 kVA
pole-mounted substation. A TDL104 data logger was used to measure these customers’ consumption
and extract the load behavior curve. In 30 min time intervals, the information of the instantaneous
active power, the instantaneous reactive power, the instantaneous voltage and the average consumed
energy were measured for a total of 82 customers [49]. The results obtained in the measurement are
used to validate the proposed model. In order to obtain homogeneous and analytic information, it has
been attempted to perform measurements on feeders with similar welfare levels. For this purpose,
a three-dimensional map of the load density of domestic loads was implemented in the geographic
information system (GIS) for the city of Galougah (Figure 6) [50]. The specifications of the feeder
measured are given in Table 1.
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Table 1. Specifications of the data logger installation point.

Substation Name
Transformer Nominal

Capacity (kVA)
Customer Classes

Domestic Public Industrial Commercial and Other

Zeytoon Complex 160 76 2 - 4

Based on the data obtained from the questionnaires, home appliance brands of the Iranian market
and the energy label class of appliances, the list of home appliances used was extracted as described
in Table 2. The pattern used in this section is adapted from [13]. Equation (1) is applied to any of
the electrical energy-consuming appliances. At the beginning of each computational step, a random
number between 0 and 1 is generated and compared with Pstart. If Pstart is greater than the random
number generated, the consumer switches on and remains on until t = tstart + tcycle. After that,
the process of checking the condition for the next switch-on begins again. If the appliance also
has a certain power consumption in standby mode, its standby power is added to the entire power
consumption curve as a constant. This holds true for loads such as televisions. The value of tcycle is the
average time period each appliance stays on [13].
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Table 2. Power consumption characteristics of household electrical appliances.

Appliance Appliance
Saturation

Nominal
Wattage [W] Standby [W]

Mean Daily
Starting

Frequency [f]

Time Per Cycle
[min]

Microwave Oven 0.2 1500 - 5 2
Refrigerator 1 180 10 44.5 15

Coffee Maker 0.1 1200 - 0.76 6
Clothes Washer 0.75 2000 - 0.22 65

Other Kitchen Appliance 0.2 300 - 0.1 10

TV 1 180 10 2 120
PC and Laptop 0.92 110 3 2.5 70
Gaming Tools 0.22 100 2 1 120

Air Conditioner 0.9 2100 - 2 120
Hair Dryer 1 1200 - 0.2 7

Lighting 1 160 - 10 30
Electric Kettle 0.4 480 - 2 6
Dish Washer 0.15 2000 - 0.14 190

Iron 1 1700 - 0.3 7

Cooling and Ventilation fans 0.91 80 - 1 120

Battery Chargers and Voltage Adaptors 1 5 - 3 60

Electric Water Heating 0 2000 - - -

The consumed energy by each home during the one-month period can be calculated using
Equation (12). Equation (12) gives the required values for verifying the proposed model in electric
power distribution networks with no smart energy metering systems.

Emonthly =

[
3600× Pstandby + f

∑napp

n=1 Pnom × tcycle
]
× 30

3.6× 106 kWh/month (12)

where Pstandby is the standby power of each appliance (W), Pnom is the nominal power of each appliance
(W), napp is the number of appliances in each home, and tcycle is the the average time period that each
appliance stays on.

Mathematical simulation is performed using MATLAB. The simulation is done for one day and
is extended to thirty days. The behavior of loads such as refrigerators and cooling systems largely
depends on the behavior of homeowners, but the modeling of this problem will be very complex.
For simplification, the average single-cycle behavior of these types of equipment is used to simulate.
Simulations and measurements are related to the warm season of the year.

Subscriber well-being is another issue that has a profound effect on subscriber behavior. This study
uses data from subscribers with approximately equal welfare levels. Baseline information of Table 2 is
used for the simulations. This data arrangement, adapted from [13], has been modified to fit the home
appliance available in the Iranian market [51]. The table also includes a column called saturation level,
which is the ratio of the number of household appliances of each type to the total number of dwellings
under study. The switch-on likelihood of each of the appliances listed in Table 2 varies at different times
of the day. For example, it is clear that the switch-on probability of the cooling system are highest in
the hot hours of the day. Also, lighting loads are more likely to happen at night. Values less than 1 for
the start frequency in Table 2 mean that the appliance is switched on once in a few days. For example,
the value of 0.22 for the washing machine indicates that this equipment is mostly turned on once every
four to five days and does not function daily. Pstart is the probability of each equipment turning on at
any given time step. In this study, unlike similar studies, the start-on probability distribution function
of each device is used instead of using a constant start-on program [52] or using a specified Pstart value
as the start-up probability of each device on every hour [13,19]. The starting probability distribution
function of each appliance is assumed to be normal around the maximum possible start hours. Figure 7
shows the start-on probability density of each of the equipment listed in Table 2. Equipment such as air
coolers are more likely to start during hot hours, but in the case of refrigerators, no hours predominate
over other hours, as seen.
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Figure 7. The start-on probability distribution of home appliances. (a) Microwave Oven; (b) Refrigerator;
(c) Coffee Maker; (d) Clothes Washing Machine; (e) Regular Kitchen Appliances; (f) TV; (g) Laptops and
PCs; (h) Gaming Tools; (i) Cooling; (j) Hair Drying; (k) Lighting; (l) Electric Kettle; (m) Dish Washer;
(n) Clothes Ironing; (o) Cooling and Ventilation fans; (p) Battery Chargers and Voltage Adaptors.

The simulation using the proposed model generates the behavioral curve of each electrical
appliance. The total load curve of each house is obtained by integrating the load behavior curves of
the electrical equipment inside it. Figure 8 shows the load behavior of several household customers
with different load behavior types. The horizontal axis in the diagrams is calibrated in minutes.
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Figure 8. (a)–(d) Simulation result: load profiles of four common samples with four different load
profile types.

5.2. Model Validation

Figure 9 illustrates the comparison between simulation results and measurement results in the
sample grid with the specifications given in Table 1 to validate the model. Measurement results belong
to the mean days of 16 July to 10 August 2019 [53]. Due to the different behavior of subscribers on
holidays and semi-holidays, weekends are omitted on average load behavior calculations. Simulation
results are obtained with one-minute accuracy, but they need to be calculated in the form of 30 min
sets, since the measurements were made in 30 min intervals.
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Figure 9. Comparison of load profile measurement results and simulation results.

To calculate the amount of error between the simulation results and the measurement results, the
values of normalized root mean square error (RMSEnorm), normalized mean absolute error (MAEnorm)
and relative mean error (MRE) are calculated as follows [54]:

RMSEnorm =
1

avg(mi)

√√√
1
y

 y∑
i=1

(ei −mi)
2

 (13)

MAEnorm =
1

y× avg(mi)

y∑
i=1

|ei −mi| (14)

MRE =
1
y

y∑
i=1

∣∣∣∣∣ ei −mi
mi

∣∣∣∣∣ (15)

where e and m are the values obtained from the simulation and the measured values respectively.
Also y represents the number of values to be compared.

The calculated values of RMSEnorm, MAEnorm, and MRE are 8.89%, 6.19% and 7.42%, respectively.
The average magnitude of the absolute values of simulation errors is 4.69%. The average daily
energy consumption measured is 13.51 kWh per customer compared to 13.03 kWh as the average
daily energy consumption per customer obtained from the simulation, which shows a difference of
approximately 3.5%.

5.3. Simulation of the Effect of Grid-Connected Photovoltaic Resources

It is assumed that 10% of subscribers will use grid-connected photovoltaic panels to supply their
required energy and sell their surplus energy to the global grid. Considering the average floor area
of homes of the studied town and the on-grid inverter panels and inverters available in the market,
the rated power of 1, 1.5 and 2 kW grid PV systems is considered. The characteristics of the simulated
modules in this study are described in Table 3. The specifications given in Table 3 are specific to
standard temperature conditions (25 ◦C) and the increase in temperature reduces the efficiency of
the photovoltaic module [55,56]. The effect of temperature on the output power of the PV module is
modeled by coefficients µIsc and µVoc. The performance factor (PR) depends on a number of factors,
including inverter losses, AC and DC cable losses, shadow or cloud output power loss, and reduced
efficiency caused by dust and snow on the modules.
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Table 3. Specifications of the simulated PV module.

Nominal
Power

[W]
Technology

Maximum Power Temperature
Coefficient Size [mm ×

mm]
Efficiency

[%]
Performance

Ratio [PR]Impp
[A]

Vmpp
[V]

µIsc
[mA/◦C]

µVoc
[mV/◦C]

250 Si-poly 8.330 30.0 4.3 −137 1640 × 992 15.3 0.5−0.9

The temperature profile and the amount of solar radiation power are other required data.
These data are available with a maximum resolution of 1 h (Figures 10 and 11). As shown in Figure 10,
the solar radiation power in the study period is very diffuse and variable. The reason for this is the
proximity of the city under study to the Caspian Sea and, as a result, high cloud changes. The effect of
these drastic changes is modeled with the help of the performance factor (PR). In this study, the PR value
is assumed to follow a normal probability distribution in the range of the numbers given in Table 3.
The load profile of a sample customer with a PV module is shown in Figure 12. The photovoltaic panel
connected to this particular customer is intended as 1 kW. At certain times, the customer load profile
goes negative. This is due to the times when the amount of power generated by the PV exceeds the
load consumed and the customer delivers surplus power to the grid.
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Figure 12. Load profile of a sample customer with grid-connected PV.

Customers equipped with a grid-connected PV are connected to the grid in two ways; one is a
customer whose photovoltaic panels are connected directly to the grid via the inverter and then the
energy meter. All the solar energy generated by these customers is sold to the grid in the retail market.
These customers purchase all their needed electricity from the global network. This type of connection
is used in cases where the energy generated by the customer is purchased from the customer at a
price higher than the energy sales tariffs, in order to encourage the development of renewable energy
production. Obviously, these customers fall into the category of subscribers without PV in terms of
load behavior analysis. The second category is customers who self-supply by PV power and deliver
surplus electricity to the grid. In the analysis performed in this study, these customers, which are
connected to the global network by means of bi-directional meters, fall into the clusters of PV-equipped
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subscribers. In fact, the load profile of these subscribers is the result of subtracting the consumption
and the production power.

Iran’s National Smart Metering Program, known as FAMAM, collects the metering data every
15 min. Although simulation results are available with a resolution of one minute, the simulations of
the load behavior are appropriately adapted for 15 min intervals.

5.4. Mass Data Generation

In order to better train the neural network used in the analysis, 5000 load profiles were generated
using the proposed models and simulation. Ten percent of these subscribers receive part of their
energy from rooftop photovoltaic panels and sell surplus generation power to the grid through the
retail market. Using the initial mass data generated from simulation to train the SOM neural network
does not lead to an analyzable result. One of the reasons is the high number of elements of the input
matrix. Clustering of 15 min load curves has little convergence in addition to the high computational
cost. On the other hand, since the curves of the solar radiation are available on an hourly average,
virtually a 15 min load curve analysis will not have a significant effect on the accuracy of the simulation.
By clustering the mass-produced curves, the load behavior curves of non-PV customers fall into 22
clusters and the PV-connected load profiles fall into 26 clusters with different characteristics as shown
in Figure 13.
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5.5. Fraud Detection

The anomalies of power distribution networks fall into five categories:

1. Malfunctioning meters.
2. Customers who bypass the meter at certain hours.
3. Customers who consume part of their loads through an unmetered circuit at certain hours of the

day (Figure 14).
4. Subscribers who disable the meter on some days in each reading period (specific for old

electromagnetic meters).
5. Customers who receive electricity from the grid across a circuit other than the meter and deliver it

to the grid as photovoltaic energy. (This happens in cases where incentives are being made to buy
renewable energy at a price higher than the cost of selling electricity to customers) (Figure 15).
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Each of these types of anomaly leads to different behavior in the load profile curve and the
amount of customers’ energy consumption. For example, the consumption curve of customers who
have defective meters, while maintaining approximately the behavioral pattern of normal customers,
is higher or lower; or, in the case of customers who use conventional meters that cannot be read
online, manipulating the meter on a number of days per meter reading period will reduce the total
energy measured.

5.5.1. Early Detection of Abnormalities/Fraud

For customers who use conventional electromagnetic meters, instantaneous data is not available
and the only accessible data is the energy consumption for a given period. Ancillary data such as
period of consumption, number of days of consumption, and postal area (representing welfare level)
are valuable data in this regard. In the city of Galougah’s network, in particular, the customers
carefully monitored in these studies use either electromagnetic meters or digital meters not connected
to the national smart metering system (FAHAM). The energy consumption data of these customers is
available in different periods and years along with the test results of the meters. This information is
valuable for evaluating the effectiveness of the present studies.

To analyze anomalies/fraud in this subset of customers, mass energy consumption data is generated
at different times with the time tag and used to train the SOM neural network. Then, real network
data is used as test data. It is interesting to compare the results of the proposed method with the
results of the meter inspection. Of the 82 customers evaluated, 14 were recognized as suspected of
malformations. Table 4 shows the comparison of the simulation result and the inspection result for the
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meters. The algorithm was not successful at detecting 2 of the actual frauds among target customers.
This occurred due to similarity of the two customers to less energy-consuming customers. This error
may be extinguished by adding some extra labels such welfare level to the ANN-network input data.
There is also a mis-detection where a customer with no fraud was detected as suspected. This normally
happens for customers with fully different consumption behavior of which load behavior cannot be
assigned to any load clusters.

Table 4. Comparison of simulation results and test results for meters of study area.

Meter Code Measurement Error
(Inspection Result) [%]

The Calculated Value of the
Degree of Anomaly [1–9] Validation Result

23***26 22% 4 Detected
23***39 8% 2 Detected
23***56 25% 4 Detected
23***94 9% 0 Not detected
23***22 27% 4 Detected
23***05 10% 3 Detected
23***27 16% 3 Detected
23***02 22% 0 Not detected
23***63 17% 3 Detected
23***16 81% 9 Detected
23***94 3% 3 Mis-detected
23***32 29% 6 Detected
24***80 25% 5 Detected
23***18 66% 7 Detected

5.5.2. Detection of Fraud in Customers Connected to AMI (Automatic Meter Reading) System

No test data is available for this group of subscribers. Therefore, a deliberate anomaly is imposed
on the consumption curve of these customers, to test the performance of the proposed method. Table 5
describes the process and volume of deliberate anomalies created in the consumption data. The results
of the fraud detection analysis for smartly metered customers are presented in Table 6.

Table 5. Modeling anomaly of customers connected to smart meters.

Type of Fraud Modeling Method Class of Anomaly Number of Frauding
Customers

The customer bypasses the
meter at specified hours

The customer’s load becomes
zero at random periods A 1% of PV and 1% of

non-PV customers

The customer consumes part of
his loads through an unmetered

circuit at certain hours

The customer’s load reaches 70%
of normal load at random

periods
B 1% of PV and 1% of

non-PV customers

The customer sells the grid
energy as PV energy

A power supply with
controllable power is considered

on the load side
C 1% of PV customers

Table 6. Result of fraud detection analysis in customers with smart meters.

Class of Anomaly
Percent of
Detected
Frauds

Percent of
Mistakenly

Detected Frauds

Average Degree of
Anomaly in

Reference Data

Average Detected
Degree of Anomaly

in Records

A 64 2.23 6 7
B 49 2.61 4 3
C 91 1.04 4 5

6. Conclusions

The purpose of this study is to present a method for detecting fraud as the most important
non-technical factor in distribution network losses. Distribution networks with high penetration
of grid-connected photovoltaic sources have been specifically investigated in this study. Using
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a bottom-up model, the normal load behavior of customers is generated. Simulation is used to
determine the effect of widespread use of grid-connected photovoltaic sources on the load profile of
domestic customers.

Load profile curves in the presence of grid-connected photovoltaic units are generated using
simulation. Clustering of these curves using a self-organized neural network (SOM) determines normal
load behavior patterns. Based on the fuzzy logic model, the Euclidean distance of any load profile to the
center of the nearest normal cluster is calculated as the index of anomaly of the corresponding customer.
The mechanism for detecting where the non-technical losses occur is different in networks with
conventional electromagnetic meters to those in smart grids. A survey conducted to identify customers
suspected of energy theft had successful results in both groups. The proposed algorithm has also
shown great performance in detecting types of fraud in smart electrical networks, including: bypassing
meters at specific hours, supplying part of the energy through an unmetered circuit, and selling
non-photovoltaic energy as photovoltaic to the grid.
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Nomenclatures

Pstart Probability of the appliance turning on at each time step
A Indicator of home appliance
∆t Calculation time step
h Time in hours
f Frequency of appliance turning on in terms of number of times
Pstep Scaling factor that scales probabilities on the basis of ∆t
Io PV module output current
Np Number of cells in parallel
Ig Generated current by solar radiation
Isat Reverse saturation current
q Charge of an electron
Vo PV module output voltage
AD Diode ideality factor
K The Boltzmann’s constant
Tmod Temperature of the PV module in K
Irsh Current due to intrinsic shunt resistance of the PV module
Tr Reference temperature
Ior Saturation current at reference temperature (Tr)
Eg The band-gap energy
It Short-circuit current temperature coefficient
Isc Short-circuit current of PV module
Ns Number of cells in series
Rsh Internal shunt resistance of the PV module
Xi The ith input vector of neural network
Wi, j The weight vector which connects the ith input to the jth output
D j A map unit
Si The solar insolation
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Wold
i, j

Previous weight vector between input vector Xi and weight
vector to output neuron j

Wnew
i, j Updated weight vector between input cell i and output cell j

hi, j Neighboring function

DLi, j
The distance of the ith load curve from the center of the jth
cluster

t Time of the day
PLi,t The load of the ith customer at time t
PC j,t The load of the center of the jth cluster at time t
nc The number of clusters
µi, j The membership of any customers to normal behavior
Pnom Nominal power of each appliance [W]
Pstandby Standby power of each appliance [W]
napp Number of appliances in each home
tcycle The average time period that each appliance keeps on
RMSEnorm Normalized root mean square error
MAEnorm Normalized mean absolute error
MRE Relative mean error
e Values obtained from simulation
m Values obtained from measurement
y Number of values
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energy demand. Int. J. Electr. Power Energy Syst. 2014, 61, 656–664. [CrossRef]

16. Gils, H.C. Assessment of the theoretical demand response potential in Europe. Energy 2014, 67, 1–18.
[CrossRef]

17. Munkhammar, J.; Rydén, J.; Widén, J. Characterizing probability density distributions for household electricity
load profiles from high-resolution electricity use data. Appl. Energy 2014, 135, 382–390. [CrossRef]

18. Swan, L.G.; Ugursal, V.I. Modeling of end-use energy consumption in the residential sector: A review of
modeling techniques. Renew. Sustain. Energy Rev. 2009, 13, 1819–1835. [CrossRef]

19. Paatero, J.; Lund, P. A model for generating household electricity load profiles. Int. J. Energy Res. 2006, 30,
273–290. [CrossRef]

20. Widén, J.; Lundh, M.; Vassileva, I.; Dahlquist, E.; Ellegård, K.; Wäckelgård, E. Constructing load profiles for
household electricity and hot water from time-use data—Modelling approach and validation. Energy Build.
2009, 41, 753–768. [CrossRef]

21. Widén, J.; Munkhammar, J. Evaluating the benefits of a solar home energy management system: Impacts
on photovoltaic power production value and grid interaction. In Proceedings of the ECEEE 2013 Summer
Study, Presqu’île de Giens, France, 3–8 June 2013.

22. Widén, J.; Molin, A.; Ellegård, K. Models of domestic occupancy, activities and energy use based on time-use
data: Deterministic and stochastic approaches with application to various building-related simulations.
J. Build. Perform. Simul. 2012, 5, 27–44. [CrossRef]

23. Richardson, I.; Thomson, M.; Infield, D. A high-resolution domestic building occupancy model for energy
demand simulations. Energy Build. 2008, 40, 1560–1566. [CrossRef]

24. Richardson, I.; Thomson, M.; Infield, D.; Delahunty, A. Domestic lighting: A high-resolution energy demand
model. Energy Build. 2009, 41, 781–789. [CrossRef]

25. Widén, J.; Nilsson, A.M.; Wäckelgård, E. A combined Markov-chain and bottom-up approach to modelling
of domestic lighting demand. Energy Build. 2009, 41, 1001–1012. [CrossRef]

26. Widén, J.; Wäckelgård, E. A high-resolution stochastic model of domestic activity patterns and electricity
demand. Appl. Energy 2010, 87, 1880–1892. [CrossRef]

27. Richardson, I.; Thomson, M.; Infield, D.; Clifford, C. Domestic electricity use: A high-resolution energy
demand model. Energy Build. 2010, 42, 1878–1887. [CrossRef]

28. Kavgic, M.; Mavrogianni, A.; Mumovic, D.; Summerfield, A.; Stevanovic, Z.; Djurovic-Petrovic, M. A review
of bottom-up building stock models for energy consumption in the residential sector. Build. Environ. 2010,
45, 1683–1697. [CrossRef]

29. Omran, W.A.; Kazerani, M.; Salama, M.M.A. Investigation of methods for reduction of power fluctuations
generated from large grid-connected photovoltaic systems. IEEE Trans. Energy Convers. 2010, 26, 318–327.
[CrossRef]

30. Datta, M.; Senjyu, T.; Yona, A.; Funabashi, T.; Kim, C.-H. A frequency-control approach by photovoltaic
generator in a PV–diesel hybrid power system. IEEE Trans. Energy Convers. 2010, 26, 559–571. [CrossRef]

31. Abdolzadeh, M.; Zarei, T. Optical and thermal modeling of a photovoltaic module and experimental
evaluation of the modeling performance. Environ. Prog. Sustain. Energy 2016, 36, 277–293. [CrossRef]

32. Houari, Z.M.; Zohra, Z.F.; Mansour, Z.; Amar, T. Photovoltaic solar array: Modeling and output power
optimization. Environ. Prog. Sustain. Energy 2016, 35, 1529–1536. [CrossRef]

33. Lokesh, T.; Srinivasa, D.; Srinath, M.S. Review on MPPT techniques for solar PV array system. Our Herit.
2020, 68, 7887–7894.

34. Singh, B.P.; Goyal, S.K.; Siddiqui, S.A. Analysis and Classification of Maximum Power Point Tracking (MPPT)
Techniques: A Review. In Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2019;
pp. 999–1008.

35. Mahdi, A.S.; Mahamad, A.K.; Saon, S.; Tuwoso, T.; Elmunsyah, H.; Mudjanarko, S.W. Maximum power point
tracking using perturb and observe, fuzzy logic and ANFIS. SN Appl. Sci. 2019, 2, 89. [CrossRef]

http://dx.doi.org/10.1109/TPWRS.2014.2367509
http://dx.doi.org/10.3390/en11082112
http://dx.doi.org/10.1016/j.ijepes.2014.04.008
http://dx.doi.org/10.1016/j.energy.2014.02.019
http://dx.doi.org/10.1016/j.apenergy.2014.08.093
http://dx.doi.org/10.1016/j.rser.2008.09.033
http://dx.doi.org/10.1002/er.1136
http://dx.doi.org/10.1016/j.enbuild.2009.02.013
http://dx.doi.org/10.1080/19401493.2010.532569
http://dx.doi.org/10.1016/j.enbuild.2008.02.006
http://dx.doi.org/10.1016/j.enbuild.2009.02.010
http://dx.doi.org/10.1016/j.enbuild.2009.05.002
http://dx.doi.org/10.1016/j.apenergy.2009.11.006
http://dx.doi.org/10.1016/j.enbuild.2010.05.023
http://dx.doi.org/10.1016/j.buildenv.2010.01.021
http://dx.doi.org/10.1109/TEC.2010.2062515
http://dx.doi.org/10.1109/TEC.2010.2089688
http://dx.doi.org/10.1002/ep.12493
http://dx.doi.org/10.1002/ep.12373
http://dx.doi.org/10.1007/s42452-019-1886-1


Energies 2020, 13, 1287 23 of 24

36. Ahmed, J.; Chin, V.J. An improved perturb and observe (P&O) maximum power point tracking (MPPT)
algorithm for higher efficiency. Appl. Energy 2015, 150, 97–108.

37. Sera, D.; Mathe, L.; Kerekes, T.; Spataru, S.; Teodorescu, R. On the Perturb-and-Observe and Incremental
Conductance MPPT Methods for PV Systems. IEEE J. Photovolt. 2013, 3, 1070–1078. [CrossRef]

38. De Brito, M.A.; Sampaio, L.P.; Luigi, G.; Melo, G.A.; Canesin, C.A. Comparative analysis of MPPT techniques
for PV applications. In Proceedings of the 2011 International Conference on Clean Electrical Power (ICCEP),
Ischia, Italy, 14–16 June 2011; pp. 99–104.

39. Pourgharibshahi, H.; Abdolzadeh, M.; Fadaeinedjad, R. Verification of computational optimum tilt angles of
a photovoltaic module using an experimental photovoltaic system. Environ. Prog. Sustain. Energy 2014, 34,
1156–1165. [CrossRef]

40. Raj, M.P.; Joshua, A.M. Design, implementation and performance analysis of a LabVIEW based fuzzy logic
MPPT controller for stand-alone PV systems. In Proceedings of the 2017 IEEE International Conference on
Power, Control, Signals and Instrumentation Engineering (ICPCSI), Chennai, India, 21–22 September 2017;
pp. 1012–1017.

41. Boumaaraf, H.; Talha, A.; Bouhali, O. A three-phase NPC grid-connected inverter for photovoltaic applications
using neural network MPPT. Renew. Sustain. Energy Rev. 2015, 49, 1171–1179. [CrossRef]

42. Ramaprabha, R.; Mathur, B. Genetic algorithm based maximum power point tracking for partially shaded
solar photovoltaic array. Int. J. Res. Rev. Inf. Sci. 2012, 2, 161–163.

43. Ishaque, K.; Chin, V.J.; Amjad, M.; Mekhilef, S. An Improved Particle Swarm Optimization (PSO)–Based
MPPT for PV with Reduced Steady-State Oscillation. IEEE Trans. Power Electron. 2012, 27, 3627–3638.
[CrossRef]

44. Atiq, J.; Soori, P.K. Modelling of a grid connected solar PV system using MATLAB/Simulink. Int. J. Simul.
Syst. Sci. Technol. 2017, 17, 451–457.

45. Fayyad, U.; Piatetsky-Shapiro, G.; Smyth, P. From data mining to knowledge discovery in databases. Al Mag.
1996, 17, 37.

46. Piatetsky-Shapiro, G. Knowledge discovery in real databases: A report on the IJCAI-89 Workshop. Al Mag.
1990, 11, 68.

47. Cabral, J.E.; Pinto, J.O.P.; Martins, E.M.; Pinto, A.M.A.C. Fraud detection in high voltage electricity consumers
using data mining. In Proceedings of the 2008 IEEE/PES Transmission and Distribution Conference and
Exposition, Chicago, IL, USA, 21–24 April 2008; Institute of Electrical and Electronics Engineers (IEEE):
Piscataway, NJ, USA; pp. 1–5.

48. Alvarez-Guerra, E.; Molina, A.; Viguri, J.; Alvarez-Guerra, M. A SOM-based methodology for classifying air
quality monitoring stations. Environ. Prog. Sustain. Energy 2010, 30, 424–438. [CrossRef]

49. Orsi Noor Consultant Engineers, O.N.C. Mazandaran Galougah Power Distribution Network Master
Planning-Load Modelling. In Engineering; Mazandaran Power Distribution Co.: Amir Mazandarani, Iran,
2017; Volume 01.

50. Orsi Noor Consultant Engineers, O.N.C. Mazandaran Galougah Power Distribution Network Master
Planning-Load Forecasting. In Engineering; Mazandaran Power Distribution Co.: Amir Mazandarani, Iran,
2017; Volume 01.

51. SATBA. Share of Household Energy Consumption; Eurostat: Brussels, Belgium, 2013.
52. Laicane, I.; Blumberga, D.; Blumberga, A.; Rosa, M. Evaluation of Household Electricity Savings. Analysis of

Household Electricity Demand Profile and User Activities. Energy Procedia 2015, 72, 285–292. [CrossRef]
53. Engineers, O.N.C. Modern Engineering and Technology Development Studies: Engineering Studies on

Development, Modification and Optimization of Mazandaran Power Distribution Networks. In Engineering;
Mazandaran Power Distribution Co.: Amir Mazandarani, Iran, 2019; Volume 01.

54. Kasaeian, A.; Barghamadi, H.; Pourfayaz, F. Performance comparison between the geometry models of
multi-channel absorbers in solar volumetric receivers. Renew. Energy 2017, 105, 1–12. [CrossRef]

http://dx.doi.org/10.1109/JPHOTOV.2013.2261118
http://dx.doi.org/10.1002/ep.12066
http://dx.doi.org/10.1016/j.rser.2015.04.066
http://dx.doi.org/10.1109/TPEL.2012.2185713
http://dx.doi.org/10.1002/ep.10474
http://dx.doi.org/10.1016/j.egypro.2015.06.041
http://dx.doi.org/10.1016/j.renene.2016.12.038


Energies 2020, 13, 1287 24 of 24

55. Poulek, V.; Matuska, T.; Libra, M.; Kachalouski, E.; Sedláček, J. Influence of increased temperature on energy
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